1
|
Bai Y, Wang Y, Qin J, Wang T, Zhou X, Ma Z, Wang A, Yang W, Wang J, Li J, Hu Y. Systematic pan-cancer analysis identified RASSF1 as an immunological and prognostic biomarker and validated in lung cancer. Heliyon 2024; 10:e33304. [PMID: 39022053 PMCID: PMC11253667 DOI: 10.1016/j.heliyon.2024.e33304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Ras association domain family member 1 (RASSF1) encodes the RASSF1A protein, serving as a scaffold protein situated at the intersection of a complex signalling network. Aims To evaluate the immunological and prognostic significance of RASSF1 expression in various types of human cancers, with a specific focus on lung cancer. Methods Differential expression analysis of RASSF1 was conducted based on data from The Cancer Genome Atlas, Genotype-Tissue Expression, and Cancer Cell Line Encyclopaedia databases. Prognostic analysis was performed using the Cox regression test and Kaplan-Meier test. Spearman's test was utilized for correlation analysis. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) gene sets were employed to enrich the associated signaling pathways. Immunohistochemical staining and quantitative real-time PCR were employed to detect protein and mRNA expression levels, respectively. Results RASSF1 expression was significantly lower in tumour tissues than in normal tissues in most cancers, and Cox regression analysis demonstrated a significant correlation between RASSF1 expression and the prognosis of over 12 types of cancer. Specifically, high RASSF1 expression was associated with poor OS in nine cancer types, including GBMLGG (HR = 4.98, P = 1.2e-31), LGG (HR = 3.72, P = 2.5e-10), and LAML (HR = 1.48, P = 2.4e-3). Further analysis showed that RASSF1 expression was significantly correlated with immune checkpoint- and immune-related genes. Moreover, RASSF1 expression is involved in tumour microenvironment (TME), RNA modification, genomic heterogeneity, and tumour stemness. GO and KEGG analyses showed that RASSF1 was closely related to tumour immune-related pathways. Finally, RASSF1A was moderately correlated with PD-L1 (R = 0.556), and RASSF1A overexpression significantly affected the expression of several genes involved in the Th17 cell differentiation signalling pathway in lung cancer. Conclusions RASSF1 was differentially expressed in 29 human cancers and played a critical role in tumour immunity. Thus, RASSF1 has the potential to be used as a prognostic marker and reference for achieving more precise immunotherapy, particularly in lung cancer.
Collapse
Affiliation(s)
- Yibing Bai
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiapei Qin
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ting Wang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - An Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Wenyu Yang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jinliang Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi Hu
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Jiang C, Hu F, Li J, Gao G, Guo X. Diagnostic value of alkaline phosphatase and bone-specific alkaline phosphatase for metastases in breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2023; 202:233-244. [PMID: 37522998 DOI: 10.1007/s10549-023-07066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE Numerous studies had reported the diagnostic value of alkaline phosphatase (ALP) and its bone-specific isoforms (BAP) in the metastases of breast cancer (BC). The purpose of this meta-analysis was to summarize the diagnostic value of serum ALP and BAP in metastatic BC, especially focused on bone metastases. METHODS We searched comprehensively in the PubMed, Cochrane Library, and EMBASE for studies to explore the diagnostic accuracy of serum ALP/BAP level for metastatic BC. Qualities of including studies were assessed and pooled sensitivity, specificity, and summary receiver operating characteristic curve were calculated. Publication bias was assessed and meta-regression was conducted. RESULTS We finally included 25 studies with a total of 12,155 BC patients (1681 metastatic cases and 10,474 controls). According to the QUADAS-2 tool to assessment the methodological quality, most of the included studies were judged as high risk of patient selection bias. High serum levels of ALP/BAP in bone metastatic BC patients could be found compared with non-metastatic BC patients. The pooled sensitivity and specificity of ALP for BC bone metastases were 0.62 and 0.86, and the area under the curve (AUC) was 0.80. The pooled sensitivity and specificity of ALP for all site metastases (mainly bone and liver) were 0.56 and 0.91, and the AUC was 0.90. The pooled sensitivity and specificity of BAP for BC bone metastases were 0.66 and 0.92, and the AUC was 0.89. CONCLUSION Although not promising, serum ALP and BAP could bring useful information for the early detection of BC metastases especially for the bone metastases.
Collapse
Affiliation(s)
- Chengying Jiang
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fangke Hu
- Orthopedic Department, Tianjin Hospital, Tianjin, China
| | - Jiazhen Li
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guangshen Gao
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaojing Guo
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
3
|
He S, Hou Y, Hou L, Chen N, Yang X, Wang H, Han P, Fan Y, Zhao J, Zhang J, Geng J. Targeted RASSF1A expression inhibits proliferation of HER2‑positive breast cancer cells in vitro. Exp Ther Med 2023; 25:245. [PMID: 37153885 PMCID: PMC10160914 DOI: 10.3892/etm.2023.11944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer, which accounts for 15-20% of all breast cancer, is associated with tumor recurrence and poor prognosis. RAS association domain family protein 1 subtype A (RASSF1A) is a tumor suppressor that is silenced in a variety of human cancers. The present study aimed to investigate the role of RASSF1A in HER2+ breast cancer and the therapeutic potential of RASSF1A-based targeted gene therapy for this malignancy. RASSF1A expression in human HER2+ breast cancer tissues and cell lines was evaluated by reverse transcription PCR and western blot analysis. The associations between tumorous RASSF1A level and tumor grade, TNM stage, tumor size, lymph node metastasis and five-year survival were examined. HER2+ and HER2-negative (HER2-) breast cancer cells were transfected with a lentiviral vector (LV-5HH-RASSF1A) that could express RASSF1A under the control of five copies of the hypoxia-responsive element (5HRE) and one copy of the HER2 promoter (HER2p). Cell proliferation was evaluated by the MTT and colony formation assays. It was found that tumorous RASSF1A level was negatively associated with tumor grade (P=0.014), TNM stage (P=0.0056), tumor size (P=0.014) and lymph node metastasis (P=0.029) and positively associated with five-year survival (P=0.038) in HER2+ breast cancer patients. Lentiviral transfection of HER2+ breast cancer cells resulted in increased RASSF1A expression and decreased cell proliferation, especially under hypoxic conditions. However, lentiviral transfection of HER2-breast cancer cells did not affect RASSF1A expression. In conclusion, these findings verified the clinical significance of RASSF1A as a tumor suppressor in HER2+ breast cancer and supported LV-5HH-RASSF1A as a potential targeted gene therapy for this malignancy.
Collapse
Affiliation(s)
- Sai He
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Yanni Hou
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Leina Hou
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Nan Chen
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaomin Yang
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Huxia Wang
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Pihua Han
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Yongguo Fan
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhao
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jingyuan Zhang
- Department of Breast Cancer, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Geng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- Correspondence to: Dr Jie Geng, Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
4
|
Mareti E, Vavoulidis E, Papanastasiou A, Maretis T, Tsampazis N, Margioula-Siarkou C, Chatzinikolaou F, Giasari S, Nasioutziki M, Daniilidis A, Zepiridis L, Dinas K. Evaluating the potential role of human papilloma virus infection in breast carcinogenesis via real-time polymerase chain reaction analyzes of breast fine needle aspiration samples from Greek patients. Diagn Cytopathol 2023. [PMID: 36939123 DOI: 10.1002/dc.25130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Human papilloma virus (HPV), in addition to its known clinical contribution to cervical cancer is probably actively involved in the development of breast tumors in various populations worldwide. Predominant HPV types in breast cancer patients vary geographically. The present study further examines HPV incidence in Greece, based on molecular analysis of clinical cytological samples. METHODS Greek patient fine needle aspiration (FNA) biopsy samples were examined using RT-PCR and immunohistological staining. FNA biopsy samples were collected from 114 female patients, diagnosed between the years 2018 and 2021, 57 with C5 diagnosed breast cancer lesions and 57 diagnosed with benign diseases. RESULTS A total of three different HPV types were identified within the patient sample. HPV-39 was found only in the control group, in 1.8% of patients, while HPV-59 was present in both control and study groups in 1.8% and 3.5% respectively. HPV-16, on the other hand, was present only in the study group in 12.3% of cases. HPV type presence was statistically differentiated between histological groups. HPV-16 was exclusively in IDC, HPV-39 was present in one cyst diagnosed sample and HPV-59 was present in 3 samples that included fibroadenoma, IDC and LN diagnosis. CONCLUSION More international comparative studies are required to investigate population differences and HPV genotype distribution to offer definite answers to the effect that certain HPV types might have a role in breast cancer, as this study also supports, albeit in a cofactory role.
Collapse
Affiliation(s)
- Evangelia Mareti
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,Laboratory of Gynecologic Oncology, 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,Laboratory of Gynecologic Oncology, 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Anastasios Papanastasiou
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Theodoros Maretis
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Nikolaos Tsampazis
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,Laboratory of Gynecologic Oncology, 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Chrysoula Margioula-Siarkou
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,Laboratory of Gynecologic Oncology, 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Fotios Chatzinikolaou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Faculty of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - Sofia Giasari
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Maria Nasioutziki
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Angelos Daniilidis
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,Laboratory of Gynecologic Oncology, 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Leonidas Zepiridis
- 1st Department of Obstetrics & Gynecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,Laboratory of Gynecologic Oncology, 2nd Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
5
|
Mathur R, Jha NK, Saini G, Jha SK, Shukla SP, Filipejová Z, Kesari KK, Iqbal D, Nand P, Upadhye VJ, Jha AK, Roychoudhury S, Slama P. Epigenetic factors in breast cancer therapy. Front Genet 2022; 13:886487. [PMID: 36212140 PMCID: PMC9539821 DOI: 10.3389/fgene.2022.886487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non—coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
Collapse
Affiliation(s)
- Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaurav Saini
- Department of Civil Engineering, Netaji Subhas University of Technology, Delhi, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, India
| | - Zita Filipejová
- Small Animal Clinic, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Parma Nand
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Petr Slama
- Department of Animal Morphology, Physiology, and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
6
|
Alipour S, Khalighfard S, Khori V, Amiriani T, Tajaldini M, Dehghan M, Sadani S, Omranipour R, Vahabzadeh G, Eslami B, Alizadeh AM. Innovative targets of the lncRNA-miR-mRNA network in response to low-dose aspirin in breast cancer patients. Sci Rep 2022; 12:12054. [PMID: 35835840 PMCID: PMC9283473 DOI: 10.1038/s41598-022-16398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed to investigate innovative targets in breast cancer patients by considering the interaction of the lncRNA-miR-mRNA network in response to low-dose aspirin. The candidate miRs were first taken from the GEO and TCGA databases. Then, the candidate network was constructed using the high-throughput sequencing data. The expression levels of candidate targets were finally measured using Real-Time PCR in luminal A breast cancer patients undergoing aspirin (80 mg daily for three months) and non-aspirin groups during chemotherapy after surgery. The expression levels of TGFβ, IL-17, IFNγ, and IL-β proteins were measured using the ELISA technique. 5 lncRNAs, 12 miRs, and 10 genes were obtained in the bioinformatic phase. A significant expression increase of the candidate tumor suppressor lncRNAs, miRs, and genes and a substantial expression decrease of the candidate onco-lncRNAs, oncomiRs, and oncogenes were achieved after the aspirin consumption. Unlike the non-aspirin group, the expression levels of TGFβ, IL-17, IFNγ, and IL-β proteins were significantly decreased following aspirin consumption. The Kaplan-Meier analysis indicated a longer overall survival rate in the patients after aspirin consumption. Our results showed that the lncRNA-miR-mRNA network might be a significant target for aspirin; their expression changes may be a new strategy with potential efficacy for cancer therapy or prevention.
Collapse
Affiliation(s)
- Sadaf Alipour
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ramesh Omranipour
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bita Eslami
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Karaglani M, Panagopoulou M, Baltsavia I, Apalaki P, Theodosiou T, Iliopoulos I, Tsamardinos I, Chatzaki E. Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach. Int J Mol Sci 2022; 23:2959. [PMID: 35328380 PMCID: PMC8952417 DOI: 10.3390/ijms23062959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM). Differential methylation analysis was conducted to compare tissues/cells related to the pathology and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly performing and low feature number biosignatures were built with automated machine learning, including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each (AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC 0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA dataset showing an AUC and precision of 1.000, verifying the biosignature's applicability in liquid biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified are involved in pathways known to be related to the studied diseases or pointed to new ones. Overall, our data-driven approach contributes to the maximum exploitation of high-throughput methylome readings, helping to establish specific disease profiles to be applied in clinical practice and to understand human pathology.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ismini Baltsavia
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Paraskevi Apalaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Ioannis Tsamardinos
- JADBio Gnosis DA S.A., Science and Technology Park of Crete, GR-70013 Heraklion, Greece;
- Department of Computer Science, University of Crete, GR-70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology—Hellas, GR-70013 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
| |
Collapse
|
8
|
Lao TD, Thieu HH, Nguyen DH, Le TAH. Hypermethylation of the RASSF1A gene promoter as the tumor DNA marker for nasopharyngeal carcinoma. Int J Biol Markers 2021; 37:31-39. [PMID: 34935528 DOI: 10.1177/17246008211065472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND RASSF1A is a tumor suppressor gene. The methylation of RASSF1A has been reported to be associated with nasopharyngeal tumorigenesis. However, the heterogeneity was high among different studies. A meta-analysis was performed to evaluate the value of RASSF1A methylation for the diagnosis and early screening of nasopharyngeal carcinoma. METHODS Relevant articles were identified by searching the MEDLINE database. Frequency and odds ratio (OR) were applied to estimate the effect of CDH-1 methylation based on random-/fixed-effect models. The meta-analysis was performed by using MedCalc® software. Subgroup analyses were performed by test method, ethnicity, and source of nasopharyngeal carcinoma samples to determine likely sources of heterogeneity. RESULTS A total of 17 studies, including 1688 samples (1165 nasopharyngeal carcinoma samples, and 523 from non-cancerous samples) were used for the meta-analysis. The overall frequencies of RASSF1A methylation were 59.68% and 2.65% in case-group and control-group, respectively. By removing the poor relative studies, the heterogeneity was not observed among the studies included. The association between RASSF1A gene methylation and the risk of nasopharyngeal carcinoma was also confirmed by calculating the OR value of 30.32 (95%CI = 18.22-50.47) in the fixed-effect model (Q = 16.41, p = 0.36,I2 = 8.62, 95% CI = 0.00-45.27). Additionally, the significant association was also found between the methylation of the RASSF1A gene and the subgroups. CONCLUSIONS This is the first meta-analysis that has provided scientific evidence that the methylation of RASSF1A is the potential diagnosis, prognosis, and early screening biomarker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, 486019Ho Chi Minh City Open University, HCMC, Vietnam
| | - Hue Hong Thieu
- Faculty of Biotechnology, 486019Ho Chi Minh City Open University, HCMC, Vietnam
| | - Dung Huu Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, 486019Ho Chi Minh City Open University, HCMC, Vietnam
| |
Collapse
|
9
|
Current advances in prognostic and diagnostic biomarkers for solid cancers: Detection techniques and future challenges. Biomed Pharmacother 2021; 146:112488. [PMID: 34894516 DOI: 10.1016/j.biopha.2021.112488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Solid cancers are one of the leading causes of cancer related deaths, characterized by rapid growth of tumour, and local and distant metastases. Current advances on multimodality care have substantially improved local control and metastasis-free survival of patients by resection of primary tumour. The major concern in disease prognosis is the timely detection of resectable or metastatic tumour, thus reinforcing the need for identification of biomarkers for premalignant lesions of solid cancer. This ultimately improves the outcome for the patients. Therefore, the purpose of this review is to update the recent advancements on prognostic and diagnostic biomarkers to enhance early detection of common solid cancers including, breast, lung, colorectal, prostate and stomach cancer. We also provide an insight into Food and Drug Administration (FDA)-approved solid cancers biomarkers; various conventional techniques used for detection of prognostic and diagnostic biomarkers and discuss approaches to turn challenges in this field into opportunities.
Collapse
|
10
|
Simultaneously Both Expression of LMP-1 and Methylation of E-cadherin: Molecular Biomarker in Stage IV of Nasopharyngeal Carcinoma Patients. Balkan J Med Genet 2021; 24:57-66. [PMID: 34447660 PMCID: PMC8366468 DOI: 10.2478/bjmg-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenome of E-cadherin gene methylation and the expression of latent membrane protein 1 (LMP-1) gene are associated with nasopharyngeal carcinoma (NPC). In order to determine whether cooperative LMP-1 expression or methylation of E-cadherin could serve as the potential molecule biomarker target for diagnosis and therapy of NPC, a case-control study including 93 NPC biopsy samples and 100 non cancerous nasopharyngeal swab samples were examined, as well as the strength of association among them by the quantitative polymerase chain reaction (qPCR) and nested-methylation-specific PCR methods. The significantly higher frequency of LMP-1 expression and E-cadherin methylation in NPC biopsy samples, accounting for 76.34 and 73.12%, respectively, compared to non cancerous samples, accounting for 0.00 and 30.00%, respectively, were observed. The significant correlation between the LMP-1 expression and E-cadherin methylation in NPC samples was reported. In detail, in the stage IV of NPC, in case of LMP-1-positive samples, 35 of 37 samples (accounting for 94.60%) were positive for methylation of E-cadherin. It was demonstrated that cooperative LMP-1 expression and E-cadherin gene methylation could serve as a molecular biomarker in NPC.
Collapse
|
11
|
Reye G, Huang X, Britt KL, Meinert C, Blick T, Xu Y, Momot KI, Lloyd T, Northey JJ, Thompson EW, Hugo HJ. RASSF1A Suppression as a Potential Regulator of Mechano-Pathobiology Associated with Mammographic Density in BRCA Mutation Carriers. Cancers (Basel) 2021; 13:cancers13133251. [PMID: 34209669 PMCID: PMC8269117 DOI: 10.3390/cancers13133251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/26/2023] Open
Abstract
High mammographic density (MD) increases breast cancer (BC) risk and creates a stiff tissue environment. BC risk is also increased in BRCA1/2 gene mutation carriers, which may be in part due to genetic disruption of the tumour suppressor gene Ras association domain family member 1 (RASSF1A), a gene that is also directly regulated by tissue stiffness. High MD combined with BRCA1/2 mutations further increase breast cancer risk, yet BRCA1/2 mutations alone or in combination do not increase MD. The molecular basis for this additive effect therefore remains unclear. We studied the interplay between MD, stiffness, and BRCA1/2 mutation status in human mammary tissue obtained after prophylactic mastectomy from women at risk of developing BC. Our results demonstrate that RASSF1A expression increased in MCF10DCIS.com cell cultures with matrix stiffness up until ranges corresponding with BiRADs 4 stiffnesses (~16 kPa), but decreased in higher stiffnesses approaching malignancy levels (>50 kPa). Similarly, higher RASSF1A protein was seen in these cells when co-cultivated with high MD tissue in murine biochambers. Conversely, local stiffness, as measured by collagen I versus III abundance, repressed RASSF1A protein expression in BRCA1, but not BRCA2 gene mutated tissues; regional density as measured radiographically repressed RASSF1A in both BRCA1/2 mutated tissues. The combinatory effect of high MD and BRCA mutations on breast cancer risk may be due to RASSF1A gene repression in regions of increased tissue stiffness.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia; (G.R.); (X.H.); (T.B.); (E.W.T.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia; (G.R.); (X.H.); (T.B.); (E.W.T.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kara L. Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
| | - Christoph Meinert
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia;
- Gelomics Pty. Ltd., Brisbane, QLD 4059, Australia
| | - Tony Blick
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia; (G.R.); (X.H.); (T.B.); (E.W.T.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Yannan Xu
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Konstantin I. Momot
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Thomas Lloyd
- Department of Radiology, The Princess Alexandra Hospital, Woollongabba, QLD 4102, Australia;
| | - Jason J. Northey
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia; (G.R.); (X.H.); (T.B.); (E.W.T.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Honor J. Hugo
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia; (G.R.); (X.H.); (T.B.); (E.W.T.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Medicine and Dentistry, Griffith University, Birtinya, QLD 4575, Australia
- Correspondence:
| |
Collapse
|
12
|
Guo Q, Hua Y. The assessment of circulating cell-free DNA as a diagnostic tool for breast cancer: an updated systematic review and meta-analysis of quantitative and qualitative ssays. Clin Chem Lab Med 2021; 59:1479-1500. [PMID: 33951758 DOI: 10.1515/cclm-2021-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This updated meta-analysis aimed to assess the diagnostic accuracy of circulating cell-free DNA (cfDNA) in breast cancer (BC). CONTENT An extensive systematic search was performed in PubMed, Scopus, Embase, and Science Direct databases to retrieve all related literature. Various diagnostic estimates, including sensitivity (SE), specificity (SP), likelihood ratios (LRs), diagnostic odds ratio (DOR), and area under the curve (AUC) of summary receiver operating characteristic (sROC) curve, were also calculated using bivariate linear mixed models. SUMMARY In this meta-analysis, 57 unique articles (130 assays) on 4246 BC patients and 2,952 controls, were enrolled. For quantitative approaches, pooled SE, SP, PLR, NLR, DOR, and AUC were obtained as 0.80, 0.88, 6.7, 0.23, 29, and 0.91, respectively. Moreover, for qualitative approaches, pooled SE and SP for diagnostic performance were obtained as 0.36 and 0.98, respectively. In addition, PLR was 14.9 and NLR was 0.66. As well, the combined DOR was 23, and the AUC was 0.79. OUTLOOK Regardless of promising SE and SP, analysis of LRs suggested that quantitative assays are not robust enough neither for BC confirmation nor for its exclusion. On the other hand, qualitative assays showed satisfying performance only for confirming the diagnosis of BC, but not for its exclusion. Furthermore, qualitative cfDNA assays showed a better diagnostic performance in patients at the advanced stage of cancer, which represented no remarkable clinical significance as a biomarker for early detection.
Collapse
Affiliation(s)
- Qingfeng Guo
- Department of General Surgery, Affiliated Hospital of Jiangnan University (Original Area of Wuxi No. 3 People's Hospital), Wuxi, P.R. China
| | - Yuming Hua
- Department of General Surgery, Affiliated Hospital of Jiangnan University (Original Area of Wuxi No. 3 People's Hospital), Wuxi, P.R. China
| |
Collapse
|
13
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|
14
|
MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Processes (Basel) 2020. [DOI: 10.3390/pr8080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
According to reports published, the aberrant expression of microRNAs (miRNAs), a class of 19–25 nucleotide-long small non-coding RNAs, is responsible for human cancers, including nasopharyngeal cancer (NPC). The dysregulation of miRNAs that act either as a tumor suppressor or oncogene, leading to a wide range of NPC pathogenesis pathways, includes the proliferation, invasion, migration as well as the metastasis of NPC cells. This article reviews and highlights recent advances in the studies of miRNAs in NPC, with a specific demonstration of the functions of miRNA, especially circulating miRNAs, in the pathway of NPC pathogenesis. Additionally, the possible use of miRNAs as early screening and prognostic biomarkers and for therapeutic molecular monitoring has been extensively studied.
Collapse
|
15
|
Kougioumtsidou N, Vavoulidis E, Nasioutziki M, Symeonidou M, Pratilas GC, Mareti E, Petousis S, Chatzikyriakidou A, Grimbizis G, Theodoridis T, Miliaras D, Dinas K, Zepiridis L. DNA methylation patterns of RAR-β2 and RASSF1A gene promoters in FNAB samples from Greek population with benign or malignant breast lesions. Diagn Cytopathol 2020; 49:153-164. [PMID: 32530576 DOI: 10.1002/dc.24513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Promoter hypermethylation is common in Breast Cancer (BC) with studies mainly in histological specimens showing frequent methylation of tumor suppressor genes (TSGs) compared with normal tissues. The aim of this study was to estimate the frequency of promoter methylation of RAR-β2 and RASSF1A genes in breast FNAB material aiming to evaluate the methylation status of these two genes as biomarker for detecting BC in Greek population. METHODS FNAB material from 104 patients was collected for cytological evaluation and epigenetic analysis. DNA was extracted and subjected to bisulfite conversion. A methylation-specific PCR was carried out and the final products were separated with electrophoresis in 2% agarose gels. RESULTS From 104 samples, RASSF1A hypermethylation was observed in 78 (75%) and RAR-β2 hypermethylation in 64 (61.6%). 84% and 78% of the cases diagnosed with breast malignancy (n = 50) were methylated for RASSF1A and RAR-β2, respectively. Methylated RASSF1A and RAR-β2 were also detected in 88.3% and 76.5% in samples diagnosed as suspicious for malignancy (n = 17) and in 57.2% of samples diagnosed with atypia (n = 14). The Odds Ratio for breast malignancy was 4.545 in patients with RASSF1A hypermethylation and 9.167 in patients with RAR-β2 hypermethylation underlying their promoter's methylation positive correlation with breast malignancy. CONCLUSION To optimize the sensitivity and specificity of this epigenetic setting, more TSGs related to BC should be gradually imported in our evaluated methylation panel and be validated in a larger study sample with the aim that the obtained epigenetic profiles will provide clinicians with valuable tools for management of BC patients in Greece.
Collapse
Affiliation(s)
- Niki Kougioumtsidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Maria Nasioutziki
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Symeonidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Chrysostomos Pratilas
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mareti
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatios Petousis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Faculty of Medicine, Laboratory of Medical Biology-Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gregorios Grimbizis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Theodoridis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Leonidas Zepiridis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Sellami M, Bragazzi NL. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020; 12:nu12020512. [PMID: 32085420 PMCID: PMC7071273 DOI: 10.3390/nu12020512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Proper nutrition plays a major role in preventing diseases and, therefore, nutritional interventions constitute crucial strategies in the field of Public Health. Nutrigenomics and nutriproteomics are arising from the integration of nutritional, genomics and proteomics specialties in the era of postgenomics medicine. In particular, nutrigenomics and nutriproteomics focus on the interaction between nutrients and the human genome and proteome, respectively, providing insights into the role of diet in carcinogenesis. Further omics disciplines, like metabonomics, interactomics and microbiomics, are expected to provide a better understanding of nutrition and its underlying factors. These fields represent an unprecedented opportunity for the development of personalized diets in women at risk of developing breast cancer.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (CAS), Qatar University, Doha 2713, Qatar
- Correspondence: (M.S.); (N.L.B.)
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University if Genoa, 16132 Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: (M.S.); (N.L.B.)
| |
Collapse
|
17
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|