1
|
Wang A, Xie M, Wu L. Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods 2024; 13:3601. [PMID: 39594016 PMCID: PMC11593304 DOI: 10.3390/foods13223601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The influence of inulin on the interaction of sophoricoside (Sop) with whey protein concentrate (WPC) was investigated using various spectroscopic methods, including fluorescence spectroscopy (intrinsic fluorescence, synchronous fluorescence, and three-dimensional fluorescence), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular docking. Sop was found to quench the intrinsic fluorescence of WPC by a static mechanism, both with and without the addition of inulin, and to enhance the antioxidant capacity of the protein. The addition of inulin slightly increased the binding distance between WPC and Sop, while reducing the number of binding sites from two to one. Non-covalent interactions, predominantly van der Waals forces and hydrogen bonding, were maintained between Sop and the protein. Synchronous fluorescence spectroscopy revealed that Sop prevents the exposure of hydrophobic groups on tryptophan residues, leading to increased surface hydrophilicity of the WPC complex. This aligns with the decreased protein surface hydrophobicity measured by 8-Anilino-1-naphthalenesulfonic acid (ANS) binding assays. With inulin, the overall hydrophobicity of the protein was lower than in the system without inulin, suggesting that both inulin and Sop improve the solubility of WPC. Three-dimensional fluorescence spectral analysis showed a reduction in fluorescence intensity and a red shift in the presence of both Sop and inulin. FTIR spectroscopy indicated a slight increase in the secondary structure ordering of WPC following the addition of both Sop and inulin, suggesting structural stabilization under heating conditions. Molecular docking highlighted the potential for hydrogen bond formation between Sop and WPC.
Collapse
Affiliation(s)
- Anna Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyang Xie
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| | - Ligen Wu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| |
Collapse
|
2
|
Wu Y, He S, Zhang Y, Li S, Liu R, Zhang Y, Jing Y, Chen D, Tong Y, Wang Z, Wang Q, Pang Q. Sophoricoside ameliorates methicillin-resistant Staphylococcus aureus-induced acute lung injury by inhibiting Bach1/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155846. [PMID: 38964155 DOI: 10.1016/j.phymed.2024.155846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The lack of effective treatments for methicillin-resistant Staphylococcus aureus (MRSA) infection, which often leads to severe acute lung injury (ALI), poses a grave threat to human life. Sophoricoside (SOP), an isoflavone glycoside abundant in the fruit of traditional Chinese herbal Sophora japonica l., showed anti-inflammatory effects against atopic dermatitis, allergic inflammation, and lipopolysaccharide-induced ALI. However, its effect and underlying mechanism on MRSA-induced ALI remain unclear. PURPOSE The aim of this study is to assess the protective effect of SOP in MRSA-induced ALI and elucidate its underlying molecular mechanisms. METHODS In vivo experiments were conducted using wild-type mice to establish MRSA-induced ALI mouse model, and the effects of SOP on ALI were evaluated by hematoxylin-eosin staining, flow cytometry, quantitative real-time polymerase chain reaction, and several biochemical indicators. Adoptive transfer experiments and BTB and CNC homology 1 knockout (Bach1-/-) mice were also utilized in this study. In vitro studies employed murine macrophages RAW264.7 cells, primary bone marrow-derived macrophages (BMDMs), and primary lung macrophages to explore the underlying molecular mechanisms. RESULTS The administration of SOP ameliorated MRSA-induced ALI by improving pulmonary histological damages, reducing neutrophil infiltration, suppressing oxidative stress levels, and decreasing the expression of inflammatory cytokines. In isolation experiments with ALI mouse lung macrophages and macrophage adoptive transfer experiments, SOP prevented macrophage activation, thereby reducing the production of proinflammatory cytokines. In vitro experiments demonstrated that SOP decreased the expression of inflammatory mediators in lipoteichoic acid (LTA)-stimulated RAW264.7 cells, BMDMs, and primary lung macrophages. Additionally, SOP inhibited protein kinase B (Akt) phosphorylation and treatment with MK2206-a specific inhibitor of Akt-eliminated SOP's ability to suppress LTA-stimulated macrophage inflammation. Furthermore, stimulation with LTA or MRSA up-regulated Bach1 expression; however, deletion of Bach1 abolished the inhibitory effect of SOP on p-Akt activation as well as inflammation and ALI development. CONCLUSION This study provides the first evidence that SOP effectively mitigates MRSA-induced ALI via suppressing macrophage activation through the inhibition of Bach1/Akt pathway. These findings highlight the potential of SOP as a novel therapeutic agent for treating MRSA-induced ALI.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Shuaichao Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Ruyin Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Yutong Jing
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China
| | - Zhiqiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu province, PR China
| | - Qianyun Wang
- Department of Thoracic Surgery, The First People's Hospital of Changzhou, Changzhou 213000, Jiangsu province, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu province, PR China.
| |
Collapse
|
3
|
Li Z, Zhang M, Yang L, Fan D, Zhang P, Zhang L, Zhang J, Lu Z. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK. Eur J Pharmacol 2024; 971:176439. [PMID: 38401605 DOI: 10.1016/j.ejphar.2024.176439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
AIMS Ischemic stroke accounts for 87% of all strokes, and its death and disability bring a huge burden to society. Brain injury caused by ischemia-reperfusion (I/R) is also a major difficulty in clinical treatment and prognosis. Sophoricoside (SOP) is an isoflavone glycoside isolated from the seed of medical herb Sophora japonica L. Previously, SOP was found to be effective in anti-inflammation and glucose-lipid metabolism-related diseases. In order to investigate whether SOP has a regulatory effect on cerebral I/R injury, we conducted this study. METHODS Here, by application of SOP into MCAO (transient middle cerebral artery occlusion)-induced mice and OGD/R (oxygen glucose deprivation/reperfusion)-induced primary neurons, the regulation effects of SOP was analyzed by detecting neurological score of post-stroke mice, phenotypes of brains and brain sections, cell viabilities, and apoptosis- and inflammation-regulation. RNA sequencing and molecular biology experiments were performed to explore the mechanism of SOP regulating cerebral I/R injury. RESULTS SOP administration decreased the infarct size, neurological deficit score, neuronal cell injury, inflammation and apoptosis. Mechanistically, SOP exerted its protective effect by activating the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION SOP inhibits cerebral I/R injury by promoting the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Zhaoshuo Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Mi Zhang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China
| | - Lixia Yang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Ding Fan
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianqing Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 445000, China
| | - Zhigang Lu
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, 445000, China.
| |
Collapse
|
4
|
Wang H, He D, Li Z, Gao X, Yang S, Cui M, Ye B, Huang B, Fu S, Liu D. Oral administration of sophoricoside (SOP) inhibits neuronal damage and neuroinflammation to curb neurodegeneration in Parkinson's disease. Chem Biol Interact 2023; 384:110726. [PMID: 37741537 DOI: 10.1016/j.cbi.2023.110726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Neuronal apoptosis and neuroinflammation are key factors involved in the pathological changes of Parkinson's disease (PD). Sophoricoside (SOP) has shown anti-inflammatory and anti-apoptosis effects in various diseases. However, the role of SOP in PD has not been reported. In this experiment, we found that oral administration of SOP alleviated weight loss and motor symptoms in 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-injected mice. Further studies revealed that SOP inhibited inflammatory responses and neuronal apoptosis in the midbrain region of MPTP-injected mice. In vitro mechanistic study, we found that SOP exerts neuroprotective effects through a two-sided action. On the one hand, SOP inhibits Lipopolysaccharide (LPS)-induced inflammatory responses in microglia by inhibiting the Nuclear factor kappa-B(NF-κB) pathway. On the other hand, SOP inhibits 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Thus SOP is expected to be a potential therapeutic agent for PD by targeting neuroinflammation and neuronal apoptosis.
Collapse
MESH Headings
- Mice
- Animals
- Parkinson Disease/metabolism
- Neuroinflammatory Diseases
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- NF-kappa B/metabolism
- 1-Methyl-4-phenylpyridinium
- Administration, Oral
- Mice, Inbred C57BL
- Disease Models, Animal
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neuroprotective Agents/metabolism
- Microglia
- Dopaminergic Neurons
- Mammals/metabolism
Collapse
Affiliation(s)
- Hefei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- College of Animal Science, Jilin University, Changchun, China.
| | - Zhe Li
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xiyu Gao
- College of Animal Science, Jilin University, Changchun, China.
| | - Shuo Yang
- College of Animal Science, Jilin University, Changchun, China.
| | - Mingchi Cui
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Bojian Ye
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Bingxu Huang
- College of Animal Science, Jilin University, Changchun, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Chen Y, Lei Y, Wang H, Wang L, Xu J, Wang S, Yu M, Peng Z, Xiao F, Tian D, Liu M. Sophoricoside attenuates autoimmune‑mediated liver injury through the regulation of oxidative stress and the NF‑κB signaling pathway. Int J Mol Med 2023; 52:78. [PMID: 37477163 PMCID: PMC10555480 DOI: 10.3892/ijmm.2023.5281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
The prevalence of autoimmune hepatitis (AIH) is increasing, yet specific pharmacotherapies remain to be explored. The present study aimed to investigate the effects of sophoricoside (SOP), a bioactive component of medical herbs, on AIH and to elucidate the underlying mechanisms. Bioinformatic approaches were used to predict the potential targets and underlying regulatory mechanisms of SOP on AIH. The effects of SOP on AIH were evaluated by determining the expression levels of inflammatory cytokines, histological liver injury and hepatic fibrosis in an improved chronic cytochrome P450 2D6 (CYP2D6)‑AIH mouse model and in a model of concanavalin‑A (ConA)‑induced acute immune‑mediated liver injury. The antioxidant activity of SOP was detected in in vivo and in vitro experiments. The selected signal targeted by SOP in AIH was further confirmed using western blot analysis and immunofluorescence staining. The results of bioinformatic analysis revealed that the targets of SOP in AIH were related to oxidative stress and the NF‑κB gene set. The NF‑κB transcription factor family is a key player that controls both innate and adaptive immunity. The activation of the NF‑κB signaling pathway is often associated with autoimmune disorders. In the animal experiments, SOP attenuated CYP2D6/ConA‑induced AIH, as evidenced by a significant reduction in the levels of hepatic enzymes in serum, inflammatory cytokine expression and histological lesions in the liver. The oxidative response in AIH was also significantly inhibited by SOP, as evidenced by a decrease in the levels of hepatic malondialdehyde, and elevations in the total antioxidant capacity and glutathione peroxidase levels. The results of the in vivo and in vitro experiments revealed that SOP significantly reduced the enhanced expression and nuclear translocation of phosphorylated p65 NF‑κB in the livers of mice with AIH and in lipopolysaccharide‑stimulated AML12 cells. On the whole, the present study demonstrates the protective role of SOP in AIH, which may be mediated by limiting the oxidative response and the activation of the NF‑κB signaling pathway in hepatocytes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lijia Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiaxin Xu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhangqi Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
6
|
Xiao WC, Zhou G, Wan L, Tu J, Yu YJ, She ZG, Xu CL, Wang L. Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation. Brain Res Bull 2023; 195:37-46. [PMID: 36775042 DOI: 10.1016/j.brainresbull.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Chang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Gang Zhou
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.
| | - Lu Wan
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Jun Tu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Yong-Jie Yu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Chun-Lin Xu
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
7
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
8
|
Kocot AM, Wróblewska B. Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition 2022; 103-104:111686. [PMID: 35843038 DOI: 10.1016/j.nut.2022.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
|
9
|
Weng HC, Lu XY, Xu YP, Wang YH, Wang D, Feng YL, Chi Z, Yan XQ, Lu CS, Wang HW. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Mol Med 2021; 27:147. [PMID: 34773993 PMCID: PMC8590333 DOI: 10.1186/s10020-021-00408-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/31/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Patients with salt-sensitive hypertension are often accompanied with severe renal damage and accelerate to end-stage renal disease, which currently lacks effective treatment. Fibroblast growth factor 21 (FGF21) has been shown to suppress nephropathy in both type 1 and type 2 diabetes mice. Here, we aimed to investigate the therapeutic effect of FGF21 in salt-sensitive hypertension-induced nephropathy. METHODS Changes of FGF21 expression in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive mice were detected. The influence of FGF21 knockout in mice on DOCA-salt-induced nephropathy were determined. Recombinant human FGF21 (rhFGF21) was intraperitoneally injected into DOCA-salt-induced nephropathy mice, and then the inflammatory factors, oxidative stress levels and kidney injury-related indicators were observed. In vitro, human renal tubular epithelial cells (HK-2) were challenged by palmitate acid (PA) with or without FGF21, and then changes in inflammation and oxidative stress indicators were tested. RESULTS We observed significant elevation in circulating levels and renal expression of FGF21 in DOCA-salt-induced hypertensive mice. We found that deletion of FGF21 in mice aggravated DOCA-salt-induced nephropathy. Supplementation with rhFGF21 reversed DOCA-salt-induced kidney injury. Mechanically, rhFGF21 induced AMPK activation in DOCA-salt-treated mice and PA-stimulated HK-2 cells, which inhibited NF-κB-regulated inflammation and Nrf2-mediated oxidative stress and thus, is important for rhFGF21 protection against DOCA-salt-induced nephropathy. CONCLUSION These findings indicated that rhFGF21 could be a promising pharmacological strategy for the treatment of salt-sensitive hypertension-induced nephropathy.
Collapse
Affiliation(s)
- Hua-Chun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 200000, China
| | - Xin-Yu Lu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Peng Xu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Hong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Yi-Ling Feng
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Zhang Chi
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Qing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|