1
|
Yang P, Liu X, Lyu J, Feng Q, Ding Y, Zhong S, Liu P, Liang Y, Liu C, Huang L, Zhao P, Li Q, Ma K, Fan S, Zhang X. Down-regulation of TAGLN2 associated with the development of preeclampsia by effecting the Rap1 signaling pathway. Placenta 2025; 159:20-31. [PMID: 39602835 DOI: 10.1016/j.placenta.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Preeclampsia (PE) poses significant global challenges to pregnancy health, being a leading cause of maternal and perinatal morbidity and mortality. Unfortunately, effective treatment options remain limited, necessitating the urgent development of novel therapeutic strategies. This study is to investigate down-regulation of Transgelin-2 (TAGLN2) contributes to the development of PE through suppression of the Rap1 signaling pathway. METHODS Placentas from PE patients were collected for a transcriptome analysis. Down-regulation experiments of TAGLN2 were performed in mouse and HTR-8/SVneo cells to generate PE models. The mechanism by which down-regulation of TAGLN2 induces PE was explored based on these PE model through transcriptome and proteome analysis and molecular tests. RESULTS Our findings revealed that the expression levels of Rap1A was significantly reduced in the placenta of PE patients. The expression level of Rap1A in the placental tissue of sh_Tagln2 PE model mice is down-regulated. In addition, TAGLN2 down-regulation impede the proliferation and migration of HTR8/SVneo cells and lead to the decreased expression of Rap1A. Meanwhile, Rap1A down-regulation impede both the proliferation and migration of HTR8/SVneo cells. Both transcriptomic and proteomic levels of sh-TG2 HTR8/SVneo cells demonstrated Rap1 signaling pathway and related key genes was inhibited after TAGLN2 down-regulation. CONCLUSION Our results confirm that down-regulation of TAGLN2 in HTR-8/SVneo cells leads to the decreased Rap1A expression and suppresses trophoblast cell proliferation and migration by inhibiting Rap1 signaling pathway. Meanwhile, Rap1A down-regulation impede both the proliferation and migration of HTR8/SVneo cells. These findings concluded that down-regulation of TAGLN2 may be implicated in the development of preeclampsia through its effect on the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xinyang Liu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Jinli Lyu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Qiaoli Feng
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shilin Zhong
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Pingyue Zhao
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China; Peking University Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, Guangdong, China
| | - Qing Li
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Kaidong Ma
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China; Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| | - Xiaowei Zhang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China; Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Verma A, Goel A, Koner N, Gunasekaran G, Radha V. Development and tissue specific expression of RAPGEF1 (C3G) transcripts having exons encoding disordered segments with predicted regulatory function. Mol Biol Rep 2024; 51:907. [PMID: 39141165 DOI: 10.1007/s11033-024-09845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The ubiquitously expressed Guanine nucleotide exchange factor, RAPGEF1 (C3G), is essential for early development of mouse embryos. It functions to regulate gene expression and cytoskeletal reorganization, thereby controlling cell proliferation and differentiation. While multiple transcripts have been predicted, their expression in mouse tissues has not been investigated in detail. METHODS & RESULTS Full length RAPGEF1 isoforms primarily arise due to splicing at two hotspots, one involving exon-3, and the other involving exons 12-14 incorporating amino acids immediately following the Crk binding region of the protein. These isoforms vary in expression across embryonic and adult organs. We detected the presence of unannotated, and unpredicted transcripts with incorporation of cassette exons in various combinations, specifically in the heart, brain, testis and skeletal muscle. Isoform switching was detected as myocytes in culture and mouse embryonic stem cells were differentiated to form myotubes, and embryoid bodies respectively. The cassette exons encode a serine-rich polypeptide chain, which is intrinsically disordered, and undergoes phosphorylation. In silico structural analysis using AlphaFold indicated that the presence of cassette exons alters intra-molecular interactions, important for regulating catalytic activity. LZerD based docking studies predicted that the isoforms with one or more cassette exons differ in interaction with their target GTPase, RAP1A. CONCLUSIONS Our results demonstrate the expression of novel RAPGEF1 isoforms, and predict cassette exon inclusion as an additional means of regulating RAPGEF1 activity in various tissues and during differentiation.
Collapse
Affiliation(s)
- Archana Verma
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
- Department of Pediatric Hematology and Oncology, University Childrens Hospital, Muenster, 48149, Germany
| | - Abhishek Goel
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
| | - Niladri Koner
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
| | - Gowthaman Gunasekaran
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
- Department of Molecular Biology Laboratory of Chromatin Biology, Ariel University, Ariel, 40700, Israel
| | - Vegesna Radha
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India.
| |
Collapse
|
3
|
Fernández-Infante C, Hernández-Cano L, Herranz Ó, Berrocal P, Sicilia-Navarro C, González-Porras JR, Bastida JM, Porras A, Guerrero C. Platelet C3G: a key player in vesicle exocytosis, spreading and clot retraction. Cell Mol Life Sci 2024; 81:84. [PMID: 38345631 PMCID: PMC10861696 DOI: 10.1007/s00018-023-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024]
Abstract
C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.
Collapse
Affiliation(s)
- Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Óscar Herranz
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pablo Berrocal
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carmen Sicilia-Navarro
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - José María Bastida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
4
|
Golebiewski C, Gastaldi C, Vieu DL, Mari B, Rezzonico R, Bernerd F, Marionnet C. Identification and functional validation of SRC and RAPGEF1 as new direct targets of miR-203, involved in regulation of epidermal homeostasis. Sci Rep 2023; 13:14006. [PMID: 37635193 PMCID: PMC10460794 DOI: 10.1038/s41598-023-40441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.
Collapse
Affiliation(s)
| | - Cécile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | | | | |
Collapse
|
5
|
Rodríguez-Blázquez A, Carabias A, Morán-Vaquero A, de Cima S, Luque-Ortega JR, Alfonso C, Schuck P, Manso JA, Macedo-Ribeiro S, Guerrero C, de Pereda JM. Crk proteins activate the Rap1 guanine nucleotide exchange factor C3G by segregated adaptor-dependent and -independent mechanisms. Cell Commun Signal 2023; 21:30. [PMID: 36737758 PMCID: PMC9896810 DOI: 10.1186/s12964-023-01042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND C3G is a guanine nucleotide exchange factor (GEF) that activates Rap1 to promote cell adhesion. Resting C3G is autoinhibited and the GEF activity is released by stimuli that signal through tyrosine kinases. C3G is activated by tyrosine phosphorylation and interaction with Crk adaptor proteins, whose expression is elevated in multiple human cancers. However, the molecular details of C3G activation and the interplay between phosphorylation and Crk interaction are poorly understood. METHODS We combined biochemical, biophysical, and cell biology approaches to elucidate the mechanisms of C3G activation. Binding of Crk adaptor proteins to four proline-rich motifs (P1 to P4) in C3G was characterized in vitro using isothermal titration calorimetry and sedimentation velocity, and in Jurkat and HEK293T cells by affinity pull-down assays. The nucleotide exchange activity of C3G over Rap1 was measured using nucleotide-dissociation kinetic assays. Jurkat cells were also used to analyze C3G translocation to the plasma membrane and the C3G-dependent activation of Rap1 upon ligation of T cell receptors. RESULTS CrkL interacts through its SH3N domain with sites P1 and P2 of inactive C3G in vitro and in Jurkat and HEK293T cells, and these sites are necessary to recruit C3G to the plasma membrane. However, direct stimulation of the GEF activity requires binding of Crk proteins to the P3 and P4 sites. P3 is occluded in resting C3G and is essential for activation, while P4 contributes secondarily towards complete stimulation. Tyrosine phosphorylation of C3G alone causes marginal activation. Instead, phosphorylation primes C3G lowering the concentration of Crk proteins required for activation and increasing the maximum activity. Unexpectedly, optimal activation also requires the interaction of CrkL-SH2 domain with phosphorylated C3G. CONCLUSION Our study revealed that phosphorylation of C3G by Src and Crk-binding form a two-factor mechanism that ensures tight control of C3G activation. Additionally, the simultaneous SH2 and SH3N interaction of CrkL with C3G, required for the activation, reveals a novel adaptor-independent function of Crk proteins relevant to understanding their role in physiological signaling and their deregulation in diseases. Video abstract.
Collapse
Affiliation(s)
- Antonio Rodríguez-Blázquez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Arturo Carabias
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, 2200, Copenhagen N, Denmark
| | - Alba Morán-Vaquero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sergio de Cima
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Juan R Luque-Ortega
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - José Antonio Manso
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Carmen Guerrero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007, Salamanca, Spain
| | - José M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Cells 2022; 11:cells11091473. [PMID: 35563779 PMCID: PMC9103620 DOI: 10.3390/cells11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
Collapse
|
7
|
Maywald ML, Picciotto C, Lepa C, Bertgen L, Yousaf FS, Ricker A, Klingauf J, Krahn MP, Pavenstädt H, George B. Rap1 Activity Is Essential for Focal Adhesion and Slit Diaphragm Integrity. Front Cell Dev Biol 2022; 10:790365. [PMID: 35372328 PMCID: PMC8972170 DOI: 10.3389/fcell.2022.790365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Glomerular podocytes build, with their intercellular junctions, part of the kidney filter. The podocyte cell adhesion protein, nephrin, is essential for developing and maintaining slit diaphragms as functional loss in humans results in heavy proteinuria. Nephrin expression and function are also altered in many adult-onset glomerulopathies. Nephrin signals from the slit diaphragm to the actin cytoskeleton and integrin β1 at focal adhesions by recruiting Crk family proteins, which can interact with the Rap guanine nucleotide exchange factor 1 C3G. As Rap1 activity affects focal adhesion formation, we hypothesize that nephrin signals via Rap1 to integrin β. To address this issue, we combined Drosophila in vivo and mammalian cell culture experiments. We find that Rap1 is necessary for correct targeting of integrin β to focal adhesions in Drosophila nephrocytes, which also form slit diaphragm-like structures. In the fly, the Rap1 activity is important for signaling of the nephrin ortholog to integrin β, as well as for nephrin-dependent slit diaphragm integrity. We show by genetic interaction experiments that Rap1 functions downstream of nephrin signaling to integrin β and downstream of nephrin signaling necessary for slit diaphragm integrity. Similarly, in human podocyte culture, nephrin activation results in increased activation of Rap1. Thus, Rap1 is necessary for downstream signal transduction of nephrin to integrin β.
Collapse
Affiliation(s)
- Mee-Ling Maywald
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Cara Picciotto
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Carolin Lepa
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Luisa Bertgen
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | | | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael P. Krahn
- Medizinische Klinik D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | | | - Britta George
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
- *Correspondence: Britta George,
| |
Collapse
|
8
|
C3G Protein, a New Player in Glioblastoma. Int J Mol Sci 2021; 22:ijms221810018. [PMID: 34576182 PMCID: PMC8466177 DOI: 10.3390/ijms221810018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.
Collapse
|
9
|
C3G downregulation induces the acquisition of a mesenchymal phenotype that enhances aggressiveness of glioblastoma cells. Cell Death Dis 2021; 12:348. [PMID: 33824275 PMCID: PMC8024353 DOI: 10.1038/s41419-021-03631-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is the most aggressive tumor from the central nervous system (CNS). The current lack of efficient therapies makes essential to find new treatment strategies. C3G, a guanine nucleotide exchange factor for some Ras proteins, plays a dual role in cancer, but its function in GBM remains unknown. Database analyses revealed a reduced C3G mRNA expression in GBM patient samples. C3G protein levels were also decreased in a panel of human GBM cell lines as compared to astrocytes. Based on this, we characterized C3G function in GBM using in vitro and in vivo human GBM models. We report here that C3G downregulation promoted the acquisition of a more mesenchymal phenotype that enhanced the migratory and invasive capacity of GBM cells. This facilitates foci formation in anchorage-dependent and -independent growth assays and the generation of larger tumors in xenografts and chick chorioallantoic membrane (CAM) assays, but with a lower cell density, as proliferation was reduced. Mechanistically, C3G knock-down impairs EGFR signaling by reducing cell surface EGFR through recycling inhibition, while upregulating the activation of several other receptor tyrosine kinases (RTKs) that might promote invasion. In particular, FGF2, likely acting through FGFR1, promoted invasion of C3G-silenced GBM cells. Moreover, ERKs mediate this invasiveness, both in response to FGF2- and serum-induced chemoattraction. In conclusion, our data show the distinct dependency of GBM tumors on C3G for EGF/EGFR signaling versus other RTKs, suggesting that assessing C3G levels may discriminate GBM patient responders to different RTK inhibition protocols. Hence, patients with a low C3G expression might not respond to EGFR inhibitors.
Collapse
|
10
|
Gogos A, Sun J, Udawela M, Gibbons A, van den Buuse M, Scarr E, Dean B. Cortical expression of the RAPGEF1 gene in schizophrenia: investigating regional differences and suicide. Psychiatry Res 2021; 298:113818. [PMID: 33639407 DOI: 10.1016/j.psychres.2021.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 11/18/2022]
Abstract
Rap guanine nucleotide exchange factor 1 (RAPGEF1) is involved in cell adhesion and neuronal migration. Previously we found lower RAPGEF1 mRNA levels in Brodmann's area (BA) 9 in subjects with schizophrenia compared to controls. This study aimed to determine whether RAPGEF1 expression was altered in other brain regions implicated in schizophrenia and whether this was associated with suicide. Using qPCR, we measured the levels of RAPGEF1 in post-mortem BA 8 and 44 from 27 subjects with schizophrenia and 26 non-psychiatric control subjects. To address the effect of antipsychotic treatments, Rapgef1 mRNA levels were measured in the cortex from rats treated with typical antipsychotic drugs. There was no difference in RAPGEF1 normalised relative expression levels in BA 8 or 44. However, in BA 8, schizophrenia subjects had higher raw Ct RAPGEF1 levels compared to controls. There were higher RAPGEF1 levels in suicide completers compared to non-suicide schizophrenia subjects in BA 8. Rapgef1 expression levels in the rat cortex did not vary with antipsychotic treatment. Our findings suggest changes in RAPGEF1 expression may be limited to the dorsolateral prefrontal cortex from subjects with schizophrenia. Further investigation of the function of RAPGEF1 may lead to a greater understanding of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Jeehae Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Madhara Udawela
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Affinity BIO, Scoresby, VIC, Australia
| | - Andrew Gibbons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, Monash University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia; Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia; The College of Public Health, James Cook University, Townsville, QLD, Australia
| | - Elizabeth Scarr
- Melbourne Veterinary School, University of Melbourne, Parkville, VIC, Australia
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
C3G Regulates STAT3, ERK, Adhesion Signaling, and Is Essential for Differentiation of Embryonic Stem Cells. Stem Cell Rev Rep 2021; 17:1465-1477. [PMID: 33624208 PMCID: PMC8372029 DOI: 10.1007/s12015-021-10136-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
C3G (RAPGEF1), engaged in multiple signaling pathways, is essential for the early development of the mouse. In this study, we have examined its role in mouse embryonic stem cell self-renewal and differentiation. C3G null cells generated by CRISPR mediated knock-in of a targeting vector exhibited enhanced clonogenicity and long-term self-renewal. They did not differentiate in response to LIF withdrawal when compared to the wild type ES cells and were defective for lineage commitment upon teratoma formation in vivo. Gene expression analysis of C3G KO cells showed misregulated expression of a large number of genes compared with WT cells. They express higher levels of self-renewal factors like KLF4 and ESRRB and show high STAT3 activity, and very low ERK activity compared to WT cells. Reintroduction of C3G expression in a KO line partially reverted expression of ESRRB, and KLF4, and ERK activity similar to that seen in WT cells. The expression of self-renewal factors was persistent for a longer time, and induction of lineage-specific markers was not seen when C3G KO cells were induced to form embryoid bodies. C3G KO cells showed poor adhesion and significantly reduced levels of pFAK, pPaxillin, and Integrin-β1, in addition to downregulation of the cluster of genes involved in cell adhesion, compared to WT cells. Our results show that C3G is essential for the regulation of STAT3, ERK, and adhesion signaling, to maintain pluripotency of mouse embryonic stem cells and enable their lineage commitment for differentiation. ![]()
Collapse
|
12
|
Sriram D, Dayma K, Devi AS, Raghawan AK, Rawat S, Radha V. Complex formation and reciprocal regulation between GSK3β and C3G. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118964. [PMID: 33450305 DOI: 10.1016/j.bbamcr.2021.118964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
GSK3β, a ubiquitously expressed Ser/Thr kinase, regulates cell metabolism, proliferation and differentiation. Its activity is spatially and temporally regulated dependent on external stimuli and interacting partners, and its deregulation is associated with various human disorders. In this study, we identify C3G (RapGEF1), a protein essential for mammalian embryonic development as an interacting partner and substrate of GSK3β. In vivo and in vitro interaction assays demonstrated that GSK3β and Akt are present in complex with C3G. Molecular modelling and mutational analysis identified a domain in C3G that aids interaction with GSK3β, and overlaps with its nuclear export sequence. GSK3β phosphorylates C3G on primed as well as unprimed sites, and regulates its subcellular localization. Over-expression of C3G resulted in activation of Akt and inactivation of GSK3β. Huntingtin aggregate formation, dependent on GSK3β inhibition, was enhanced upon C3G overexpression. Stable clones of C2C12 cells generated by CRISPR/Cas9 mediated knockdown of C3G, that cannot differentiate, show reduced Akt activity and S9-GSK3β phosphorylation compared to wild type cells. Co-expression of catalytically active GSK3β inhibited C3G induced myocyte differentiation. C3G mutant defective for GSK3β phosphorylation, does not alter S9-GSK3β phosphorylation and, is compromised for inducing myocyte differentiation. Our results show complex formation and reciprocal regulation between GSK3β and C3G. We have identified a novel function of C3G as a negative regulator of GSK3β, a property important for its ability to induce myogenic differentiation.
Collapse
Affiliation(s)
- Divya Sriram
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kunal Dayma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ambure Sharada Devi
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
13
|
Carabias A, Guerrero C, de Pereda JM. C3G self-regulatory mechanism revealed: implications for hematopoietic malignancies. Mol Cell Oncol 2020; 8:1837581. [PMID: 33553598 PMCID: PMC7849780 DOI: 10.1080/23723556.2020.1837581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abnormally increased signaling by the GTPase RAP1 favors progression of diverse tumors. We have characterized the auto-regulation and activation of C3G (RAPGEF1), an activator of RAP1. This led us to discover mutations in non-Hodgkin’s lymphomas that activate C3G-RAP1 constitutively, suggesting that deregulation of C3G may favor the dissemination of tumor cells.
Collapse
Affiliation(s)
- Arturo Carabias
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Salamanca, Salamanca, Spain.,Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Carmen Guerrero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Salamanca, Salamanca, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - José M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Expression of a novel brain specific isoform of C3G is regulated during development. Sci Rep 2020; 10:18838. [PMID: 33139841 PMCID: PMC7606606 DOI: 10.1038/s41598-020-75813-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Mice lacking C3G (RapGEF1), a ubiquitously expressed protein essential for neuronal differentiation, show multiple defects in brain development. Function of C3G in neurogenesis is poorly defined. Here, we identify brain specific expression of a novel C3G isoform in mice and humans. This isoform has an insert in the Crk-binding region, generating a polypeptide of 175 kDa, unlike the previously known 140 kDa form expressed in all other tissues. In the adult mouse brain, C3G expression is seen in neurons, but was not detectable in GFAP-positive cells. C3G levels were high in the CA3 region of hippocampus and in mitral cells of olfactory bulb. Neural progenitor cells positive for Doublecortin and Nestin, show expression of C3G. During development, C3G is expressed in precursor cells prior to their differentiation into mature neurons or astrocytes. The 175 kDa as well as 140 kDa forms are seen in embryonic mouse brain, while only the 175 kDa variant is seen in post-natal brain. Human cerebral organoids generated from induced pluripotent stem cells predominantly expressed the 140 kDa polypeptides, and the 175 kDa isoform appeared upon maturation. This study describes developmental regulation and neuronal expression of a brain specific isoform of C3G, a molecule essential for normal development of the mammalian brain.
Collapse
|
15
|
Carabias A, Gómez-Hernández M, de Cima S, Rodríguez-Blázquez A, Morán-Vaquero A, González-Sáenz P, Guerrero C, de Pereda JM. Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas. Sci Signal 2020; 13:13/647/eabb7075. [PMID: 32873726 DOI: 10.1126/scisignal.abb7075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C3G is a guanine nucleotide exchange factor (GEF) that regulates cell adhesion and migration by activating the GTPase Rap1. The GEF activity of C3G is stimulated by the adaptor proteins Crk and CrkL and by tyrosine phosphorylation. Here, we uncovered mechanisms of C3G autoinhibition and activation. Specifically, we found that two intramolecular interactions regulate the activity of C3G. First, an autoinhibitory region (AIR) within the central domain of C3G binds to and blocks the catalytic Cdc25H domain. Second, the binding of the protein's N-terminal domain to its Ras exchanger motif (REM) is required for its GEF activity. CrkL activated C3G by displacing the AIR/Cdc25HD interaction. Two missense mutations in the AIR found in non-Hodgkin's lymphomas, Y554H and M555K, disrupted the autoinhibitory mechanism. Expression of C3G-Y554H or C3G-M555K in Ba/F3 pro-B cells caused constitutive activation of Rap1 and, consequently, the integrin LFA-1. Our findings suggest that sustained Rap1 activation by deregulated C3G might promote progression of lymphomas and that designing therapeutics to target C3G might treat these malignancies.
Collapse
Affiliation(s)
- Arturo Carabias
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - María Gómez-Hernández
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio de Cima
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Rodríguez-Blázquez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alba Morán-Vaquero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Patricia González-Sáenz
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carmen Guerrero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
16
|
C3G Is Upregulated in Hepatocarcinoma, Contributing to Tumor Growth and Progression and to HGF/MET Pathway Activation. Cancers (Basel) 2020; 12:cancers12082282. [PMID: 32823931 PMCID: PMC7463771 DOI: 10.3390/cancers12082282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/28/2022] Open
Abstract
The complexity of hepatocellular carcinoma (HCC) challenges the identification of disease-relevant signals. C3G, a guanine nucleotide exchange factor for Rap and other Ras proteins, plays a dual role in cancer acting as either a tumor suppressor or promoter depending on tumor type and stage. The potential relevance of C3G upregulation in HCC patients suggested by database analysis remains unknown. We have explored C3G function in HCC and the underlying mechanisms using public patient data and in vitro and in vivo human and mouse HCC models. We found that C3G is highly expressed in progenitor cells and neonatal hepatocytes, whilst being down-regulated in adult hepatocytes and re-expressed in human HCC patients, mouse HCC models and HCC cell lines. Moreover, high C3G mRNA levels correlate with tumor progression and a lower patient survival rate. C3G expression appears to be tightly modulated within the HCC program, influencing distinct cell biological properties. Hence, high C3G expression levels are necessary for cell tumorigenic properties, as illustrated by reduced colony formation in anchorage-dependent and -independent growth assays induced by permanent C3G silencing using shRNAs. Additionally, we demonstrate that C3G down-regulation interferes with primary HCC tumor formation in xenograft assays, increasing apoptosis and decreasing proliferation. In vitro assays also revealed that C3G down-regulation enhances the pro-migratory, invasive and metastatic properties of HCC cells through an epithelial-mesenchymal switch that favors the acquisition of a more mesenchymal phenotype. Consistently, a low C3G expression in HCC cells correlates with lung metastasis formation in mice. However, the subsequent restoration of C3G levels is associated with metastatic growth. Mechanistically, C3G down-regulation severely impairs HGF/MET signaling activation in HCC cells. Collectively, our results indicate that C3G is a key player in HCC. C3G promotes tumor growth and progression, and the modulation of its levels is essential to ensure distinct biological features of HCC cells throughout the oncogenic program. Furthermore, C3G requirement for HGF/MET signaling full activation provides mechanistic data on how it works, pointing out the relevance of assessing whether high C3G levels could identify HCC responders to MET inhibitors.
Collapse
|
17
|
Gutiérrez-Herrero S, Fernández-Infante C, Hernández-Cano L, Ortiz-Rivero S, Guijas C, Martín-Granado V, González-Porras JR, Balsinde J, Porras A, Guerrero C. C3G contributes to platelet activation and aggregation by regulating major signaling pathways. Signal Transduct Target Ther 2020; 5:29. [PMID: 32296045 PMCID: PMC7109025 DOI: 10.1038/s41392-020-0119-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/25/2023] Open
Abstract
C3G is a GEF (guanine nucleotide exchange factor) for Rap GTPases, among which the isoform Rap1b is an essential protein in platelet biology. Using transgenic mouse models with platelet-specific overexpression of C3G or mutant C3GΔCat, we have unveiled a new function of C3G in regulating the hemostatic function of platelets through its participation in the thrombin-PKC-Rap1b pathway. C3G also plays important roles in angiogenesis, tumor growth, and metastasis through its regulation of the platelet secretome. In addition, C3G contributes to megakaryopoiesis and thrombopoiesis. Here, we used a platelet-specific C3G-KO mouse model to further support the role of C3G in hemostasis. C3G-KO platelets showed a significant delay in platelet activation and aggregation as a consequence of the defective activation of Rap1, which resulted in decreased thrombus formation in vivo. Additionally, we explored the contribution of C3G-Rap1b to platelet signaling pathways triggered by thrombin, PMA or ADP, in the referenced transgenic mouse model, through the use of a battery of specific inhibitors. We found that platelet C3G is phosphorylated at Tyr504 by a mechanism involving PKC-Src. This phosphorylation was shown to be positively regulated by ERKs through their inhibition of the tyrosine phosphatase Shp2. Moreover, C3G participates in the ADP-P2Y12-PI3K-Rap1b pathway and is a mediator of thrombin-TXA2 activities. However, it inhibits the synthesis of TXA2 through cPLA2 regulation. Taken together, our data reveal the critical role of C3G in the main pathways leading to platelet activation and aggregation through the regulation of Rap1b.
Collapse
Affiliation(s)
- Sara Gutiérrez-Herrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sara Ortiz-Rivero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Víctor Martín-Granado
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Hematología, Hospital Universitario de Salamanca (HUS), Salamanca, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Complutense University of Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
18
|
Nayak SC, Radha V. C3G localizes to mother centriole dependent on cenexin, and regulates centrosome duplication and primary cilia length. J Cell Sci 2020; 133:jcs.243113. [DOI: 10.1242/jcs.243113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
C3G (RapGEF1) plays a role in cell differentiation and is essential for early embryonic development in mice. In this study, we identify C3G as a centrosomal protein colocalizing with cenexin at the mother centriole in interphase cells. C3G interacts through its catalytic domain with cenexin, and they show interdependence for localization to the centrosome. C3G depletion caused a decrease in cellular cenexin levels. Centrosomal localization is lost as myocytes differentiate to form myotubes. Stable clone of cells depleted of C3G by CRISPR/Cas9 showed the presence of supernumerary centrioles. Overexpression of C3G, or a catalytically active deletion construct inhibited centrosome duplication. Cilia length is longer in C3G knockout cells, and the phenotype could be reverted upon reintroduction of C3G or its catalytic domain. Association of C3G with the basal body is dynamic, decreasing upon serum starvation, and increasing upon reentry into the cell cycle. C3G inhibits cilia formation and length dependent on its catalytic activity. We conclude that C3G inhibits centrosome duplication and maintains ciliary homeostasis, properties that may be important for its role in embryonic development.
Collapse
Affiliation(s)
- Sanjeev Chavan Nayak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad – 500 007, India
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad – 500 007, India
| |
Collapse
|
19
|
Dlugos CP, Picciotto C, Lepa C, Krakow M, Stöber A, Eddy ML, Weide T, Jeibmann A, P Krahn M, Van Marck V, Klingauf J, Ricker A, Wedlich-Söldner R, Pavenstädt H, Klämbt C, George B. Nephrin Signaling Results in Integrin β1 Activation. J Am Soc Nephrol 2019; 30:1006-1019. [PMID: 31097607 DOI: 10.1681/asn.2018040362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with certain mutations in the gene encoding the slit diaphragm protein Nephrin fail to develop functional slit diaphragms and display severe proteinuria. Many adult-onset glomerulopathies also feature alterations in Nephrin expression and function. Nephrin signals from the podocyte slit diaphragm to the Actin cytoskeleton by recruiting proteins that can interact with C3G, a guanine nucleotide exchange factor of the small GTPase Rap1. Because Rap activity affects formation of focal adhesions, we hypothesized that Nephrin transmits signals to the Integrin receptor complex, which mediates podocyte adhesion to the extracellular matrix. METHODS To investigate Nephrin's role in transmitting signals to the Integrin receptor complex, we conducted genetic studies in Drosophila nephrocytes and validated findings from Drosophila in a cultured human podocyte model. RESULTS Drosophila nephrocytes form a slit diaphragm-like filtration barrier and express the Nephrin ortholog Sticks and stones (Sns). A genetic screen identified c3g as necessary for nephrocyte function. In vivo, nephrocyte-specific gene silencing of sns or c3g compromised nephrocyte filtration and caused nephrocyte diaphragm defects. Nephrocytes with impaired Sns or C3G expression displayed an altered localization of Integrin and the Integrin-associated protein Talin. Furthermore, gene silencing of c3g partly rescued nephrocyte diaphragm defects of an sns overexpression phenotype, pointing to genetic interaction of sns and c3g in nephrocytes. We also found that activated Nephrin recruited phosphorylated C3G and resulted in activation of Integrin β1 in cultured podocytes. CONCLUSIONS Our findings suggest that Nephrin can mediate a signaling pathway that results in activation of Integrin β1 at focal adhesions, which may affect podocyte attachment to the extracellular matrix.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christian Klämbt
- Neurobiology, Westfälische-Wilhelms University Münster, Münster, Germany
| | | |
Collapse
|
20
|
Shakyawar DK, Muralikrishna B, Radha V. C3G dynamically associates with nuclear speckles and regulates mRNA splicing. Mol Biol Cell 2019; 29:1111-1124. [PMID: 29496966 PMCID: PMC5921577 DOI: 10.1091/mbc.e17-07-0442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first example of a Ras family GTPase and its exchange factor C3G localizing to nuclear speckles and regulating mRNA splicing is presented. C3G (Crk SH3 domain binding guanine nucleotide releasing factor) (Rap guanine nucleotide exchange factor 1), essential for mammalian embryonic development, is ubiquitously expressed and undergoes regulated nucleocytoplasmic exchange. Here we show that C3G localizes to SC35-positive nuclear speckles and regulates splicing activity. Reversible association of C3G with speckles was seen on inhibition of transcription and splicing. C3G shows partial colocalization with SC35 and is recruited to a chromatin and RNase-sensitive fraction of speckles. Its presence in speckles is dependent on intact cellular actin cytoskeleton and is lost on expression of the kinase Clk1. Rap1, a substrate of C3G, is also present in nuclear speckles, and inactivation of Rap signaling by expression of GFP-Rap1GAP alters speckle morphology and number. Enhanced association of C3G with speckles is seen on glycogen synthase kinase 3 beta inhibition or differentiation of C2C12 cells to myotubes. CRISPR/Cas9-mediated knockdown of C3G resulted in altered splicing activity of an artificial gene as well as endogenous CD44. C3G knockout clones of C2C12 as well as MDA-MB-231 cells showed reduced protein levels of several splicing factors compared with control cells. Our results identify C3G and Rap1 as novel components of nuclear speckles and a role for C3G in regulating cellular RNA splicing activity.
Collapse
Affiliation(s)
| | | | - Vegesna Radha
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
21
|
Ortiz-Rivero S, Baquero C, Hernández-Cano L, Roldán-Etcheverry JJ, Gutiérrez-Herrero S, Fernández-Infante C, Martín-Granado V, Anguita E, de Pereda JM, Porras A, Guerrero C. C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation. Cell Commun Signal 2018; 16:101. [PMID: 30567575 PMCID: PMC6299959 DOI: 10.1186/s12964-018-0311-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Megakaryopoiesis allows platelet formation, which is necessary for coagulation, also playing an important role in different pathologies. However, this process remains to be fully characterized. C3G, an activator of Rap1 GTPases, is involved in platelet activation and regulates several differentiation processes. METHODS We evaluated C3G function in megakaryopoiesis using transgenic mouse models where C3G and C3GΔCat (mutant lacking the GEF domain) transgenes are expressed exclusively in megakaryocytes and platelets. In addition, we used different clones of K562, HEL and DAMI cell lines with overexpression or silencing of C3G or GATA-1. RESULTS We found that C3G participates in the differentiation of immature hematopoietic cells to megakaryocytes. Accordingly, bone marrow cells from transgenic C3G, but not those from transgenic C3GΔCat mice, showed increased expression of the differentiation markers CD41 and CD61, upon thrombopoietin treatment. Furthermore, C3G overexpression increased the number of CD41+ megakaryocytes with high DNA content. These results are supported by data obtained in the different models of megakaryocytic cell lines. In addition, it was uncovered GATA-1 as a positive regulator of C3G expression. Moreover, C3G transgenic megakaryocytes from fresh bone marrow explants showed increased migration from the osteoblastic to the vascular niche and an enhanced ability to form proplatelets. Although the transgenic expression of C3G in platelets did not alter basal platelet counts, it did increase slightly those induced by TPO injection in vivo. Moreover, platelet C3G induced adipogenesis in the bone marrow under pathological conditions. CONCLUSIONS All these data indicate that C3G plays a significant role in different steps of megakaryopoiesis, acting through a mechanism dependent on its GEF activity.
Collapse
Affiliation(s)
- Sara Ortiz-Rivero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Juan José Roldán-Etcheverry
- Servicio de Hematología y Hemoterapia, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Gutiérrez-Herrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Víctor Martín-Granado
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Eduardo Anguita
- Servicio de Hematología y Hemoterapia, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José María de Pereda
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain. .,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain. .,Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain.
| |
Collapse
|
22
|
Yang D, Zhang L, Zhang Z, Hu S, Fu Y, Laukkanen JA, Li G. Silencing of C3G increases cardiomyocyte survival inhibition and apoptosis via regulation of p-ERK1/2 and Bax. Clin Exp Pharmacol Physiol 2018; 46:237-245. [PMID: 30152875 DOI: 10.1111/1440-1681.13027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 11/29/2022]
Abstract
Experimental studies have shown that overexpression of Rap guanine nucleotide exchange factor 1 (C3G) plays pro-survival and anti-apoptotic roles through molecule phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2) in cardiomyocytes. However, it is still unclear if silencing of C3G may increase cell survival inhibition and apoptosis in cardiomyocytes, and whether C3G silence induced injuries are reduced by the overexpression of C3G through regulation of p-ERK1/2 and pro-apoptotic molecule Bax. In this study, the rat-derived H9C2 cardiomyocytes were infected with C3G small hairpin RNA interference recombinant lentiviruses, which silenced the endogenous C3G expression in the cardiomyocytes. Then, contrary experiments were conducted using C3G overexpression. The cell proliferation and apoptosis were analyzed in the cardiomyocytes which were treated with or without hypoxia/reoxygenation (H/R). Silencing of C3G leaded to significant increase in cell survival inhibition and apoptosis, combined with aggravated the injuries induced by H/R. Overexpression of C3G reduced the injuries induced by the silencing of C3G in the cardiomyocytes via regulation of p-ERK1/2 and Bax. In conclusion, our results provide new experimental evidence that silencing of C3G can increase cell survival inhibition and apoptosis in cardiomyocytes via regulation of p-ERK1/2 and Bax.
Collapse
Affiliation(s)
- Dongyan Yang
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhisheng Zhang
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sulei Hu
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanbo Fu
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Gang Li
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Begum Z, Varalakshmi C, Sriram D, Radha V. Development and characterization of a novel monoclonal antibody that recognizes an epitope in the central protein interaction domain of RapGEF1 (C3G). Mol Biol Rep 2018; 45:1809-1819. [DOI: 10.1007/s11033-018-4327-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/29/2022]
|
24
|
Sequera C, Manzano S, Guerrero C, Porras A. How Rap and its GEFs control liver physiology and cancer development. C3G alterations in human hepatocarcinoma. Hepat Oncol 2018; 5:HEP05. [PMID: 30302196 PMCID: PMC6168044 DOI: 10.2217/hep-2017-0026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 02/08/2023] Open
Abstract
Rap proteins regulate liver physiopathology. For example, Rap2B promotes hepatocarcinoma (HCC) growth, while Rap1 might play a dual role. The RapGEF, Epac1, activates Rap upon cAMP binding, regulating metabolism, survival, and liver regeneration. A liver specific Epac2 isoform lacking cAMP-binding domain also activates Rap1, promoting fibrosis in alcoholic liver disease. C3G (RapGEF1) is also present in the liver, but mainly as shorter isoforms. Its function in the liver remains unknown. Information from different public genetic databases revealed that C3G mRNA levels increase in HCC, although they decrease in metastatic stages. In addition, several mutations in RapGEF1 gene are present, associated with a reduced patient survival. Based on this, C3G might represent a new HCC diagnostic and prognostic marker, and a therapeutic target.
Collapse
Affiliation(s)
- Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Sara Manzano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
25
|
Martín-Granado V, Ortiz-Rivero S, Carmona R, Gutiérrez-Herrero S, Barrera M, San-Segundo L, Sequera C, Perdiguero P, Lozano F, Martín-Herrero F, González-Porras JR, Muñoz-Chápuli R, Porras A, Guerrero C. C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumor metastasis. Oncotarget 2017; 8:110994-111011. [PMID: 29340032 PMCID: PMC5762300 DOI: 10.18632/oncotarget.22339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Previous observations indicated that C3G (RAPGEF1) promotes α-granule release, evidenced by the increase in P-selectin exposure on the platelet surface following its activation. The goal of the present study is to further characterize the potential function of C3G as a modulator of the platelet releasate and its implication in the regulation of angiogenesis. Proteomic analysis revealed a decreased secretion of anti-angiogenic factors from activated transgenic C3G and C3G∆Cat platelets. Accordingly, the secretome from both transgenic platelets had an overall pro-angiogenic effect as evidenced by an in vitro capillary-tube formation assay with HUVECs (human umbilical vein endothelial cells) and by two in vivo models of heterotopic tumor growth. In addition, transgenic C3G expression in platelets greatly increased mouse melanoma cells metastasis. Moreover, immunofluorescence microscopy showed that the pro-angiogenic factors VEGF and bFGF were partially retained into α-granules in thrombin- and ADP-activated mouse platelets from both, C3G and C3GΔCat transgenic mice. The observed interaction between C3G and Vesicle-associated membrane protein (Vamp)-7 could explain these results. Concomitantly, increased platelet spreading in both transgenic platelets upon thrombin activation supports this novel function of C3G in α-granule exocytosis. Collectively, our data point out to the co-existence of Rap1GEF-dependent and independent mechanisms mediating C3G effects on platelet secretion, which regulates pathological angiogenesis in tumors and other contexts. The results herein support an important role for platelet C3G in angiogenesis and metastasis.
Collapse
Affiliation(s)
- Víctor Martín-Granado
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sara Ortiz-Rivero
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rita Carmona
- Departamento de Biología Animal, Universidad de Málaga, Málaga, Spain
| | - Sara Gutiérrez-Herrero
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Mario Barrera
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain
| | - Laura San-Segundo
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pedro Perdiguero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Lozano
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Angiología y Cirugía Vascular, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Martín-Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
Azoulay-Alfaguter I, Strazza M, Peled M, Novak HK, Muller J, Dustin ML, Mor A. The tyrosine phosphatase SHP-1 promotes T cell adhesion by activating the adaptor protein CrkII in the immunological synapse. Sci Signal 2017; 10:10/491/eaal2880. [PMID: 28790195 DOI: 10.1126/scisignal.aal2880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The adaptor protein CrkII regulates T cell adhesion by recruiting the guanine nucleotide exchange factor C3G, an activator of Rap1. Subsequently, Rap1 stimulates the integrin LFA-1, which leads to T cell adhesion and interaction with antigen-presenting cells (APCs). The adhesion of T cells to APCs is critical for their proper function and education. The interface between the T cell and the APC is known as the immunological synapse. It is characterized by the specific organization of proteins that can be divided into central supramolecular activation clusters (c-SMACs) and peripheral SMACs (p-SMACs). Through total internal reflection fluorescence (TIRF) microscopy and experiments with supported lipid bilayers, we determined that activated Rap1 was recruited to the immunological synapse and localized to the p-SMAC. C3G and the active (dephosphorylated) form of CrkII also localized to the same compartment. In contrast, inactive (phosphorylated) CrkII was confined to the c-SMAC. Activation of CrkII and its subsequent movement from the c-SMAC to the p-SMAC depended on the phosphatase SHP-1, which acted downstream of the T cell receptor. In the p-SMAC, CrkII recruited C3G, which led to Rap1 activation and LFA-1-mediated adhesion of T cells to APCs. Functionally, SHP-1 was necessary for both the adhesion and migration of T cells. Together, these data highlight a signaling pathway in which SHP-1 acts through CrkII to reshape the pattern of Rap1 activation in the immunological synapse.
Collapse
Affiliation(s)
| | - Marianne Strazza
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Michael Peled
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hila K Novak
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Kennedy Institute for Rheumatology, Oxford University, Oxford, UK
| | - James Muller
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael L Dustin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Kennedy Institute for Rheumatology, Oxford University, Oxford, UK
| | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA. .,Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
27
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
28
|
Shakyawar DK, Dayma K, Ramadhas A, Varalakshmi C, Radha V. C3G shows regulated nucleocytoplasmic exchange and represses histone modifications associated with euchromatin. Mol Biol Cell 2017; 28:984-995. [PMID: 28148649 PMCID: PMC5385946 DOI: 10.1091/mbc.e16-09-0660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
C3G (RapGEF1), essential for mammalian embryonic development, shows dynamic nucleocytoplasmic exchange. Nuclear localization is regulated by NLSs, NES, and phosphorylation. C3G translocates to the nucleus in response to physiological stimuli and regulates chromatin modifications and gene expression. C3G (RapGEF1) is a ubiquitously expressed guanine nucleotide exchange factor that functions in signaling pathways regulating cell proliferation, apoptosis, and actin reorganization. It is essential for differentiation and early embryonic development in mice. Overexpressed C3G shows predominant cytoplasmic localization, but endogenous C3G is a component of nuclear fractions in a variety of cell types. Coexpression of importin-α and inhibition of nuclear export by leptomycin B resulted in predominant nuclear localization of C3G. Functional NLSs, NES, and GSK3-β–dependent phosphorylation regulate its dynamic nuclear localization. C3G translocates to the nucleus in response to myogenic differentiation and sublethal dose of cisplatin. C3G is associated with chromatin and nuclear matrix fractions. Cells with C3G localized in the nucleus showed peripheralization of heterochromatin and reduced histone modifications associated with euchromatin. Short hairpin RNA–mediated depletion of C3G in epithelial cells resulted in reduced expression of CDK inhibitors and the histone demethylase KDM5A. Myoblast clones with CRISPR/Cas9-mediated knockout of C3G failed to show repression of histone marks and did not show up-regulation of myosin heavy chain and myotube formation when grown in differentiation medium. Our results document regulated nucleocytoplasmic exchange of C3G in response to physiological stimuli and provide insights into nuclear functions for C3G.
Collapse
Affiliation(s)
| | - Kunal Dayma
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Anesh Ramadhas
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | - Vegesna Radha
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
29
|
Sasi Kumar K, Ramadhas A, Nayak S, Kaniyappan S, Dayma K, Radha V. C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2629-39. [DOI: 10.1016/j.bbamcr.2015.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
|
30
|
Cheerathodi M, Vincent JJ, Ballif BA. Quantitative comparison of CrkL-SH3 binding proteins from embryonic murine brain and liver: Implications for developmental signaling and the quantification of protein species variants in bottom-up proteomics. J Proteomics 2015; 125:104-11. [PMID: 25982384 DOI: 10.1016/j.jprot.2015.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
Abstract
A major aim of proteomics is to comprehensively identify and quantify all protein species variants from a given biological source. However, in spite of its tremendous utility, bottom-up proteomic strategies can do little to provide true quantification of distinct whole protein species variants given its reliance on proteolysis. This is particularly true when molecular size information is lost as in gel-free proteomics. Crk and CrkL comprise a family of adaptor proteins that couple upstream phosphotyrosine signals to downstream effectors by virtue of their SH2 and SH3 domains respectively. Here we compare the identification and quantification of CrkL-SH3 binding partners between embryonic murine brain and liver. We also uncover and quantify tissue-specific variants in CrkL-SH3 binding proteins.
Collapse
Affiliation(s)
| | - James J Vincent
- Department of Biology, University of Vermont, Burlington, VT 05405, USA; Bioinformatics Core, Vermont Genetics Network, University of Vermont, Burlington, VT 05405, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
31
|
Yang C, Zhang X, Guo Y, Meng F, Sachs F, Guo J. Mechanical dynamics in live cells and fluorescence-based force/tension sensors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1889-904. [PMID: 25958335 DOI: 10.1016/j.bbamcr.2015.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
Abstract
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Xiaohan Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Yichen Guo
- The University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Fanjie Meng
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Frederick Sachs
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
32
|
Che YL, Luo SJ, Li G, Cheng M, Gao YM, Li XM, Dai JM, He H, Wang J, Peng HJ, Zhang Y, Li WY, Wang H, Liu B, Linghu H. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett 2015; 359:241-9. [PMID: 25617801 DOI: 10.1016/j.canlet.2015.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/26/2014] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
Complete resection is pivotal to improve survival to epithelial ovarian cancer (EOC). Crk SH3-domain-binding guanine nucleotide-releasing factor (C3G) is involved in multiple signaling pathways and it has opposite roles in different cancers. The present study aimed to identify C3G expression in ovarian tissue samples from patients with EOC and to explore its association with tumor grade. Eighty-seven archival paraffin-embedded, formalin-fixed, ovarian cancer tissues with serous histology were stained for C3G by immunohistochemistry. To evaluate the contribution of C3G to Rap1 activity, 36 patients with serous ovarian cancer (SOC) were investigated. Additionally, C3G was knocked down in SKOV3 and HEY cells. C3G regulated Rap1 activity and high Rap1 activity was correlated with poor differentiation, advanced FIGO stage, and unsuccessful cytoreductive surgery of SOC. Knockdown of C3G suppressed cell invasion, intravasation and extravasation, and reduced Rap1 activity and secretion of matrix metalloproteinase (MMP)-2 and MMP-9. C3G-mediated activation of Rap1 could direct the tumor pattern of human SOC by promoting the secretion of MMP-2 and MMP-9. These results suggest that C3G is involved in the metastatic spread of EOC.
Collapse
Affiliation(s)
- Ya-Ling Che
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics & Gynecology, Central Hospital of Xi'an, Xi'an 710003, China
| | - Shu-Juan Luo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics & Gynecology, Maternal and Child Care Service Centre of Chongqing, Chongqing 400016, China
| | - Gang Li
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Cheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi-Meng Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xue-Mei Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie-Min Dai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huan He
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hui-Juan Peng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yan Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bin Liu
- Department of Pathology, Basic Medical School of Chongqing Medical University, Chongqing 400016, China
| | - Hua Linghu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
33
|
p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells. J Virol 2014; 88:13858-78. [PMID: 25253349 DOI: 10.1128/jvi.01674-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.
Collapse
|
34
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
35
|
Zhang X, Li G, Zhang L, Yang D, Zhang Z, Yan A, Linghu H. C3G overexpression promotes the survival of rat-derived H9C2 cardiomyocytes by p-ERK1/2. Cell Biol Int 2013; 37:1106-13. [PMID: 23686869 DOI: 10.1002/cbin.10136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 04/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Gang Li
- Division of Cardiology, Department of Geriatrics; The First Affiliated Hospital of Chongqing Medical University; No. 1 Yixueyuan Road; Yuzhong District, Chongqing; 400016; China
| | | | | | | | | | - Hua Linghu
- Department of Gynecology and Obstetrics; The First Affiliated Hospital of Chongqing Medical University; Chongqing; 400016; China
| |
Collapse
|
36
|
Dayma K, Ramadhas A, Sasikumar K, Radha V. Reciprocal Negative Regulation between the Guanine Nucleotide Exchange Factor C3G and β-Catenin. Genes Cancer 2013; 3:564-77. [PMID: 23486661 DOI: 10.1177/1947601912471189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/15/2012] [Indexed: 11/15/2022] Open
Abstract
The guanine nucleotide exchange factor C3G (RAPGEF1) regulates proliferation, migration, and differentiation of cells and is essential for mammalian embryonic development. The molecular effectors of C3G dependent functions are poorly understood. Here we report that C3G functions as a negative regulator of β-catenin, a major player in pathways known to be deregulated in human cancers. In mammalian cells, C3G is present in a complex with cellular β-catenin. The proline rich Crk binding region of C3G and residues 90-525 of β-catenin are sufficient for the interaction. Knockdown of cellular C3G stimulated, and its overexpression repressed, β-catenin/TCF transcription activity. C3G acts by destabilizing β-catenin protein and inhibiting its nuclear accumulation. Nuclear extracts of C3G overexpressing cells showed reduced binding to TCF consensus oligos. C3G exerts its effects independent of its function as an exchange factor. It also inhibits stability and activity of an N-terminal deletion construct of β-catenin that is not subject to GSK3β dependent phosphorylation, suggesting that C3G exerts its effect independent of GSK3β. β-catenin repression by C3G was not significantly altered in the presence of proteasome inhibitors, MG132 or lactacystin, suggesting that alternate mechanisms are engaged by C3G to cause β-catenin turnover. C3G expression represses β-catenin target gene expression, and stable clones of MCF-7 breast cancer cells expressing C3G showed reduced migration. Activation of cellular β-catenin or expression of constitutively active β-catenin resulted in reduced C3G expression, indicating that C3G gene expression is negatively regulated by β-catenin. Our results identify a novel property of C3G in functioning as a negative regulator of β-catenin signaling by promoting its degradation. In addition, we show that β-catenin inhibits C3G expression, forming a feedback loop.
Collapse
Affiliation(s)
- Kunal Dayma
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
37
|
Maia V, Ortiz-Rivero S, Sanz M, Gutierrez-Berzal J, Alvarez-Fernández I, Gutierrez-Herrero S, de Pereda JM, Porras A, Guerrero C. C3G forms complexes with Bcr-Abl and p38α MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion. Cell Commun Signal 2013; 11:9. [PMID: 23343344 PMCID: PMC3629710 DOI: 10.1186/1478-811x-11-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Previous studies by our group and others have shown that C3G interacts with Bcr-Abl through its SH3-b domain. Results In this work we show that C3G and Bcr-Abl form complexes with the focal adhesion (FA) proteins CrkL, p130Cas, Cbl and Abi1 through SH3/SH3-b interactions. The association between C3G and Bcr-Abl decreased upon Abi1 or p130Cas knock-down in K562 cells, which suggests that Abi1 and p130Cas are essential partners in this interaction. On the other hand, C3G, Abi1 or Cbl knock-down impaired adhesion to fibronectin, while p130Cas silencing enhanced it. C3G, Cbl and p130Cas-SH3-b domains interact directly with common proteins involved in the regulation of cell adhesion and migration. Immunoprecipitation and immunofluorescence studies revealed that C3G form complexes with the FA proteins paxillin and FAK and their phosphorylated forms. Additionally, C3G, Abi1, Cbl and p130Cas regulate the expression and phosphorylation of paxillin and FAK. p38α MAPK also participates in the regulation of adhesion in chronic myeloid leukemia cells. It interacts with C3G, CrkL, FAK and paxillin and regulates the expression of paxillin, CrkL and α5 integrin, as well as paxillin phosphorylation. Moreover, double knock-down of C3G/p38α decreased adhesion to fibronectin, similarly to the single silencing of one of these genes, either C3G or p38α. These suggest that C3G and p38α MAPK are acting through a common pathway to regulate cell adhesion in K562 cells, as previously described for the regulation of apoptosis. Conclusions Our results indicate that C3G-p38αMAPK pathway regulates K562 cell adhesion through the interaction with FA proteins and Bcr-Abl, modulating the formation of different protein complexes at FA.
Collapse
Affiliation(s)
- Vera Maia
- Centro de Investigación del Cáncer, IBMCC, CSIC-Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Muppirala M, Gupta V, Swarup G. Emerging role of tyrosine phosphatase, TCPTP, in the organelles of the early secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1125-32. [PMID: 23328081 DOI: 10.1016/j.bbamcr.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
T-cell protein tyrosine phosphatase, TCPTP, is a ubiquitously expressed non-receptor type tyrosine phosphatase. There are two splice variants of TCPTP, TC48 and TC45, which differ in their sub-cellular localizations and functions. TC45 is a nuclear protein, which has both nuclear and cytoplasmic substrates, and is involved in many signaling events including endocytic recycling of platelet-derived growth factor β-receptor. TC48 is a predominantly endoplasmic reticulum (ER)-localizing protein, which dephosphorylates some of the substrates of TC45 at the ER. However, recently few specific substrates for TC48 have been identified. These include C3G (RapGEF1), syntaxin 17 and BCR-Abl. TC48 moves from the ER to post-ER compartments, the ER-Golgi intermediate compartment (ERGIC) and Golgi, and it is retrieved back to the ER. The retrieval of ER proteins from post-ER compartments is generally believed as a mechanism of targeting these proteins to the ER. However, it is possible that this shuttling of TC48 serves to regulate signaling in the early secretory pathway. For example, TC48 dephosphorylates phosphorylated C3G at the Golgi and inhibits neurite outgrowth. TC48 interacts with and dephosphorylates syntaxin 17, which is an ER and ERGIC-localizing protein involved in vesicle transport. A yeast two-hybrid screen identified several unique interacting partners of TC48 belonging to two groups - proteins involved in vesicle trafficking and proteins involved in cell adhesion. These interacting proteins could be substrates or regulators of TC48 function and localization. Thus, the role of TC48 seems to be more diverse, which is still to be explored.
Collapse
Affiliation(s)
- Madhavi Muppirala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
39
|
Wang L, Li G, Wang Z, Liu X, Zhao W. Elevated expression of C3G protein in the peri-infarct myocardium of rats. Med Sci Monit Basic Res 2013; 19:1-5. [PMID: 23291598 PMCID: PMC3638643 DOI: 10.12659/msmbr.883709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The integrin β1 subunit and its downstream molecules such as integrin-linked kinase (ILK) and focal adhesion kinase (FAK) are indispensable to the inhibition of postinfarction cardiac remodeling, ischemic cardiomyopathy, and heart failure. As a component of the integrin pathway, C3G (Crk SH3-domain-binding guanine nucleotide exchange factor) protein may also participate in postinfarction cardiac remodeling, ischemic cardiomyopathy, and heart failure. MATERIAL/METHODS Experimental myocardial infarction (MI) and sham-operation (sham) models were set up in Sprague-Dawley rats. C3G protein expression in the myocardium in the sham group and in the non-infarcted myocardium of the peri-infarct zones in the MI group was examined by Western blot. RESULTS The C3G protein expression in the myocardium was 0.22±0.06, n=8 in the post-sham 24-hour group; 0.29±0.10, n=8 in the post-MI 24-hour group; 0.22±0.07, n=8 in the post-sham 12-week group; and 0.56±0.14, n=8 in the post-MI 12-week group. The C3G protein expression in the myocardium in the post-MI 12-week group was significantly elevated compared to that in the post-sham 12-week group (p=0.0002), in the post-sham 24-hour group (p=0.0002), and in the post-MI 24-hour group (p=0.0006). CONCLUSIONS C3G protein expression exhibits in the myocardium of rats. Furthermore, C3G protein expression is significantly elevated in the non-infarcted myocardium of the peri-infarct zones. The elevated C3G protein expression could participate in postinfarction cardiac remodeling, ischemic cardiomyopathy, and heart failure.
Collapse
Affiliation(s)
- Liping Wang
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P. p130Cas: a key signalling node in health and disease. Cell Signal 2012; 25:766-77. [PMID: 23277200 DOI: 10.1016/j.cellsig.2012.12.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023]
Abstract
p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
Collapse
Affiliation(s)
- Angela Barrett
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Wallez Y, Mace PD, Pasquale EB, Riedl SJ. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer. Genes Cancer 2012; 3:382-93. [PMID: 23226576 DOI: 10.1177/1947601912460050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.
Collapse
Affiliation(s)
- Yann Wallez
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
42
|
Mitra A, Kalayarasan S, Gupta V, Radha V. TC-PTP dephosphorylates the guanine nucleotide exchange factor C3G (RapGEF1) and negatively regulates differentiation of human neuroblastoma cells. PLoS One 2011; 6:e23681. [PMID: 21876762 PMCID: PMC3158094 DOI: 10.1371/journal.pone.0023681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 07/24/2011] [Indexed: 11/29/2022] Open
Abstract
The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellular T-cell protein tyrosine phosphatase TC-PTP (PTPN2) using the human neuroblastoma cell line, IMR-32. In vivo and in vitro binding assays demonstrated interaction between C3G and TC-PTP. Interaction is mediated through the Crk-binding region of C3G and C-terminal noncatalytic residues of TC-PTP. C3G interacted better with a substrate trap mutant of TC48 and this complex formation was inhibited by vanadate. Endogenous pC3G colocalized with catalytically inactive mutant TC48 in the Golgi. Expression of TC48 abrogated pervanadate and c-Src induced phosphorylation of C3G without affecting total cellular phospho-tyrosine. Insulin-like growth factor treatment of c-Src expressing cells resulted in dephosphorylation of C3G dependent on the activity of endogenous TC48. TC48 expression inhibited forskolin induced tyrosine phosphorylation of C3G and neurite outgrowth in IMR-32 cells. Our results identify a novel Golgi localized substrate of TC48 and delineate a role for TC48 in dephosphorylation of substrates required during differentiation of human neuroblastoma cells.
Collapse
Affiliation(s)
- Aninda Mitra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, Andhra Pradesh, India
| | | | | | | |
Collapse
|
43
|
Siu MK, Wong CH, Xia W, Mruk DD, Lee WM, Cheng CY. The β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin is a novel regulatory protein complex at the apical ectoplasmic specialization in adult rat testes. SPERMATOGENESIS 2011; 1:73-86. [PMID: 21866278 DOI: 10.4161/spmg.1.1.15452] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2001] [Revised: 02/11/2011] [Accepted: 03/11/2011] [Indexed: 12/21/2022]
Abstract
During spermatogenesis, step 1 spermatids (round spermatids) derive from spermatocytes following meiosis I and II at stage XIV of the epithelial cycle begin a series of morphological transformation and differentiation via 19 steps in rats to form spermatozoa. This process is known as spermiogenesis, which is marked by condensation of the genetic material in the spermatid head, formation of the acrosome and elongation of the tail. Since developing spermatids are lacking the robust protein synthesis and transcriptional activity, the cellular, molecular and morphological changes associated with spermiogenesis rely on the Sertoli cell in the seminiferous epithelium via desmosome and gap junction between Sertoli cells and step 1-7 spermatids. Interestingly, a unique anchoring junction type arises at the interface of step 8 spermatid and Sertoli cell known as apical ectoplasmic specialization (apical ES). Once it appears, apical ES is the only anchoring device restricted to the interface of step 8-19 spermatids and Sertoli cells to confer spermatid polarity, adhesion, signal communication and structural support, and to provide nutritional support during spermiogenesis, replacing desmosome and gap junction. While the adhesion protein complexes that constitute the apical ES are known, the signaling protein complexes that regulate apical ES dynamics, however, remain largely unknown. Herein we report the presence of a FAK (focal adhesion kinase)-p130Cas (p130 Crk-associated substrate)-DOCK180 (Dedicator of cytokinesis 180)-RhoA (Ras homolog gene family, member A)-vinculin signaling protein complex at the apical ES, which is also an integrated component of the β1-integrin-based adhesion protein complex based on co-immunoprecipitation experiment. It was also shown that besides p-FAK-Tyr(397) and p-FAK-Tyr(576), β1-integrin, p130Cas, RhoA and vinculin displayed stage-specific expression in the seminiferous epithelium during the epithelial cycle with predominant localization at the apical ES as demonstrated by immunohistochemistry. Based on these findings, functional studies can now be performed to assess the role of this β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin protein complex in apical ES dynamics during spermiogenesis.
Collapse
Affiliation(s)
- Michelle Ky Siu
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | | | | | | | | | |
Collapse
|