1
|
Liu M, Wang C, Ji H, Sun M, Liu T, Wang J, Cao H, Zhu Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1368692. [PMID: 38736445 PMCID: PMC11082881 DOI: 10.3389/fpls.2024.1368692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Jiahao Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Jiang S, Wang Y, Wang M, Xu Y, Zhang W, Zhou X, Niu X, Sun M, Feng C, Wang L, Yang T, Zhang M, Li B, Qiao Y. Sex difference in the non-linear relationship between ethylene oxide exposure and depressive symptoms: A cross-sectional study. J Affect Disord 2024; 345:386-393. [PMID: 37918573 DOI: 10.1016/j.jad.2023.10.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Ethylene oxide (EO) has been recognized as an animal carcinogen and environmental EO exposure was linked to several diseases. However, the association of EO exposure with depression prevalence is still not clear. METHODS We included 6016 participants with complete data on HbEO concentrations, depression diagnosis, and necessary covariates using the 2013-2020 National Health and Nutrition Examination Survey. Weighted multivariable logistic model was applied to examine the association of HbEO concentrations with depression risk. Weighted restricted cubic spline model was applied to draw the dose-response curve. RESULTS In the total population, individuals in the second, third, and fourth quartile of HbEO respectively had an adjusted OR of 0.99 (95%CI: 0.60, 1.63), 1.13 (95%CI: 0.73, 1.75), and 2.87 (95%CI: 1.86, 4.45) (Ptrend < 0.001) for depression with a significant "J" shaped non-linear dose-response relationship (Pnon-linear < 0.001). Females, drinkers, and smokers were susceptible to the depressive effect of EO. Doubling the HbEO concentrations was respectively associated with a 1.50-fold (95%CI: 1.25, 1.79), 1.29-fold (1.15, 1.44), and 1.17-fold (1.04, 1.33) increased risk of depression for females, drinkers, and smokers. LIMITATIONS Cross-sectional study design and self-reported depressive symptoms. CONCLUSIONS Environmental EO exposure was associated with increased depression risk, especially among females, drinkers, and smokers. Further prospective studies are required to affirm these findings.
Collapse
Affiliation(s)
- Shunli Jiang
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China.
| | - Yongxin Wang
- Department of Neurosurgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mei Wang
- Jining Center for Disease Control and Prevention, Shandong 272000, China
| | - Yaru Xu
- Jining Center for Disease Control and Prevention, Shandong 272000, China
| | - Weitao Zhang
- Jiaxiang Center for Disease Control and Prevention, Shandong 272400, China
| | - Xinyong Zhou
- Luqiao Township Health Center, Weishan, Jining, Shandong 272000, China
| | - Xinpeng Niu
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China
| | - Mingjia Sun
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China
| | - Chen Feng
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China
| | - Liqun Wang
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China
| | - Tiankai Yang
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China
| | - Mingrong Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China
| | - Bo Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining, Shandong 272000, China.
| |
Collapse
|
3
|
Koyama T, Zaizen H, Takahashi I, Nakamura H, Nakajima M, Asami T. Small Molecules with Thiourea Skeleton Induce Ethylene Response in Arabidopsis. Int J Mol Sci 2023; 24:12420. [PMID: 37569795 PMCID: PMC10418922 DOI: 10.3390/ijms241512420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Ethylene is the only gaseous plant hormone that regulates several aspects of plant growth, from seedling morphogenesis to fruit ripening and organ senescence. Ethylene also stimulates the germination of Striga hermonthica, a root parasitic weed that severely damages crops in sub-Saharan Africa. Thus, ethylene response stimulants can be used as weed and crop control agents. Ethylene and ethephon, an ethylene-releasing compound, are currently used as ethylene response inducers. However, since ethylene is a gas, which limits its practical application, we targeted the development of a solid ethylene response inducer that could overcome this disadvantage. We performed chemical screening using Arabidopsis thaliana "triple response" as an indicator of ethylene response. After screening, we selected a compound with a thiourea skeleton and named it ZKT1. We then synthesized various derivatives of ZKT1 and evaluated their ethylene-like activities in Arabidopsis. Some derivatives showed considerably higher activity than ZKT1, and their activity was comparable to that of 1-aminocyclopropane-1-carboxylate. Mode of action analysis using chemical inhibitors and ethylene signaling mutants revealed that ZKT1 derivatives activate the ethylene signaling pathway through interactions with its upstream components. These thiourea derivatives can potentially be potent crop-controlling chemicals.
Collapse
Affiliation(s)
| | | | | | | | | | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (T.K.); (I.T.); (H.N.); (M.N.)
| |
Collapse
|
4
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
5
|
Qin D, Liu G, Liu R, Wang C, Xu F, Xu Q, Ling Y, Dong G, Peng Y, Ge S, Guo G, Dong J, Li C. Positional cloning identified HvTUBULIN8 as the candidate gene for round lateral spikelet (RLS) in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:7. [PMID: 36656367 PMCID: PMC9852219 DOI: 10.1007/s00122-023-04272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Map-based cloning, subcellular localization, virus-induced-gene-silencing and transcriptomic analysis reveal HvTUB8 as a candidate gene with pleiotropic effects on barley spike and leaf development via ethylene and chlorophyll metabolism. Barley lateral spikelet morphology and grain shape play key roles in grain physical quality and yield. Several genes and QTLs for these traits have been cloned or fine mapped previously. Here, we report the phenotypic and genotypic analysis of a barley mutant with round lateral spikelet (rls) from cv. Edamai 934. rls had round lateral spikelet, short but round grain, shortened awn, thick glume and dark green leaves. Histocytologic and ultrastructural analysis revealed that the difference of grain shape of rls was caused by change of cell arrangement in glume, and the dark leaf color resulted from enlarged chloroplast. HvTUBULIN8 (HvTUB8) was identified as the candidate gene for rls by combination of RNA-Seq, map-based-cloning, virus-induced-gene-silencing (VIGS) and protein subcellular location. A single G-A substitution at the third exon of HvTUB8 resulted in change of Cysteine 354 to tyrosine. Furthermore, the mutant isoform Hvtub8 could be detected in both nucleus and cytoplasm, whereas the wild-type protein was only in cytoplasm and granular organelles of wheat protoplasts. Being consistent with the rare phenotype, the "A" allele of HvTUB8 was only detected in rls, but not in a worldwide barley germplasm panel with 400 accessions. VIGS confirmed that HvTUB8 was essential to maintain spike integrity. RNA-Seq results suggested that HvTUB8 may control spike morphogenesis via ethylene homeostasis and signaling, and control leaf color through chlorophyll metabolism. Collectively, our results support HvTUB8 as a candidate gene for barley spike and leaf morphology and provide insight of a novel mechanism of it in barley development.
Collapse
Affiliation(s)
- Dandan Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Gang Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Rui Liu
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chunchao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Guoqing Dong
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Shuangtao Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, WA, 6150, Australia.
| |
Collapse
|
6
|
Wang K, Shi Y, Sun Q, Lu M, Zheng L, Aldiyar B, Yu C, Yu F, Xu A, Huang Z. Ethylene Plays a Dual Role during Infection by Plasmodiophora brassicae of Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13081299. [PMID: 35893035 PMCID: PMC9329982 DOI: 10.3390/genes13081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plasmodiophora brassicae infection leads to hypertrophy of host roots and subsequent formation of galls, causing huge economic losses to agricultural producers of Cruciferae plants. Ethylene (ET) has been reported to play a vital role against necrotrophic pathogens in the classic immunity system. More clues suggested that the defense to pathogens in roots may be different from the acrial. The ET pathway may play a positive role in the infection of P. brassicae, as shown by recent transcriptome profiling. However, the molecular basis of ET remains poorly understood. In this study, we investigated the potential role of ethylene against P. brassicae infection in an ein3/eil1 double-mutant of Arabidopsis thaliana (A. thaliana). After infection, ein3/eil1 (Disease Index/DI: 93) showed more susceptibility compared with wild type (DI: 75). Then, we inoculated A. thaliana Columbia-0 (Col-0) with P. brassicae by 1-aminocyclopropane-1-carboxylic acid (ACC) and pyrazinamide (PZA), respectively. It was found that the symptoms of infected roots with ACC were more serious than those with PZA at 20 dpi (day post infection). However, the DI were almost the same in different treatments at 30 dpi. WRKY75 can be directly regulated by ET and was upregulated at 7 dpi with ACC, as shown by qRT-PCR. The wrky75-c mutant of A. thaliana (DI: 93.75) was more susceptible than the wild type in Arabidopsis. Thus, our work reveals the dual roles of ET in infection of P. brassicae and provides evidence of ET in root defense against pathogens.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Qingbin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Mingjiao Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Lin Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Bakirov Aldiyar
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada;
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (K.W.); (Y.S.); (Q.S.); (M.L.); (L.Z.); (B.A.); (C.Y.); (A.X.)
- Correspondence:
| |
Collapse
|
7
|
Shi J, Zhu Z. Seedling morphogenesis: when ethylene meets high ambient temperature. ABIOTECH 2022; 3:40-48. [PMID: 36311540 PMCID: PMC9590463 DOI: 10.1007/s42994-021-00063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Unlike animals, plant development is plastic and sensitive to environmental changes. For example, Arabidopsis thaliana seedlings display distinct growth patterns when they are grown under different light or temperature conditions. Moreover, endogenous plant hormone such as ethylene also impacts seedling morphology. Ethylene induces hypocotyl elongation in light-grown seedlings but strongly inhibits hypocotyl elongation in etiolated (dark-grown) seedlings. Another characteristic ethylene response in etiolated seedlings is the formation of exaggerated apical hooks. Although it is well known that high ambient temperature promotes hypocotyl elongation in light-grown seedlings (thermomorphogenesis), ethylene suppresses thermomorphogenesis. On another side, high ambient temperature also inhibits the ethylene-responsive hypocotyl shortening and exaggerated hook formation in etiolated seedlings. Therefore, the simplest phytohormone ethylene exhibits almost the most complicated responses, depending on temperature and/or light conditions. In this review, we will focus on two topics related to the main theme of this special issue (response to high temperature): (1) how does high temperature suppress ethylene-induced seedling morphology in dark-grown seedlings, and (2) how does ethylene inhibit high temperature-induced seedling growth in light-grown seedlings. Controlling ethylene biosynthesis through antisense technology was the hallmark event in plant genetic engineering in 1990, we assume that manipulations on plant ethylene signaling in agricultural plants may pave the way for coping with climate change in future.
Collapse
Affiliation(s)
- Junjie Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
8
|
Yue ZL, Tian ZJ, Zhang JW, Zhang SW, Li YD, Wu ZM. Overexpression of Lectin Receptor-Like Kinase 1 in Tomato Confers Resistance to Fusarium oxysporum f. sp. Radicis-Lycopersici. FRONTIERS IN PLANT SCIENCE 2022; 13:836269. [PMID: 35185997 PMCID: PMC8850989 DOI: 10.3389/fpls.2022.836269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The disease Fusarium crown and root rot (FCRR), caused mainly by Fusarium oxysporum f. sp. radicis-lycopersici (FORL), seriously affects commercial tomato [Solanum lycopersicum (Sl)] yields. However, the genes that offer resistance to FORL are limited and the mechanism of resistance to FCRR is poorly understood. Lectin receptor-like kinases (LecRKs) play critical roles in defensive responses and immunity in many plant species; however, whether specific LecRKs are involved in the response of tomato plants to FORL is unclear. Here, we report that the expression of SlLecRK1/Solyc09g011070.1 was obviously induced by the infection of FORL. Biochemical and cell biological data revealed that SlLecRK1 is an active kinase that is located at the cell membrane, while real-time quantitative PCR data suggested that SlLecRK1 is mainly expressed in stems and roots. Genetic studies showed that overexpression of SlLecRK1 significantly improved the resistance of tomato plants to FORL but did not cause visible changes in plant growth and development compared with wild-type control plants. RNA-Seq data suggested that the positive effects of SlLecRK1 on the resistance of tomato plants to FORL occur mainly by triggering the expression of ethylene-responsive transcription factor (ERF) genes. Together, our findings not only identify a new target for the development of FCRR-resistant tomato varieties, they also demonstrate a molecular mechanism linking SlLecRK1 and ERFs in regulating the immune responses of tomato plants to FORL.
Collapse
Affiliation(s)
- Zhi-Liang Yue
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhe-Juan Tian
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jun-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ya-Dong Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhi-Ming Wu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
9
|
Zheng L, Karim MR, Hu YG, Shen R, Lan P. Greater morphological and primary metabolic adaptations in roots contribute to phosphate-deficiency tolerance in the bread wheat cultivar Kenong199. BMC PLANT BIOLOGY 2021; 21:381. [PMID: 34412589 PMCID: PMC8375062 DOI: 10.1186/s12870-021-03164-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphate (Pi) deficiency severely affects crop growth and productivity, including wheat, therefore it is necessary to develop cultivars with enhanced Pi-deficiency tolerance. However, the underlying mechanism of Pi-deficiency tolerance in wheat is still elusive. Two contrasting wheat cultivars, low-Pi tolerant Kenong199 (KN199) and low-Pi sensitive Chinese Spring (CS) were used to reveal adaptations in response to Pi deficiency at the morphological, physiological, metabolic, and molecular levels. RESULTS KN199 was more tolerant to Pi deficiency than CS with significantly increased root biomass and R/S ratio. Root traits, the total root length, total root surface area, and total root volume, were remarkably enhanced by Pi deficiency in KN199. The shoot total P and soluble Pi concentrations of KN199 were significantly higher than those of CS, but not in roots. In KN199, high Pi level in shoots is a higher priority than that in roots under Pi deficiency. It was probably due to differentially regulation in the miR399-mediated signaling network between the shoots of the two cultivars. The Pi deficiency-induced root architecture adaptation in KN199 was attributed to the regulation of the hormone-mediated signaling (ethylene, gibberellin, and jasmonates). The expression of genes associated with root development and Pi uptake was enhanced in KN199. Some primary metabolites (amino acids and organic acids) were significantly accumulated in roots of KN199 under Pi deficiency. CONCLUSIONS The low-Pi tolerant wheat cultivar KN199 possessed greater morphological and primary metabolic adaptations in roots than CS under Pi deficiency. The adaption and the underlying molecular mechanisms in wheat provide a better understanding of the Pi-deficiency tolerance and the strategies for improving Pi efficiency in wheat.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mohammad Rezaul Karim
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening. Sci Rep 2021; 11:1671. [PMID: 33462344 PMCID: PMC7814023 DOI: 10.1038/s41598-021-81155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
Collapse
|
11
|
Kirman CR, Li AA, Sheehan PJ, Bus JS, Lewis RC, Hays SM. Ethylene oxide review: characterization of total exposure via endogenous and exogenous pathways and their implications to risk assessment and risk management. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:1-29. [PMID: 33323046 DOI: 10.1080/10937404.2020.1852988] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This review is intended to provide risk assessors and risk managers with a better understanding of issues associated with total exposures of human populations to ethylene oxide from endogenous and exogenous pathways. Biomonitoring of human populations and lab animals exposed to ethylene oxide has relied upon the detection of hemoglobin adducts such as 2-hydroxyethylvaline (HEV), which provides a useful measure of total exposure to ethylene oxide from all pathways. Recent biomonitoring data from CDC provide an excellent characterization of total exposure to ethylene oxide to the general U.S. population by demographic factors such as age, gender, and race as well as smoking habit, which might be comparable to previous measurements reported for humans and lab animals. The biochemical pathways including gastrointestinal (production by bacteria) and systemic (enzymatic production) pathways by which endogenous ethylene is generated and converted to ethylene oxide are described. The relative importance of endogenous pathways and exogenous pathways via ambient air or tobacco smoke was quantified based upon available data to characterize their relative importance to total exposure. Considerable variation was noted for HEV measurements in human populations, and important sources of variation for all pathways are discussed. Issues related to risk assessment and risk management of human populations exposed to ethylene oxide are provided within the context of characterizing total exposure, and data needs for supporting future risk assessment identified.
Collapse
Affiliation(s)
| | - A A Li
- Exponent , Oakland, CA, USA
| | | | - J S Bus
- Exponent , Alexandria, MI, USA
| | | | - S M Hays
- Summit Toxicology , Bozeman, MT, USA
| |
Collapse
|
12
|
Wang B, Bi Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables. FOOD QUALITY AND SAFETY 2021; 5. [DOI: 10.1093/fqsafe/fyab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Postharvest diseases are the primary reason causing postharvest loss of fruits and vegetables. Although fungicides show an effective way to control postharvest diseases, the use of fungicides is gradually being restricted due to safety, environmental pollution, and resistance development in the pathogen. Induced resistance is a new strategy to control postharvest diseases by eliciting immune activity in fruits and vegetables with exogenous physical, chemical, and biological elicitors. After being stimulated by elicitors, fruits and vegetables respond immediately against pathogens. This process is actually a continuous signal transduction, including the generation, transduction, and interaction of signal molecules. Each step of response can lead to corresponding physiological functions, and ultimately induce disease resistance by upregulating the expression of disease resistance genes and activating a variety of metabolic pathways. Signal molecules not only mediate defense response alone, but also interact with other signal transduction pathways to regulate the disease resistance response. Among various signal molecules, the second messenger (reactive oxygen species, nitric oxide, calcium ions) and plant hormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid) play an important role in induced resistance. This article summarizes and reviews the research progress of induced resistance in recent years, and expounds the role of the above-mentioned signal molecules in induced resistance of harvested fruits and vegetables, and prospects for future research.
Collapse
|
13
|
Mujiono K, Tohi T, Sobhy IS, Hojo Y, Ho NT, Shinya T, Galis I. Ethylene functions as a suppressor of volatile production in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6491-6511. [PMID: 32697299 DOI: 10.1093/jxb/eraa341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We examined the role of ethylene in the production of rice (Oryza sativa) volatile organic compounds (VOCs), which act as indirect defense signals against herbivores in tritrophic interactions. Rice plants were exposed to exogenous ethylene (1 ppm) after simulated herbivory, which consisted of mechanical wounding supplemented with oral secretions (WOS) from the generalist herbivore larva Mythimna loreyi. Ethylene treatment highly suppressed VOCs in WOS-treated rice leaves, which was further corroborated by the reduced transcript levels of major VOC biosynthesis genes in ethylene-treated rice. In contrast, the accumulation of jasmonates (JA), known to control VOCs in higher plants, and transcript levels of primary JA response genes, including OsMYC2, were not largely affected by ethylene application. At the functional level, flooding is known to promote internode elongation in young rice via ethylene signaling. Consistent with the negative role of ethylene on VOC genes, the accumulation of VOCs in water-submerged rice leaves was suppressed. Furthermore, in mature rice plants, which naturally produce less volatiles, VOCs could be rescued by the application of the ethylene perception inhibitor 1-methylcyclopropene. Our data suggest that ethylene acts as an endogenous suppressor of VOCs in rice plants during development and under stress.
Collapse
Affiliation(s)
- Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Tilisa Tohi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nhan Thanh Ho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Cuu Long Delta Rice Research Institute, Can Tho, Vietnam
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
14
|
Wang Y, Diao P, Kong L, Yu R, Zhang M, Zuo T, Fan Y, Niu Y, Yan F, Wuriyanghan H. Ethylene Enhances Seed Germination and Seedling Growth Under Salinity by Reducing Oxidative Stress and Promoting Chlorophyll Content via ETR2 Pathway. FRONTIERS IN PLANT SCIENCE 2020; 11:1066. [PMID: 32765554 PMCID: PMC7378865 DOI: 10.3389/fpls.2020.01066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/29/2020] [Indexed: 05/04/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage, and salinity is a major stress factor on its yield. In this study, we show that osmotic stress retards alfalfa seedling growth, while ionic/oxidative stress reduces its seed germination. Ethylene treatment can recover the germination rate of alfalfa seeds under salt stress, while ethylene inhibitor silver thiosulfate exacerbates salt effects. ETH reduces the accumulation of MDA and H2O2 and increases POD activity. ETH and ACC improve the salt tolerance of alfalfa by increasing proline content under salt stress. In contrast, STS inhibits alfalfa seed germination by reducing POD activity. NaCl treatment reduces chlorophyll content in alfalfa leaves, while ETH and ACC can increase the chlorophyll content and promote seedling growth. ETH promotes the growth of alfalfa in saline condition by reducing the expression of MsACO and MsERF8 genes, while increases its germination rate by upregulating MsERF11 gene. Silencing of MsETR2, a putative ethylene receptor gene in alfalfa, abolishes ethylene triggered tolerance to salt stress. In summary, we show that ethylene improves salt tolerance in alfalfa via MsETR2 dependent manner, and we also analyze the regulatory mechanism of ethylene during germination of alfalfa seeds under salt stress.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lingqi Kong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Man Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Tiantian Zuo
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fang Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Fang Yan, ; Hada Wuriyanghan,
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Fang Yan, ; Hada Wuriyanghan,
| |
Collapse
|
15
|
Kućko A, Wilmowicz E, Ostrowski M. Spatio-temporal IAA gradient is determined by interactions with ET and governs flower abscission. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:51-60. [PMID: 30878877 DOI: 10.1016/j.jplph.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The abscission zone (AZ) is a specialized tissue that usually develops at the base of an organ and is highly sensitive to phytohormones, e.g., abscisic acid (ABA), ethylene (ET), and gibberellins (GAs). A current model of organ abscission assumes that the formation of an auxin gradient around the AZ area determines the time of shedding; however, that thesis is supported by studies that are primarily concerned with auxin transporters. To better understand the events underlying the progression of abscission, we focused for the first time on indole-3-acetic acid (IAA) distribution following AZ activation. We performed a series of immunolocalization studies in proximal and distal regions of floral AZ cells in yellow lupine, which is an agriculturally important legume. The examined phytohormone was abundant in natural active AZ cells, as well as above and below parts of this structure. A similar gradient of IAA was observed during the early steps of abscission, which was induced artificially by flower removal. Surprisingly, IAA was not detected in inactive AZ cells. This paper is also a consequence of our comprehensive studies concerning the phytohormonal regulation of flower abscission in yellow lupine. We present new data on interactions between IAA and ET, previously pointed out as a strong modulator of flower separation. The detailed analysis shows that disruption of the natural auxin gradient around the AZ area through the application of synthetic IAA had a positive effect on ET biosynthesis genes. We proved that these changes are accompanied by an accumulation of the ET precursor. On the other hand, exposure to ET significantly affected IAA localization in the whole AZ area in a time-dependent manner. Our results provide insight into the existence of a spatio-temporal sequential pattern of the IAA gradient related to the abscission process; this pattern is maintained by interactions with ET. We present new valuable evidence for the existence of conservative mechanisms that regulate generative organ separation and can help to improve the yield of agronomically significant species in the future.
Collapse
Affiliation(s)
- Agata Kućko
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 LwowskaStreet, 87-100, Toruń, Poland; Chair of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 LwowskaStreet, 87-100, Toruń, Poland.
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, 1 LwowskaStreet, 87-100, Toruń, Poland.
| |
Collapse
|
16
|
Jiang N, Cui J, Yang G, He X, Meng J, Luan Y. Comparative transcriptome analysis shows the defense response networks regulated by miR482b. PLANT CELL REPORTS 2019; 38:1-13. [PMID: 30191311 DOI: 10.1007/s00299-018-2344-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The transcriptomic profile in the leaves of miR482b-overexpressing tomato plants revealed that miR482b may suppress alpha-linolenic acid metabolism, cysteine and methionine metabolism, plant-pathogen interaction, and the MAPK pathway to reduce resistance to Phytophthora infestans. Our previous study showed that tomato miR482b acted as a negative regulator during tomato resistance to Phytophthora infestans by silencing NBS-LRR genes. To investigate pathways related to miR482b, the transcriptomic profile of tomato plants that overexpressed miR482b was constructed. A total of 47,124,670 raw sequence reads from the leaves of miR482b-overexpressing tomato plants were generated by Illumina sequencing. A total of 746 genes in miR482b-overexpressing tomato plants were found to show significantly differential expression relative to those in wild-type tomato plants, including 132 up-regulated genes and 614 down-regulated genes. GO and KEGG enrichment analyses showed that plant-pathogen interaction, the MAPK pathway, and the pathways related to JA and ET biosynthesis were affected by miR482b in tomato. qRT-PCR results showed that all the enriched genes in these pathways were down-regulated in tomato plants that overexpressed miR482b and up-regulated in tomato plants that overexpressed an NBS-LRR gene (Soly02g036270.2, the target gene of miR482b). After P. infestans infection, the expression of the enriched genes showed a time-dependent response, and the genes played different roles between resistant tomato (Solanum pimpinellifolium L3708) and tomato susceptible to P. infestans (S. lycopersicum Zaofen No. 2). Our results have, therefore, demonstrated that miR482b is an important component of defense response network. This will also help to identify candidate genes involved in plant-pathogen interaction.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoli He
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
17
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
18
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
19
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Liu J, Moore S, Chen C, Lindsey K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. MOLECULAR PLANT 2017; 10:1480-1496. [PMID: 29162416 DOI: 10.1016/j.molp.2017.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 05/23/2023]
Abstract
Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in plant developmental biology. Auxin, cytokinin, and ethylene are three important hormones that regulate many aspects of plant development. This review critically evaluates the crosstalk between the three hormones in Arabidopsis root development. We integrate a variety of experimental data into a crosstalk network, which reveals multiple layers of complexity in auxin, cytokinin, and ethylene crosstalk. In particular, data integration reveals an additional, largely overlooked link between the ethylene and cytokinin pathways, which acts through a phosphorelay mechanism. This proposed link addresses outstanding questions on whether ethylene application promotes or inhibits receptor kinase activity of the ethylene receptors. Elucidating the complexity in auxin, cytokinin, and ethylene crosstalk requires a combined experimental and systems modeling approach. We evaluate important modeling efforts for establishing how crosstalk between auxin, cytokinin, and ethylene regulates patterning in root development. We discuss how a novel methodology that iteratively combines experiments with systems modeling analysis is essential for elucidating the complexity in crosstalk of auxin, cytokinin, and ethylene in root development. Finally, we discuss the future challenges from a combined experimental and modeling perspective.
Collapse
Affiliation(s)
- Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
21
|
He Z, Wang S, Yang Y, Hu J, Wang C, Li H, Ma B, Yuan Q. β-Carotene production promoted by ethylene in Blakeslea trispora and the mechanism involved in metabolic responses. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|