1
|
Thote V, Dinesh S, Sharma S. Prediction of deleterious non-synonymous SNPs of human MDC1 gene: an in silico approach. Syst Biol Reprod Med 2024; 70:101-112. [PMID: 38630598 DOI: 10.1080/19396368.2024.2325699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/24/2024] [Indexed: 04/19/2024]
Abstract
MDC1 (Mediator of DNA damage Checkpoint protein 1) functions to facilitate the localization of numerous DNA damage response (DDR) components to DNA double-strand break sites. MDC1 is an integral component in preserving genomic stability and appropriate DDR regulation. There haven't been systematic investigations of MDC1 mutations that induce cancer and genomic instability. Variations in nsSNPs have the potential to modify the protein chemistry and their function. Describing functional SNPs in disease-associated genes presents a significant conundrum for investigators, it is possible to assess potential functional SNPs before conducting larger population examinations. Multiple sequences and structure-based bioinformatics strategies were implemented in the current in-silico investigation to discern potential nsSNPs of the MDC1 genes. The nsSNPs were identified with SIFT, SNAP2, Align GVGD, PolyPhen-2, and PANTHER, and their stability was determined with MUpro. The conservation, solvent accessibility, and structural effects of the mutations were identified with ConSurf, NetSurfP-2.0, and SAAFEC-SEQ respectively. Cancer-related analysis of the nsSNPs was conducted using cBioPortal and TCGA web servers. The present study appraised five nsSNPs (P1426T, P69S, P194R, P203L, and H131Y) as probably mutilating due to their existence in highly conserved regions and propensity to deplete protein stability. The nsSNPs P194R, P203L, and H131Y were concluded as deleterious and possibly damaging from the 5 prediction tools. The functional nsSNP P194R mutation is associated with skin cutaneous melanoma while no significant records were found for other nsSNPs. The present study concludes that the highly deleterious P194R mutations can potentially induce genomic instability and contribute to various cancers' pathogenesis. Developing drugs targeting these mutations can undoubtedly be advantageous in large population-based studies, particularly in the development of precision medicine.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, India
| |
Collapse
|
2
|
Feng Y, Guo X, Luo M, Sun Y, Sun L, Zhang H, Zou Y, Liu D, Lu H. GbHSP90 act as a dual functional role regulated in telomere stability in Ginkgo biloba. Int J Biol Macromol 2024; 279:135240. [PMID: 39250995 DOI: 10.1016/j.ijbiomac.2024.135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The heat shock protein 90 (HSP90) family members are not only widely involved in animal cellular immune response and signal transduction pathway regulation, but also play an important role in plant development and environmental stress response. Here,we identified a HSP90 family member in Ginkgo biloba, designated as GbHSP90, which performs a dual functional role to regulate telomere stability. GbHSP90 was screened by a yeast one-hybrid library using the Ginkgo biloba telomeric DNA (TTTAGGG)5. Fluorescence polarization, surface plasmon resonance(SPR) and EMSA technologyies revealed a specific interaction between GbHSP90 and the double-stranded telomeric DNA via its N-CR region, with no affinity for the single-stranded telomeric DNA or human double-stranded telomeric DNA. Furthermore, yeast two-hybrid system and Split-LUC assay demonstrated that GbHSP90 can interacts with two telomere end-binding proteins:the ginkgo telomerase reverse transcriptase (GbTERT) and the ginkgo Structural Maintenance of Chromosomes protein 1 (GbSMC1). Overexpression of GbHSP90 in human 293 T and HeLa cells increased cell growth rate, the content of telomerase reverse transcriptase (TERT), and promote cell division and inhibit cell apoptosis. Our results indicated GbHSP90 have dually functions: as a telomere-binding protein that binds specifically to double-stranded telomeric DNA and as a molecular chaperone that modulates cell differentiation and apoptosis by binding to telomere protein complexes in Ginkgo biloba. This study contributes to a significantly understanding of the unique telomere complex structure and regulatory mechanisms in Ginkgo biloba, a long-lived tree species.
Collapse
Affiliation(s)
- Yuping Feng
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueqin Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mei Luo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 561113, China
| | - Yu Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Leiqian Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yirong Zou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Adhish M, Manjubala I. Probing the effects of single point mutations in the GKWWRPS motif on the PNAIG motif within Loop 2 of sclerostin (SOST) using in-silico techniques. Comput Biol Chem 2024; 112:108173. [PMID: 39182248 DOI: 10.1016/j.compbiolchem.2024.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Sclerostin (SOST), a Wnt signaling pathway inhibitor, is involved in the pathogenesis of skeletal disorders. This study investigated the impact of the GKWWRPS motif on the PNAIG motif in Loop 2 of SOST, which is accountable for the interactions with the LRP6 protein that triggers the down-regulation of the Wnt signaling pathway. Single amino acid mutations on the GKWWRPS motif, hypothesized to have a probable stabilization effect towards the PNAIG motif, led to a significant reduction in the primary interactions between the SOST and LRP6 proteins. Protein-protein docking and molecular dynamic studies were conducted to investigate the role of the motif. The study found that a solitary mutation in the GKWWRPS motif significantly reduced the primary interactions between SOST and LRP6 proteins, except for probable cold-spot residues. The study's findings establish the GKWWRPS motif as a promising target for therapeutic interventions. Based on the obtained results, it can be inferred that alterations implemented within the GKWWRPS motif could lead to the destabilization of the PNAIG motif, which would directly modulate the interactions between the SOST and LRP6 proteins. The present investigation thus presents novel opportunities in the field of anti-sclerostin interventions.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Shafie A, Ashour AA, Anjum F, Shamsi A, Hassan MI. Elucidating the Impact of Deleterious Mutations on IGHG1 and Their Association with Huntington's Disease. J Pers Med 2024; 14:380. [PMID: 38673007 PMCID: PMC11050829 DOI: 10.3390/jpm14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Huntington's disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
5
|
Harmak H, Redouane S, Charoute H, Aniq Filali O, Barakat A, Rouba H. In silico exploration and molecular dynamics of deleterious SNPs on the human TERF1 protein triggering male infertility. J Biomol Struct Dyn 2023; 41:14665-14688. [PMID: 36995171 DOI: 10.1080/07391102.2023.2193995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/18/2023] [Indexed: 03/31/2023]
Abstract
By limiting chromosome erosion and end-to-end fusions, telomere integrity is critical for chromosome stability and cell survival. During mitotic cycles or due to environmental stresses, telomeres become progressively shorter and dysfunctional, thus triggering cellular senescence, genomic instability and cell death. To avoid such consequences, the telomerase action, as well as the Shelterin and CST complexes, assure the telomere's protection. Telomeric repeat binding factor 1 (TERF1), which is one of the primary components of the Shelterin complex, binds directly to the telomere and controls its length and function by regulating the telomerase activity. Several reports about TERF1 gene variations have been associated with different diseases, and some of them have linked these variations to male infertility. Hence, this paper can be advantageous to investigate the association between the missense variants of the TERF1 gene and the susceptibility to male infertility. The stepwise prediction of SNPs pathogenicity followed in this study was based on stability and conservation analysis, post-translational modification, secondary structure, functional interaction prediction, binding energy evaluation and finally molecular dynamic simulation. Prediction matching among the tools revealed that out of 18 SNPs, only four (rs1486407144, rs1259659354, rs1257022048 and rs1320180267) were predicted as the most damaging and highly deleterious SNPs affecting the TERF1 protein and its molecular dynamics when interacting with the TERB1 protein by influencing the function, structural stability, flexibility and compaction of the overall complex. Interestingly, these polymorphisms should be considered during genetic screening so they can be used effectively as genetic biomarkers for male infertility diagnosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houda Harmak
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Salaheddine Redouane
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ouafaa Aniq Filali
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
6
|
LIM domain-wide comprehensive virtual mutagenesis provides structural rationale for cardiomyopathy mutations in CSRP3. Sci Rep 2022; 12:3562. [PMID: 35241752 PMCID: PMC8894373 DOI: 10.1038/s41598-022-07553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiomyopathies are a severe and chronic cardiovascular burden worldwide, affecting a large cohort in the general population. Cysteine and glycine-rich protein 3 (CSRP3) is one of key proteins implicated in dominant dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). In this study, we device a rapid in silico screening protocol that creates a mutational landscape map for all possible allowed and disallowed substitutions in the protein of interest. This map provides the structural and functional insights on the stability of LIM domains of CSRP3. Further, the sequence analysis delineates the eukaryotic CSRP3 protein orthologs which complements the mutational map, but provide limited information of amino acid exchanges. Next, we also evaluated the effect of HCM/DCM mutations on these domains. One of highly destabilising mutations—L44P (also disease causing) and a neutral mutation—L44M were further subjected to molecular dynamics (MD) simulations. The results establish that L44P substitution affects the LIM domain structure by altering secondary structure and due to loss of hydrophobic interaction with Phenylananine 35. The present study provides a useful perspective to our understanding of the role of mutations in the CSRP3 LIM domains and their evolution. This study provides a novel computational screening method for quick identification of key mutation sites for specific protein structures that can reduce the burden on experimental research.
Collapse
|
7
|
Anjum F, Joshia N, Mohammad T, Shafie A, Alhumaydhi FA, Aljasir MA, Shahwan MJS, Abdullaev B, Adnan M, Elasbali AM, Pasupuleti VR, Hassan MI. Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson's Disease. J Pers Med 2022; 12:220. [PMID: 35207708 PMCID: PMC8878504 DOI: 10.3390/jpm12020220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinsonism-associated deglycase-PARK7/DJ-1 (PARK7) is a multifunctional protein having significant roles in inflammatory and immune disorders and cell protection against oxidative stress. Mutations in PARK7 may result in the onset and progression of a few neurodegenerative disorders such as Parkinson's disease. This study has analyzed the non-synonymous single nucleotide polymorphisms (nsSNPs) resulting in single amino acid substitutions in PARK7 to explore its disease-causing variants and their structural dysfunctions. Initially, we retrieved the mutational dataset of PARK7 from the Ensembl database and performed detailed analyses using sequence-based and structure-based approaches. The pathogenicity of the PARK7 was then performed to distinguish the destabilizing/deleterious variants. Aggregation propensity, noncovalent interactions, packing density, and solvent accessible surface area analyses were carried out on the selected pathogenic mutations. The SODA study suggested that mutations in PARK7 result in aggregation, inducing disordered helix and altering the strand propensity. The effect of mutations alters the number of hydrogen bonds and hydrophobic interactions in PARK7, as calculated from the Arpeggio server. The study indicated that the alteration in the hydrophobic contacts and frustration of the protein could alter the stability of the missense variants of the PARK7, which might result in disease progression. This study provides a detailed understanding of the destabilizing effects of single amino acid substitutions in PARK7.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Namrata Joshia
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (F.A.A.); (M.A.A.)
| | - Mohammad A. Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (F.A.A.); (M.A.A.)
| | - Moyad J. S. Shahwan
- College of Pharmacy & Health Sciences, Ajman University, Ajman 20550, United Arab Emirates;
| | - Bekhzod Abdullaev
- Scientific Department, Akfa University, Tashkent 100095, Uzbekistan;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail 55436, Saudi Arabia;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 44800, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Riau 28291, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Katti-genahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| |
Collapse
|
8
|
Umair M, Khan S, Mohammad T, Shafie A, Anjum F, Islam A, Hassan MI. Impact of single amino acid substitution on the structure and function of TANK-binding kinase-1. J Cell Biochem 2021; 122:1475-1490. [PMID: 34237165 DOI: 10.1002/jcb.30070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Tank-binding kinase 1 (TBK1) is a serine/threonine protein kinase involved in various signaling pathways and subsequently regulates cell proliferation, apoptosis, autophagy, antiviral and antitumor immunity. Dysfunction of TBK1 can cause many complex diseases, including autoimmunity, neurodegeneration, and cancer. This dysfunction of TBK1 may result from single amino acid substitutions and subsequent structural alterations. This study analyzed the effect of substituting amino acids on TBK1 structure, function, and subsequent disease using advanced computational methods and various tools. In the initial assessment, a total of 467 mutations were found to be deleterious. After that, in detailed structural and sequential analyses, 13 mutations were found to be pathogenic. Finally, based on the functional importance, two variants (K38D and S172A) of the TBK1 kinase domain were selected and studied in detail by utilizing all-atom molecular dynamics (MD) simulation for 200 ns. MD simulation, including correlation matrix and principal component analysis, helps to get deeper insights into the TBK1 structure at the atomic level. We observed a substantial change in variants' conformation, which may be possible for structural alteration and subsequent TBK1 dysfunction. However, substitution S172A shows a significant conformational change in TBK1 structure as compared to K38D. Thus, this study provides a structural basis to understand the effect of mutations on the kinase domain of TBK1 and its function associated with disease progression.
Collapse
Affiliation(s)
- Mohd Umair
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
9
|
The Experimental Role of Medicinal Plants in Treatment of Toxoplasma gondii Infection: A Systematic Review. Acta Parasitol 2021; 66:303-328. [PMID: 33159263 DOI: 10.1007/s11686-020-00300-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Toxoplasma gondii is the global protozoa that could cause contamination in warm-blooded animals and is considered among the opportunistic pathogens in immunocompromised patients. Among the people at risk, toxoplasmosis infection can lead to the incidence of severe clinical manifestations, encephalitis, chorioretinitis, and even death. PURPOSE The present research is focused on the new research for the treatment of toxoplasmosis parasitic disease using medicinal herbs. METHODS The search was performed in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar up from 2010 to December 2019. Studies in any language were entered in the searching step if they had an English abstract. The words and terms were used as a syntax with specific tags of each database. RESULTS Out of 1832 studies, 36 were eligible to be reviewed. The findings showed that 17 studies (47%) were performed in vitro, 14 studies (39%) in vivo, and 5 studies (14%) both in vivo and in vitro. CONCLUSION The studies showed that the plant extracts can be a good alternative in reducing the toxoplasmosis effects in the host and the herbal extracts can be used to produce natural product-based drugs affecting toxoplasmosis with fewer side-effects than synthetic drugs.
Collapse
|
10
|
Choudhury A, Mohammad T, Samarth N, Hussain A, Rehman MT, Islam A, Alajmi MF, Singh S, Hassan MI. Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1. Sci Rep 2021; 11:10202. [PMID: 33986331 PMCID: PMC8119478 DOI: 10.1038/s41598-021-89450-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Conserved telomere maintenance component 1 (CTC1) is an important component of the CST (CTC1-STN1-TEN1) complex, involved in maintaining the stability of telomeric DNA. Several non-synonymous single-nucleotide polymorphisms (nsSNPs) in CTC1 have been reported to cause Coats plus syndrome and Dyskeratosis congenital diseases. Here, we have performed sequence and structure analyses of nsSNPs of CTC1 using state-of-the-art computational methods. The structure-based study focuses on the C-terminal OB-fold region of CTC1. There are 11 pathogenic mutations identified, and detailed structural analyses were performed. These mutations cause a significant disruption of noncovalent interactions, which may be a possible reason for CTC1 instability and consequent diseases. To see the impact of such mutations on the protein conformation, all-atom molecular dynamics (MD) simulations of CTC1-wild-type (WT) and two of the selected mutations, R806C and R806L for 200 ns, were carried out. A significant conformational change in the structure of the R806C mutant was observed. This study provides a valuable direction to understand the molecular basis of CTC1 dysfunction in disease progression, including Coats plus syndrome.
Collapse
Affiliation(s)
- Arunabh Choudhury
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Nikhil Samarth
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University, Campus, Pune, 411007, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University, Campus, Pune, 411007, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
11
|
Habib I, Khan S, Mohammad T, Hussain A, Alajmi MF, Rehman T, Anjum F, Hassan MI. Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. J Biomol Struct Dyn 2021; 40:9053-9066. [PMID: 33982644 DOI: 10.1080/07391102.2021.1922313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is one of the major components of the shelterin complex. It directly binds to the telomere and controls its function by regulating the telomerase acting on it. Several variations are reported in the TRF1 gene; some are associated with variety of diseases. Here, we have studied the structural and functional significance of these variations in the TRFH domain of TRF1. We have used cutting-edge computational methods such as SIFT, PolyPhen-2, PROVEAN, Mutation Assessor, mCSM, SDM, STRUM, MAESTRO, and DUET to predict the effects of 124 mutations in the TRFH domain of TRF1. Out of 124 mutations, we have identified 12 deleterious mutations with high confidence based on their prediction. To see the impact of the finally selected mutations on the structure and stability of TRF1, all-atom molecular dynamics (MD) simulations on TRF1-Wild type (WT), L79R and P150R mutants for 200 ns were carried out. A significant conformational change in the structure of the P150R mutant was observed. Our integrated computational study provides a comprehensive understanding of structural changes in TRF1 incurred due to the mutations and subsequent function, leading to the progression of many diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Amir M, Alam A, Ishrat R, Alajmi MF, Hussain A, Rehman MT, Islam A, Ahmad F, Hassan MI, Dohare R. A Systems View of the Genome Guardians: Mapping the Signaling Circuitry Underlying Oligonucleotide/Oligosaccharide-Binding Fold Proteins. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:518-530. [PMID: 32780668 DOI: 10.1089/omi.2020.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oligonucleotide/oligosaccharide-binding (OB)-fold domain proteins are considered as genome guardians, whose functions are extending beyond genomic stability. The broad functional diversity of the OB-fold proteins is attributed to their protein-DNA, protein-RNA, and protein-protein interactions (PPI). To understand the connectivity of the human OB-fold proteins, we report here a systems-level approach. Specifically, we mapped all human OB-fold PPI networks and evaluated topological features such as network robustness and network hub, among others. We found that the OB-fold network comprised of 227 nodes forming 5523 interactions, and has a scale-free topology having UBA52, ATR, and TP53 as leading hub proteins that control efficient communication within the network. Furthermore, four different clusters and subclusters have been identified, which are implicated in diverse cellular processes, including DNA replication, repair, maintenance of genomic stability, RNA processing, spermatogenesis, complement system, and telomere maintenance. The importance of these clusters is further strengthened by knockout studies, which showed a significant decrease in topological properties. In summary, this study provides new insights on the role of OB-fold protein as genome guardians in regard to the underlying mechanism of signaling pathways, the roles of key regulators, and thus, offers new prospects as potential targets for diagnostics and therapeutics purposes.
Collapse
Affiliation(s)
- Mohd Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. Int J Biol Macromol 2020; 164:2399-2408. [PMID: 32784026 DOI: 10.1016/j.ijbiomac.2020.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
X-linked agammaglobulinemia (XLA) is a rare disease that affects the immune system, characterized by a serial development of bacterial infection from the onset of infantile age. Bruton tyrosine kinase (BTK) is a non-receptor cytoplasmic kinase that plays a crucial role in the B-lymphocyte maturation. The altered expression, mutation and/or structural variations of BTK are responsible for causing XLA. Here, we have performed extensive sequence and structure analyses of BTK to find deleterious variations and their pathogenic association with XLA. First, we screened the pathogenic variations in the BTK from a pool of publicly available resources, and their pathogenicity/tolerance and stability predictions were carried out. Finally, two pathogenic variations (E589G and M630K) were studied in detail and subjected to all-atom molecular dynamics simulation for 200 ns. Intramolecular hydrogen bonds (H-bonds), secondary structure, and principal component analysis revealed significant conformational changes in variants that support the structural basis of BTK dysfunction in XLA. The free energy landscape analysis revealed the presence of multiple energy minima, suggests that E589G brings a large destabilization and consequently unfolding behavior compared to M630K. Overall, our study suggests that amino acid substitutions, E589G, and M630K, significantly alter the structural conformation and stability of BTK.
Collapse
|
14
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
15
|
Naqvi AAT, Jairajpuri DS, Hussain A, Hasan GM, Alajmi MF, Hassan MI. Impact of glioblastoma multiforme associated mutations on the structure and function of MAP/microtubule affinity regulating kinase 4. J Biomol Struct Dyn 2020; 39:1781-1794. [DOI: 10.1080/07391102.2020.1738959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
17
|
Amir M, Ahamad S, Mohammad T, Jairajpuri DS, Hasan GM, Dohare R, Islam A, Ahmad F, Hassan MI. Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. J Biomol Struct Dyn 2019; 39:35-44. [DOI: 10.1080/07391102.2019.1705186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mohd. Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Department of Biotechnology, School of Engineering & Technology, IFTM University, Moradabad, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Amir M, Mohammad T, Prasad K, Hasan GM, Kumar V, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). J Biomol Struct Dyn 2019; 38:4625-4634. [PMID: 31625455 DOI: 10.1080/07391102.2019.1682052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Kartikay Prasad
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|