1
|
Zhu W, Zhang H, Tang L, Fang K, Lin N, Huang Y, Zhang Y, Le H. Identification of a Plasma Exosomal lncRNA- and circRNA-Based ceRNA Regulatory Network in Patients With Lung Adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70026. [PMID: 39428538 PMCID: PMC11491303 DOI: 10.1111/crj.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/03/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Exosomes have been established to be enriched with various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) that exert various biological effects. However, the lncRNA- and circRNA-mediated coexpression competing endogenous RNA (ceRNA) regulatory network in exosomes derived from the plasma of patients with lung adenocarcinoma (LUAD) remains elusive. METHODS AND RESULTS This study enrolled nine patients with lung adenocarcinoma and three healthy individuals, and the differential expression of messenger RNAs (mRNAs), lncRNAs, and circRNAs was detected using microarray analysis, while microRNAs (miRNAs) were detected through RNA sequencing. Additionally, bioinformatics algorithms were applied to evaluate the lncRNA-miRNA-mRNAs/circRNA-miRNA-mRNA network. Differentially expressed cicRNAs were identified via quantitative reverse transcription polymerase chain reaction (RT-qPCR). A total of 1016 lncRNAs, 1396 circRNAs, 45 miRNAs, and 699 mRNAs were differentially expressed in the plasma exosomes of patients with LUAD compared with healthy controls. Among them, 881 lncRNAs were upregulated and 135 were downregulated, 916 circRNAs were upregulated while 480 were downregulated, 45 miRNAs were upregulated while none were downregulated, and 591 mRNAs were upregulated while 108 were downregulated (p ≤ 0.05, and fold change ≥ 2). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the biological functions of differentially expressed RNAs. Meanwhile, the RNA networks displayed the regulatory relationship between dysregulated RNAs. Finally, RT-qPCR validated that the expression of circ-0033861, circ-0043273, and circ-0011959 was upregulated in the plasma exosome of patients with LUAD compared to healthy controls (p = 0.0327, p = 0.0002, p = 0.0437, respectively). CONCLUSION This study proposed a newly discovered ncRNA-miRNA-mRNA/circRNA-miRNA-mRNA ceRNA network and identified that the expression of circulating circ-0033861, circ-0043273, and circ-0011959 was up-regulated in the plasma exosomes of patients with LUAD, offering valuable insights for exploring the potential function of exosomal noncoding RNA and identifying potential biomarkers for LUAD.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Exosomes/genetics
- Exosomes/metabolism
- RNA, Circular/blood
- RNA, Circular/genetics
- Male
- Female
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/pathology
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/pathology
- Middle Aged
- Gene Regulatory Networks
- RNA, Messenger/genetics
- RNA, Messenger/blood
- Gene Expression Regulation, Neoplastic
- MicroRNAs/blood
- MicroRNAs/genetics
- Aged
- Gene Expression Profiling/methods
- Computational Biology/methods
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Up-Regulation
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Huafeng Zhang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Liwei Tang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Kexin Fang
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Nawa Lin
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Yanyan Huang
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Yongkui Zhang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Hanbo Le
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| |
Collapse
|
2
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
3
|
Yu N, Wu Y, Wei Q, Li X, Li M, Wu W. m 6A modification of CDC5L promotes lung adenocarcinoma progression through transcriptionally regulating WNT7B expression. Am J Cancer Res 2024; 14:3565-3583. [PMID: 39113868 PMCID: PMC11301290 DOI: 10.62347/qhfa9669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cell division cycle 5-like (CDC5L) protein is implicated in the development of various cancers. However, its role in the progression of lung adenocarcinoma (LUAD) remains uncertain. Our findings revealed frequent upregulation of CDC5L in LUAD, which correlated with poorer overall survival rates and advanced clinical stages. In vitro experiments demonstrated that CDC5L overexpression stimulated the proliferation, migration, and invasion of LUAD cells, whereas CDC5L knockdown exerted suppressive effects on these cellular processes. Furthermore, silencing CDC5L significantly inhibited tumor growth and metastasis in a xenograft mouse model. Mechanistically, CDC5L activates the Wnt/β-catenin signaling pathway by transcriptionally regulating WNT7B, thereby promoting LUAD progression. Besides, METTL14-mediated m6A modification contributed to CDC5L upregulation in an IGF2BP2-dependent manner. Collectively, our study uncovers a novel molecular mechanism by which the m6A-induced CDC5L functions as an oncogene in LUAD by activating the Wnt/β-catenin pathway through transcriptional regulation of WNT7B, suggesting that CDC5L may serve as a promising prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Yingxiao Wu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Xiaoping Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Mengling Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Weidong Wu
- Department of Thoracic Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical UniversityFuzhou 350122, Fujian, China
| |
Collapse
|
4
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
5
|
Song D, Yang Q, Li L, Wei Y, Zhang C, Du H, Ren G, Li H. Novel prognostic biomarker TBC1D1 is associated with immunotherapy resistance in gliomas. Front Immunol 2024; 15:1372113. [PMID: 38529286 PMCID: PMC10961388 DOI: 10.3389/fimmu.2024.1372113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Background Glioma, an aggressive brain tumor, poses a challenge in understanding the mechanisms of treatment resistance, despite promising results from immunotherapy. Methods We identified genes associated with immunotherapy resistance through an analysis of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases. Subsequently, qRT-PCR and western blot analyses were conducted to measure the mRNA and protein levels of TBC1 Domain Family Member 1 (TBC1D1), respectively. Additionally, Gene Set Enrichment Analysis (GSEA) was employed to reveal relevant signaling pathways, and the expression of TBC1D1 in immune cells was analyzed using single-cell RNA sequencing (scRNA-seq) data from GEO database. Tumor Immune Dysfunction and Exclusion (TIDE) database was utilized to assess T-cell function, while Tumor Immunotherapy Gene Expression Resource (TIGER) database was employed to evaluate immunotherapy resistance in relation to TBC1D1. Furthermore, the predictive performance of molecules on prognosis was assessed using Kaplan-Meier plots, nomograms, and ROC curves. Results The levels of TBC1D1 were significantly elevated in tumor tissue from glioma patients. Furthermore, high TBC1D1 expression was observed in macrophages compared to other cells, which negatively impacted T cell function, impaired immunotherapy response, promoted treatment tolerance, and led to poor prognosis. Inhibition of TBC1D1 was found to potentially synergistically enhance the efficacy of immunotherapy and prolong the survival of cancer patients with gliomas. Conclusion Heightened expression of TBC1D1 may facilitate an immunosuppressive microenvironment and predict a poor prognosis. Blocking TBC1D1 could minimize immunotherapy resistance in cancer patients with gliomas.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Draškovič T, Hauptman N. Discovery of novel DNA methylation biomarker panels for the diagnosis and differentiation between common adenocarcinomas and their liver metastases. Sci Rep 2024; 14:3095. [PMID: 38326602 PMCID: PMC10850119 DOI: 10.1038/s41598-024-53754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Differentiation between adenocarcinomas is sometimes challenging. The promising avenue for discovering new biomarkers lies in bioinformatics using DNA methylation analysis. Utilizing a 2853-sample identification dataset and a 782-sample independent verification dataset, we have identified diagnostic DNA methylation biomarkers that are hypermethylated in cancer and differentiate between breast invasive carcinoma, cholangiocarcinoma, colorectal cancer, hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma and stomach adenocarcinoma. The best panels for cancer type exhibit sensitivity of 77.8-95.9%, a specificity of 92.7-97.5% for tumors, a specificity of 91.5-97.7% for tumors and normal tissues and a diagnostic accuracy of 85.3-96.4%. We have shown that the results can be extended from the primary cancers to their liver metastases, as the best panels diagnose and differentiate between pancreatic adenocarcinoma liver metastases and breast invasive carcinoma liver metastases with a sensitivity and specificity of 83.3-100% and a diagnostic accuracy of 86.8-91.9%. Moreover, the panels could detect hypermethylation of selected regions in the cell-free DNA of patients with liver metastases. At the same time, these were unmethylated in the cell-free DNA of healthy donors, confirming their applicability for liquid biopsies.
Collapse
Affiliation(s)
- Tina Draškovič
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Liu Y, Yin Z, Wang Y, Chen H. Exploration and validation of key genes associated with early lymph node metastasis in thyroid carcinoma using weighted gene co-expression network analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1247709. [PMID: 38144565 PMCID: PMC10739373 DOI: 10.3389/fendo.2023.1247709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background Thyroid carcinoma (THCA), the most common endocrine neoplasm, typically exhibits an indolent behavior. However, in some instances, lymph node metastasis (LNM) may occur in the early stages, with the underlying mechanisms not yet fully understood. Materials and methods LNM potential was defined as the tumor's capability to metastasize to lymph nodes at an early stage, even when the tumor volume is small. We performed differential expression analysis using the 'Limma' R package and conducted enrichment analyses using the Metascape tool. Co-expression networks were established using the 'WGCNA' R package, with the soft threshold power determined by the 'pickSoftThreshold' algorithm. For unsupervised clustering, we utilized the 'ConsensusCluster Plus' R package. To determine the topological features and degree centralities of each node (protein) within the Protein-Protein Interaction (PPI) network, we used the CytoNCA plugin integrated with the Cytoscape tool. Immune cell infiltration was assessed using the Immune Cell Abundance Identifier (ImmuCellAI) database. We applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM), and Random Forest (RF) algorithms individually, with the 'glmnet,' 'e1071,' and 'randomForest' R packages, respectively. Ridge regression was performed using the 'oncoPredict' algorithm, and all the predictions were based on data from the Genomics of Drug Sensitivity in Cancer (GDSC) database. To ascertain the protein expression levels and subcellular localization of genes, we consulted the Human Protein Atlas (HPA) database. Molecular docking was carried out using the mcule 1-click Docking server online. Experimental validation of gene and protein expression levels was conducted through Real-Time Quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) assays. Results Through WGCNA and PPI network analysis, we identified twelve hub genes as the most relevant to LNM potential from these two modules. These 12 hub genes displayed differential expression in THCA and exhibited significant correlations with the downregulation of neutrophil infiltration, as well as the upregulation of dendritic cell and macrophage infiltration, along with activation of the EMT pathway in THCA. We propose a novel molecular classification approach and provide an online web-based nomogram for evaluating the LNM potential of THCA (http://www.empowerstats.net/pmodel/?m=17617_LNM). Machine learning algorithms have identified ERBB3 as the most critical gene associated with LNM potential in THCA. ERBB3 exhibits high expression in patients with THCA who have experienced LNM or have advanced-stage disease. The differential methylation levels partially explain this differential expression of ERBB3. ROC analysis has identified ERBB3 as a diagnostic marker for THCA (AUC=0.89), THCA with high LNM potential (AUC=0.75), and lymph nodes with tumor metastasis (AUC=0.86). We have presented a comprehensive review of endocrine disruptor chemical (EDC) exposures, environmental toxins, and pharmacological agents that may potentially impact LNM potential. Molecular docking revealed a docking score of -10.1 kcal/mol for Lapatinib and ERBB3, indicating a strong binding affinity. Conclusion In conclusion, our study, utilizing bioinformatics analysis techniques, identified gene modules and hub genes influencing LNM potential in THCA patients. ERBB3 was identified as a key gene with therapeutic implications. We have also developed a novel molecular classification approach and a user-friendly web-based nomogram tool for assessing LNM potential. These findings pave the way for investigations into the mechanisms underlying differences in LNM potential and provide guidance for personalized clinical treatment plans.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| | - Zhenglang Yin
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haohao Chen
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| |
Collapse
|
8
|
Chen Y, Zhao Z, Guo S, Li Y, Yin H, Tian L, Cheng G, Li Y. Red Rice Seed Coat Targeting SPHK2 Ameliorated Alcoholic Liver Disease via Restored Intestinal Barrier and Improved Gut Microbiota in Mice. Nutrients 2023; 15:4176. [PMID: 37836459 PMCID: PMC10574211 DOI: 10.3390/nu15194176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic liver disease (ALD), leading to the most common chronic liver diseases, is increasingly emerging as a global health problem, which is intensifying the need to develop novel treatments. Herein, our work aimed to estimate the therapeutic efficacy of red rice (Oryza sativa L.) seed coat on ALD and further uncover the underlying mechanisms. Red rice seed coat extract (RRA) was obtained with citric acid-ethanol and analyzed via a widely targeted components approach. The potential targets of RRA to ALD were predicted by bioinformatics analysis. Drunken behavior, histopathological examination, liver function, gut microbiota composition and intestinal barrier integrity were used to assess the effects of RRA (RRAH, 600 mg/kg·body weight; RRAL, 200 mg/kg·body weight) on ALD. Oxidative stress, inflammation, apoptosis associated factors and signaling pathways were measured by corresponding kits, Western blot and immunofluorescence staining. In ALD model mice, RRA treatment increased sphingosine kinase 2 (SPHK2) and sphingosine-1-phosphate (S1P) levels, improved gut microbiota composition, restored intestinal barrier, decreased lipopolysaccharide (LPS) levels in plasma and the liver, cut down Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-κB) pathways, alleviated liver pathological injury and oxidative stress, attenuated inflammation and apoptosis and enhanced liver function. To sum up, RRA targeting SPHK2 can ameliorate ALD by repairing intestinal barrier damage and reducing liver LPS level via the TLR4/NF-κB pathway and intestinal microbiota, revealing that red rice seed coat holds potential as a functional food for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Yuxu Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiye Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shancheng Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaxian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haiaolong Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- School of Basic Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Wang C, Shen Y, Ma Y. Bifidobacterium infantis-Mediated Herpes Simplex Virus-TK/Ganciclovir Treatment Inhibits Cancer Metastasis in Mouse Model. Int J Mol Sci 2023; 24:11721. [PMID: 37511481 PMCID: PMC10380465 DOI: 10.3390/ijms241411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies have found that Bifidobacterium infantis-mediated herpes simplex virus-TK/ganciclovir (BF-TK/GCV) reduces the expression of VEGF and CD146, implying tumor metastasis inhibition. However, the mechanism by which BF-TK/GCV inhibits tumor metastasis is not fully studied. Here, we comprehensively identified and quantified protein expression profiling for the first time in gastric cancer (GC) cells MKN-45 upon BF-TK/GCV treatment using quantitative proteomics. A total of 159 and 72 differential expression proteins (DEPs) were significantly changed in the BF-TK/GCV/BF-TK and BF-TK/GCV/BF/GCV comparative analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis enriched some metastasis-related pathways such as gap junction and cell adhesion molecules pathways. Moreover, the transwell assay proved that BF-TK/GCV inhibited the invasion and migration of tumor cells. Furthermore, immunohistochemistry (IHC) demonstrated that BF-TK/GCV reduced the expression of HIF-1α, mTOR, NF-κB1-p105, VCAM1, MMP13, CXCL12, ATG16, and CEBPB, which were associated with tumor metastasis. In summary, BF-TK/GCV inhibited tumor metastasis, which deepened and expanded the understanding of the antitumor mechanism of BF-TK/GCV.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Wang Z, Yan S, Yang Y, Luo X, Wang X, Tang K, Zhao J, He Y, Bian L. Identifying M1-like macrophage related genes for prognosis prediction in lung adenocarcinoma based on a gene co-expression network. Heliyon 2023; 9:e12798. [PMID: 36711278 PMCID: PMC9876840 DOI: 10.1016/j.heliyon.2023.e12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Macrophages are one of the most important players in the tumor microenvironment. But the contribution of macrophages to lung adenocarcinoma (LUAD) is still controversial. The current study aimed to display an immune landscape to clarify the function of macrophages and detect prognostic hub genes in LUAD. The transcriptome data were adopted to screen differently expressed genes (DEGs) in The Cancer Genome Atlas database (TCGA). The cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to reveal the immune landscape. Weighted gene co-expression network analysis (WGCNA) analysis was performed to identify the hub module associated with macrophages. Function Enrichment analysis was conducted on hub module genes. Moreover, univariate and multivariate Cox regression analyses were performed to identify prognostic hub genes. Kaplan-Meier (KM) and Time-dependent receiver operating characteristic (ROC) curves were plotted to assess the prognostic capacity of the four prognostic hub genes. The GES1196959 dataset from the Gene Expression Omnibus (GEO) database was downloaded to verify the differential expression of the 4 prognostic hub genes.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Basic Medicine, Kunming Medical University, Kunming, 650500, China,Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Shan Yan
- Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650031, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Xuan Luo
- School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Kun Tang
- Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Juan Zhao
- School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yongwen He
- School of Stomatology, Kunming Medical University, Kunming, 650021, China,Qujing Medical College, Qujing, 655099, China,Corresponding author.School of Stomatology, Kunming Medical University, Kunming, 650021, China.
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China,Corresponding author.
| |
Collapse
|
11
|
Mao Y, Cai F, Jiang T, Zhu X. Identification Invasion-Related Long Non-Coding RNAs in Lung Adenocarcinoma and Analysis of Competitive Endogenous RNA Regulatory Networks. Int J Gen Med 2023; 16:1817-1831. [PMID: 37213476 PMCID: PMC10198273 DOI: 10.2147/ijgm.s407266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Background Cell invasion plays a vital role in cancer development and progression. Aberrant expression of long non-coding RNAs (lncRNAs) is also critical in carcinogenesis. However, the prognostic value of invasion-related lncRNAs in lung adenocarcinoma (LUAD) remains unknown. Methods Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and microRNAs (DEmiRNAs) were between LUAD and control samples. Pearson correlation analyses were performed to screen for invasion-related DElncRNAs (DEIRLs). Univariate and multivariate Cox regression algorithms were applied to identify key genes and construct the risk score model, which was evaluated using receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA) was used to explore the underlying pathways of the risk model. Moreover, an invasion-related competitive endogenous RNA (ceRNA) regulatory network was constructed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of prognostic lncRNAs in the LUAD and control samples. Results A total of 45 DElncRNAs were identified as DEIRLs. RP3-525N10.2, LINC00857, EP300-AS1, PDZRN3-AS1, and RP5-1102E8.3 were potential prognostic lncRNAs, the expression of which was verified by RT-qPCR in LUAD samples. Both the risk score model and nomogram used the prognostic lncRNAs. ROC curves showed the risk score model had moderate accuracy and the nomogram had high accuracy in predicting patient prognosis. GSEA results indicated that the risk score model was associated with many biological processes and pathways relevant to cell proliferation. A ceRNA regulatory network was constructed in which PDZRN3-miR-96-5p-CPEB1, EP300-AS1-miR-93-5p-CORO2B, and RP3-525N10.2-miR-130a-5p-GHR may be key invasion-related regulatory pathways in LUAD. Conclusion Our study identified five novel invasion-related prognostic lncRNAs (RP3-525N10.2, LINC00857, EP300-AS1, PDZRN3-AS1, and RP5-1102E8.3) and established an accurate model for predicting the prognosis of patients with LUAD. These findings enrich our understanding of the relationships between cell invasion, lncRNAs, and LUAD and may provide novel treatment directions.
Collapse
Affiliation(s)
- Yuze Mao
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| | - Fangyu Cai
- Department of Thoracic Surgery, Beidahuang Industry Group General Hospital, Harbin, Heilongjiang, 150088, People’s Republic of China
| | - Tengjiao Jiang
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| | - Xiaofeng Zhu
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
- Correspondence: Xiaofeng Zhu, Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China, Tel +86-13845456700, Email
| |
Collapse
|
12
|
Usman M, Hameed Y, Ahmad M, Iqbal MJ, Maryam A, Mazhar A, Naz S, Tanveer R, Saeed H, Bint-E-Fatima, Ashraf A, Hadi A, Hameed Z, Tariq E, Aslam AS. SHMT2 is Associated with Tumor Purity, CD8+ T Immune Cells Infiltration, and a Novel Therapeutic Target in Four Different Human Cancers. Curr Mol Med 2023; 23:161-176. [PMID: 35023455 DOI: 10.2174/1566524022666220112142409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study was launched to identify the SHMT2 associated Human Cancer subtypes. BACKGROUND Cancer is the 2nd leading cause of death worldwide. Previous reports revealed the limited involvement of SHMT2 in human cancer. In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. OBJECTIVE We aim to comprehensively analyze the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Earlier, limited knowledge exists in the medical literature regarding the involvement of Serine Hydroxymethyltransferase 2 (SHMT2) in human cancer. METHODS In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Pan-cancer transcriptional expression profiling of SHMT2 was done using UALCAN while further validation was performed using GENT2. For translational profiling of SHMT2, we utilized Human Protein Atlas (HPA) platform. Promoter methylation, genetic alteration, and copy number variations (CNVs) profiles were analyzed through MEXPRESS and cBioPortal. Survival analysis was carried out through Kaplan-Meier (KM) plotter platform. Pathway enrichment analysis of SHMT2 was performed using DAVID, while the gene-drug network was drawn through CTD and Cytoscape. Furthermore, in the tumor microenvironment, a correlation between tumor purity, CD8+ T immune cells infiltration, and SHMT2 expression was accessed using TIMER. RESULTS SHMT2 was found overexpressed in 24 different subtypes of human cancers and its overexpression was significantly associated with the reduced Overall survival (OS) and Relapse-free survival durations of Breast cancer (BRCA), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), and Lung adenocarcinoma (LUAD) patients. This implies that SHMT2 plays a significant role in the development and progression of these cancers. We further noticed that SHMT2 was also up-regulated in BRCA, KIRP, LIHC, and LUAD patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of SHMT2 enriched genes in five diverse pathways. Furthermore, we also explored some interesting correlations between SHMT2 expression and promoter methylation, genetic alterations, CNVs, tumor purity, and CD8+ T immune cell infiltrates. CONCLUSION Our results suggested that overexpressed SHMT2 is correlated with the reduced OS and RFS of the BRCA, KIRP, LIHC, and LUAD patients and can be a potential diagnostic and prognostic biomarker for these cancers.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mukhtiar Ahmad
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Aghna Maryam
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Afshan Mazhar
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Saima Naz
- Department of zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Rida Tanveer
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Saeed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bint-E-Fatima
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Aneela Ashraf
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Alishba Hadi
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Hameed
- Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Islamabad, Pakistan
| | - Eman Tariq
- Department of Chemistry, The University of Swabi, Swabi, Pakistan
| | - Alia Sumyya Aslam
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
13
|
Ahmed F, Khan AA, Ansari HR, Haque A. A Systems Biology and LASSO-Based Approach to Decipher the Transcriptome-Interactome Signature for Predicting Non-Small Cell Lung Cancer. BIOLOGY 2022; 11:biology11121752. [PMID: 36552262 PMCID: PMC9774707 DOI: 10.3390/biology11121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The lack of precise molecular signatures limits the early diagnosis of non-small cell lung cancer (NSCLC). The present study used gene expression data and interaction networks to develop a highly accurate model with the least absolute shrinkage and selection operator (LASSO) for predicting NSCLC. The differentially expressed genes (DEGs) were identified in NSCLC compared with normal tissues using TCGA and GTEx data. A biological network was constructed using DEGs, and the top 20 upregulated and 20 downregulated hub genes were identified. These hub genes were used to identify signature genes with penalized logistic regression using the LASSO to predict NSCLC. Our model’s development involved the following steps: (i) the dataset was divided into 80% for training (TR) and 20% for testing (TD1); (ii) a LASSO logistic regression analysis was performed on the TR with 10-fold cross-validation and identified a combination of 17 genes as NSCLC predictors, which were used further for development of the LASSO model. The model’s performance was assessed on the TD1 dataset and achieved an accuracy and an area under the curve of the receiver operating characteristics (AUC-ROC) of 0.986 and 0.998, respectively. Furthermore, the performance of the LASSO model was evaluated using three independent NSCLC test datasets (GSE18842, GSE27262, GSE19804) and achieved high accuracy, with an AUC-ROC of >0.99, >0.99, and 0.95, respectively. Based on this study, a web application called NSCLCpred was developed to predict NSCLC.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hifzur Rahman Ansari
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Singharajkomron N, Yodsurang V, Seephan S, Kungsukool S, Petchjorm S, Maneeganjanasing N, Promboon W, Dangwilailuck W, Pongrakhananon V. Evaluating the Expression and Prognostic Value of Genes Encoding Microtubule-Associated Proteins in Lung Cancer. Int J Mol Sci 2022; 23:ijms232314724. [PMID: 36499051 PMCID: PMC9738182 DOI: 10.3390/ijms232314724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Microtubule-associated proteins (MAPs) play essential roles in cancer development. This study aimed to identify transcriptomic biomarkers among MAP genes for the diagnosis and prognosis of lung cancer by analyzing differential gene expressions and correlations with tumor progression. Gene expression data of patients with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) from the Cancer Genome Atlas (TCGA) database were used to identify differentially expressed MAP genes (DEMGs). Their prognostic value was evaluated by Kaplan-Meier and Cox regression analysis. Moreover, the relationships between alterations in lung cancer hallmark genes and the expression levels of DEMGs were investigated. The candidate biomarker genes were validated using three independent datasets from the Gene Expression Omnibus (GEO) database and by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on clinical samples. A total of 88 DEMGs were identified from TCGA data. The 20 that showed the highest differential expression were subjected to association analysis with hallmark genes. Genetic alterations in TP53, EGFR, PTEN, NTRK1, and PIK3CA correlated with the expression of most of these DEMGs. Of these, six candidates-NUF2, KIF4A, KIF18B, DLGAP5, NEK2, and LRRK2-were significantly differentially expressed and correlated with the overall survival (OS) of the patients. The mRNA expression profiles of these candidates were consistently verified using three GEO datasets and qRT-PCR on patient lung tissues. The expression levels of NUF2, KIF4A, KIF18B, DLGAP5, NEK2, and LRRK2 can serve as diagnostic biomarkers for LUAD and LUSC. Moreover, the first five can serve as prognostic biomarkers for LUAD, while LRRK2 can be a prognostic biomarker for LUSC. Our research describes the novel role and potential application of MAP-encoding genes in clinical practice.
Collapse
Affiliation(s)
- Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varalee Yodsurang
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy, Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthasinee Seephan
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sakkarin Kungsukool
- Respiratory Medicine Department, Central Chest Institute of Thailand, Muang District, Nonthaburi 11000, Thailand
| | - Supinda Petchjorm
- Division of Anatomical Pathology, Central Chest Institute of Thailand, Muang District, Nonthaburi 11000, Thailand
| | - Nara Maneeganjanasing
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warunyu Promboon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wadsana Dangwilailuck
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy, Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8325; Fax: +662-218-8340
| |
Collapse
|
15
|
Qiu L, Tao A, Liu F, Ge X, Li C. Potential prognostic value of a eight ferroptosis-related lncRNAs model and the correlative immune activity in oral squamous cell carcinoma. BMC Genom Data 2022; 23:80. [PMID: 36384476 PMCID: PMC9667687 DOI: 10.1186/s12863-022-01097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background To investigate the prognostic value of ferroptosis-related long noncoding RNAs (lncRNAs) in oral squamous cell carcinoma (OSCC) and to construct a prognostic risk and immune activity model. Methods We obtained clinical and RNA-seq information on OSCC patient data in The Cancer Genome Atlas (TCGA) Genome Data Sharing (GDC) portal. Through a combination of a differential analysis, Pearson correlation analysis and Cox regression analysis, ferroptosis-related lncRNAs were identified, and a prognostic model was established based on these ferroptosis-related lncRNAs. The accuracy of the model was evaluated via analyses based on survival curves, receiver operating characteristic (ROC) curves, and clinical decision curve analysis (DCA). Univariate Cox and multivariate Cox regression analyses were performed to evaluate independent prognostic factors. Then, the infiltration and functional enrichment of immune cells in high- and low-risk groups were compared. Finally, certain small-molecule drugs that potentially target OSCC were predicted via use of the L1000FWD database. Results The prognostic model included 8 ferroptosis-related lncRNAs (FIRRE, LINC01305, AC099850.3, AL512274.1, AC090246.1, MIAT, AC079921.2 and LINC00524). The area under the ROC curve (AUC) was 0.726. The DCA revealed that the risk score based on the prognostic model was a better prognostic indicator than other clinical indicators. The multivariate Cox regression analysis showed that the risk score was an independent prognostic factor for OSCC. There were differences in immune cell infiltration, immune functions, m6A-related gene expression levels, and signal pathway enrichment between the high- and low-risk groups. Subsequently, several small-molecule drugs were predicted for use against differentially expressed ferroptosis-related genes in OSCC. Conclusions We constructed a new prognostic model of OSCC based on ferroptosis-related lncRNAs. The model is valuable for prognostic prediction and immune evaluation, laying a foundation for the study of ferroptosis-related lncRNAs in OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01097-z.
Collapse
|
16
|
Wang Y, Huang X, Xian B, Jiang H, Zhou T, Chen S, Wen F, Pei J. Machine learning and bioinformatics-based insights into the potential targets of saponins in Paris polyphylla smith against non-small cell lung cancer. Front Genet 2022; 13:1005896. [PMID: 36386821 PMCID: PMC9649596 DOI: 10.3389/fgene.2022.1005896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer has the highest mortality rate among cancers worldwide, and non-small cell lung cancer (NSCLC) is the major lethal factor. Saponins in Paris polyphylla smith exhibit antitumor activity against non-small cell lung cancer, but their targets are not fully understood. Methods: In this study, we used differential gene analysis, lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) to screen potential key genes for NSCLC by using relevant datasets from the GEO database. The accuracy of the signature genes was verified by using ROC curves and gene expression values. Screening of potential active ingredients for the treatment of NSCLC by molecular docking of the reported active ingredients of saponins in Paris polyphylla Smith with the screened signature genes. The activity of the screened components and their effects on key genes expression were further validated by CCK-8, flow cytometry (apoptosis and cycling) and qPCR. Results: 204 differential genes and two key genes (RHEBL1, RNPC3) stood out in the bioinformatics analysis. Overall survival (OS), First-progression survival (FP) and post-progression survival (PPS) analysis revealed that low expression of RHEBL1 and high expression of RNPC3 indicated good prognosis. In addition, Polyphyllin VI(PPVI) and Protodioscin (Prot) effectively inhibited the proliferation of non-small cell lung cancer cell line with IC50 of 4.46 μM ± 0.69 μM and 8.09 μM ± 0.67μM, respectively. The number of apoptotic cells increased significantly with increasing concentrations of PPVI and Prot. Prot induces G1/G0 phase cell cycle arrest and PPVI induces G2/M phase cell cycle arrest. After PPVI and Prot acted on this cell line for 48 h, the expression of RHEBL1 and RNPC3 was found to be consistent with the results of bioinformatics analysis. Conclusion: This study identified two potential key genes (RHEBL1 and RNPC3) in NSCLC. Additionally, PPVI and Prot may act on RHEBL1 and RNPC3 to affect NSCLC. Our findings provide a reference for clinical treatment of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Pei
- *Correspondence: Feiyan Wen, ; Jin Pei,
| |
Collapse
|
17
|
Ji L, Xu F, Zhang J, Song T, Chen W, Yin X, Wang Q, Chen X, Li X, Guo M, Chen Z. ADRB2 expression predicts the clinical outcomes and is associated with immune cells infiltration in lung adenocarcinoma. Sci Rep 2022; 12:15994. [PMID: 36163241 PMCID: PMC9512930 DOI: 10.1038/s41598-022-19991-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
The gene encoding beta2-adrenergic receptor (β2-AR), adrenoceptor beta 2 (ADRB2), has been reported to closely associated with various cancers. However, its role in lung adenocarcinoma (LUAD) remains controversial. This research shed light on the prognostic value of ADRB2 in LUAD and further explored its association with immune cell infiltration. ADRB2 was significantly decreased in LUAD. ADRB2 expression in LUAD was significantly correlated with gender, smoking status, T classification, and pathologic stage. Patients in the low ADRB2 expression group presented with significantly poorer overall survival (OS) and disease-specific survival (DSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) results showed that ADRB2 participates in immune response. The expression of ADRB2 was positively correlated with the infiltration level of most immune cells. Notably, ADRB2 is involved in LUAD progression partly by regulating the immune microenvironment, which may potentially serve as a significant prognostic biomarker as well as a potential drug target.
Collapse
Affiliation(s)
- Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi Yin
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingqing Wang
- Department of Record Room, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China, Jinan
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Li
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Guo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zetao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China. .,Subject of Integrated Chinese and Western Medicine , Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
18
|
Wang F, Du H, Li B, Luo Z, Zhu L. Unlocking phenotypic plasticity provides novel insights for immunity and personalized therapy in lung adenocarcinoma. Front Genet 2022; 13:941567. [PMID: 36147496 PMCID: PMC9486167 DOI: 10.3389/fgene.2022.941567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Unlocking phenotype plasticity (UPP) has been shown to have an essential role in the mechanism of tumor development and therapeutic response. However, the clinical significance of unlocking phenotypic plasticity in patients with lung adenocarcinoma is unclear. This study aimed to explore the roles of unlocking phenotypic plasticity in immune status, prognosis, and treatment in patients with lung adenocarcinoma (LUAD). Methods: Differentially expressed genes (DEGs) and clinical information of UPP were selected from the cancer genome atlas (TCGA) database, and the GO, KEGG enrichment analyses were performed. The independent prognostic genes were determined by univariate and multivariate Cox regression, and the UPP signature score was constructed. Patients with LUAD were divided into high- and low-risk groups according to the median of score, and the immunocytes and immune function, the gene mutation, and drug sensitivities between the two groups were analyzed. Finally, the results were validated in the GEO database. Results: Thirty-nine significantly DEGs were determined. Enrichment analysis showed that UPP-related genes were related to protein polysaccharides and drug resistance. The prognostic results showed that the survival of patients in the high-risk group was poorer than that in the low-risk group (p < 0.001). In the high- and low-risk groups, single nucleotide polymorphism (SNP) and C > T are the most common dissent mutations. The contents of immune cells were significantly different between high- and low-risk groups. And the immune functions were also significantly different, indicating that UPP affects the immunity in LUAD. The results from TCGA were validated in the GEO. Conclusion: Our research has proposed a new and reliable prognosis indicator to predict the overall survival. Evaluation of the UPP could help the clinician to predict therapeutic responses and make individualized treatment plans in patients with LUAD.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Hongjuan Du
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Bibo Li
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Lei Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lei Zhu,
| |
Collapse
|
19
|
Six MicroRNA Prognostic Models for Overall Survival of Lung Adenocarcinoma. Genet Res (Camb) 2022; 2022:5955052. [PMID: 36101742 PMCID: PMC9440840 DOI: 10.1155/2022/5955052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose of this study is to screen for microRNAs (miRNAs) associated with the prognosis of lung adenocarcinoma (LUAD) and to explore its prognosis and effects on the tumor microenvironment in patients with LUAD. Methods Gene expression data, miRNA expression data, and clinical data for two different databases, TCGA-LUAD and CPTAC-3 LUAD, were downloaded from the GDC database. The miRNA prognosis of LUAD was filtered by the Cox proportional hazard model and the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The performance of the model was validated by time-dependent receiver operating characteristics (ROC) curves. Possible biological processes associated with the miRNAs target gene were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the prognostic model was scored by risk, divided into high- and low-risk groups by median, and the differences in the immersion level of 21 immune cells in the high- and low-risk groups were assessed. To gain a deeper understanding of the underlying mechanism behind the model, the two most important miRNAs in the model, miR-195-3p and miR-5571-5p, were selected for HPA database validation and ceRNA network construction. Results Of the 209 variance expressions identified in the screening analysis, 145 were upregulated and 64 were downregulated by miRNAs. The prognostic models of six miRNA genes were obtained: miR-195-3p, miR-5571-5p, miR-584-3p, miR-494-3p, miR-4664-3p, and miR-1293. These six genes were significantly associated with survival rates in LUAD patients. In particular, miR-1293, miR-195-3p, and miR-5571-5p are highly correlated with OS. The higher expression of miR-195-3p and miR-5571-5p, the better survival of LUAD OS is, and these two miRNA expressions contribute the most to the model. Finally, after sorting the risk scores calculated from low to high using the prognostic model, the patients with higher scores had shorter survival time and higher frequency of death, and there were significant differences in the immersion levels of 21 immune cells in the high- and low-risk groups. ceRNA network analysis found that TM9SF3 was regulated by miR-195-3p and was highly expressed in the tissues of LUAD patients, and the prognosis of the patients was poor. Conclusions miR-195-3p, miR-5571-5p, miR-584-3p, miR-494-3p, miR-4664-3p, and miR-1293 may be used as new biomarkers for prognosis prediction of LUAD. Our results also identified a lncRNA MEG3/miR-195-3p/RAB1A/TM9SF3 regulatory axis, which may also play an important role in the progression of LUAD. Further study needs to be conducted to verify this result.
Collapse
|
20
|
Zhang M, Li J, Lin W, Qi L, Yao C, Zheng Z, Chen C, Duan S, Qi Y. EPAS1 Promoter Hypermethylation is a Diagnostic and Prognostic Biomarker for Non-Small Cell Lung Cancer. Genet Test Mol Biomarkers 2022; 26:360-374. [PMID: 35920832 DOI: 10.1089/gtmb.2021.0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The importance of promoter methylation in non-small cell lung cancers (NSCLCs) remains to be understood. Thus, we aimed to determine the diagnostic and prognostic value of methylation of the endothelial Per-Arnt-Sim (PAS) domain-containing protein 1 (EPAS1) promoter in NSCLC. Materials and Methods: EPAS1 promoter methylation levels were quantitated by a methylation-specific polymerase chain reaction. Furthermore, we evaluated the expression, promoter methylation, prognostic value, and impact on immune cell infiltration of EPAS1 by analyzing TCGA database or by web-based bioinformatics tools such as GEPIA, UALCAN, and MethSurv. Results: Our results demonstrated that promoter methylation of EPAS1 downregulated its expression in NSCLC tissues. Additionally, an area under the curve value of 0.772 indicated that methylation of the EPAS1 promoter is a potential diagnostic marker for NSCLC. Kaplan-Meier analysis demonstrated that high methylation levels of CpG sites in the EPAS1 promoter were indicative of worse overall survival (OS). Furthermore, EPAS1 expression levels were strongly correlated with infiltration of several types of immune cells, for instance, γδ T cells, T follicular helper cells, CD8+ T cells, and CD4+ T cells. Conclusions: Collectively, our findings demonstrated that methylation of the EPAS1 promoter is a promising prognostic biomarker for NSCLC and EPAS1 potentially plays an important role in immune cell infiltration in NSCLC.
Collapse
Affiliation(s)
- Mingfang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Fujian Provincial Maternity Hospital, Fuzhou, China
| | - Weibin Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Caiyun Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhonghua Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chujia Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
22
|
Zhao R, Ding D, Ding Y, Han R, Wang X, Zhu C. Predicting Differences in Treatment Response and Survival Time of Lung Adenocarcinoma Patients Based on a Prognostic Risk Model of Glycolysis-Related Genes. Front Genet 2022; 13:828543. [PMID: 35692818 PMCID: PMC9174756 DOI: 10.3389/fgene.2022.828543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Multiple factors influence the survival of patients with lung adenocarcinoma (LUAD). Specifically, the therapeutic outcomes of treatments and the probability of recurrence of the disease differ among patients with the same stage of LUAD. Therefore, effective prognostic predictors need to be identified. Methods: Based on the tumor mutation burden (TMB) data obtained from The Cancer Genome Atlas (TCGA) database, LUAD patients were divided into high and low TMB groups, and differentially expressed glycolysis-related genes between the two groups were screened. The least absolute shrinkage and selection operator (LASSO) and Cox regression were used to obtain a prognostic model. A receiver operating characteristic (ROC) curve and a calibration curve were generated to evaluate the nomogram that was constructed based on clinicopathological characteristics and the risk score. Two data sets (GSE68465 and GSE11969) from the Gene Expression Omnibus (GEO) were used to verify the prognostic performance of the gene. Furthermore, differences in immune cell distribution, immune-related molecules, and drug susceptibility were assessed for their relationship with the risk score. Results: We constructed a 5-gene signature (FKBP4, HMMR, B4GALT1, SLC2A1, STC1) capable of dividing patients into two risk groups. There was a significant difference in overall survival (OS) times between the high-risk group and the low-risk group (p < 0.001), with the low-risk group having a better survival outcome. Through multivariate Cox analysis, the risk score was confirmed to be an independent prognostic factor (HR = 2.709, 95% CI = 1.981–3.705, p < 0.001), and the ROC curve and nomogram exhibited accurate prediction performance. Validation of the data obtained in the GEO database yielded similar results. Furthermore, there were significant differences in sensitivity to immunotherapy, cisplatin, paclitaxel, gemcitabine, docetaxel, gefitinib, and erlotinib between the low-risk and high-risk groups. Conclusion: Our results reveal that glycolysis-related genes are feasible predictors of survival and the treatment response of patients with LUAD.
Collapse
Affiliation(s)
- Rongchang Zhao
- Department of Oncology, Taixing People’s Hospital Affiliated to Bengbu Medical College, Taixing, China
- *Correspondence: Rongchang Zhao,
| | - Dan Ding
- Department of Intensive Care Unit, Taixing People’s Hospital Affiliated to Bengbu Medical College, Taixing, China
| | - Yan Ding
- Department of Oncology, Taixing People’s Hospital Affiliated to Bengbu Medical College, Taixing, China
| | - Rongbo Han
- Department of Oncology, Taixing People’s Hospital Affiliated to Bengbu Medical College, Taixing, China
| | - Xiujuan Wang
- Department of Intensive Care Unit, Taixing People’s Hospital Affiliated to Bengbu Medical College, Taixing, China
| | - Chunrong Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Zhang Y, Liu Q, Cui M, Wang M, Hua S, Gao J, Liao Q. Comprehensive Analysis of Expression, Prognostic Value, and Immune Infiltration for Ubiquitination-Related FBXOs in Pancreatic Ductal Adenocarcinoma. Front Immunol 2022; 12:774435. [PMID: 35046938 PMCID: PMC8761623 DOI: 10.3389/fimmu.2021.774435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory human malignancies. F-box only proteins (FBXO) are the core components of SKP1-cullin 1-F-box E3 ubiquitin ligase, which have been reported to play crucial roles in tumor initiation and progression via ubiquitination-mediated proteasomal degradation. However, the clinical implications and biological functions of FBXOs in PDAC have not been fully clarified. Herein we perform a comprehensive analysis for the clinical values and functional roles of FBXOs in PDAC using different public databases. We found that FBXO1 (CCNF), FBXO20 (LMO7), FBXO22, FBXO28, FBXO32, and FBXO45 (designated six-FBXOs) were robustly upregulated in PDAC tissues, which predicted an adverse prognosis of PDAC patients. There was a significant correlation between the expression levels of six-FBXOs and the clinicopathological features in PDAC. The transcriptional levels of six-FBXOs were subjected to the influence of promoter methylation levels. There were more than 40% genetic alterations and mutations of six-FBXOs, which affected the clinical outcome of PDAC patients. Furthermore, the expression of six-FBXOs was associated with immune infiltrations and activated status, including B cells, CD8+ T cells, CD4+ T cells, NK cells, macrophages, and dendritic cells. The functional prediction revealed that the six-FBXOs were involved in ubiquitination-related pathways and other vital signaling pathways, such as p53, PI3K/Akt, and Hippo pathway. Therefore, six-FBXOs are the promising prognostic biomarkers or potential targets for PDAC diagnosis and treatment.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Surong Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Li Y, Yu X, Zhang Y, Wang X, Zhao L, Liu D, Zhao G, Gao X, Fu J, Zang A, Jia Y. Identification of a novel prognosis-associated ceRNA network in lung adenocarcinoma via bioinformatics analysis. Biomed Eng Online 2021; 20:117. [PMID: 34819106 PMCID: PMC8611860 DOI: 10.1186/s12938-021-00952-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of nonsmall-cell lung cancer (NSCLC) and has a high incidence rate and mortality. The survival of LUAD patients has increased with the development of targeted therapeutics, but the prognosis of these patients is still poor. Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of LUAD. The purpose of this study was to identify novel abnormally regulated lncRNA–microRNA (miRNA)–messenger RNA (mRNA) competing endogenous RNA (ceRNA) networks that may suggest new therapeutic targets for LUAD or relate to LUAD prognosis. Methods We used the SBC human ceRNA array V1.0 to screen for differentially expressed (DE) lncRNAs and mRNAs in four paired LUAD samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate the DE lncRNAs and mRNAs. R bioinformatics packages, The Cancer Genome Atlas (TCGA) LUAD database, and Kaplan–Meier (KM) survival analysis tools were used to validate the microarray data and construct the lncRNA–miRNA–mRNA ceRNA regulatory network. Then, quantitative real-time PCR (qRT-PCR) was used to validate the DE lncRNAs in 7 LUAD cell lines. Results A total of 2819 DE lncRNAs and 2396 DE mRNAs (P < 0.05 and fold change ≥ 2 or ≤ 0.5) were identified in four paired LUAD tissue samples. In total, 255 of the DE lncRNAs were also identified in TCGA. The GO and KEGG analysis results suggested that the DE genes were most enriched in angiogenesis and cell proliferation, and were closely related to human cancers. Moreover, the differential expression of ENST00000609697, ENST00000602992, and NR_024321 was consistent with the microarray data, as determined by qRT-PCR validation in 7 LUAD cell lines; however, only ENST00000609697 was associated with the overall survival of LUAD patients (log-rank P = 0.029). Finally, through analysis of ENST00000609697 target genes, we identified the ENST00000609697–hsa-miR-6791-5p–RASL12 ceRNA network, which may play a tumor-suppressive role in LUAD. Conclusion ENST00000609697 was abnormally expressed in LUAD. Furthermore, downregulation of ENST00000609697 and its target gene RASL12 was associated with poor prognosis in LUAD. The ENST00000609697–hsa-miR-6791-5p–RASL12 axis may play a tumor-suppressive role. These results suggest new potential prognostic and therapeutic biomarkers for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-021-00952-x.
Collapse
Affiliation(s)
- Yumiao Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Xiaoxue Yu
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Yuhao Zhang
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Xiaofang Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Linshan Zhao
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Dan Liu
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Guofa Zhao
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Xiangpeng Gao
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Jiejun Fu
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China.
| |
Collapse
|
25
|
Identification of SLITRK6 as a Novel Biomarker in hepatocellular carcinoma by comprehensive bioinformatic analysis. Biochem Biophys Rep 2021; 28:101157. [PMID: 34754951 PMCID: PMC8564567 DOI: 10.1016/j.bbrep.2021.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the adult liver and morbidity are increasing in recent years, however, there is still no effective strategy to prevent and diagnose HCC. Therefore, it is urgent to research the effective biomarker to predict clinical outcomes of HCC tumorigenesis. In the current study, differentially expressed genes in HCC and normal tissues were investigated using the Gene Expression Omnibus (GEO) dataset GSE144269 and The Cancer Genome Atlas (TCGA). Gene differential expression analysis and weighted correlation network analysis (WGCNA) methods were used to identify nine and 16 key gene modules from the GEO dataset and TCGA dataset, respectively, in which the green module in the GEO dataset and magenta module in TCGA were significantly correlated with HCC occurrence. Third, the enrichment score of gene function annotation results showed that these two key modules focus on the positive regulation of inflammatory response and cell differentiation, etc. Besides, PPI network analysis, mutation analysis, and survival analysis found that SLITRK6 had high connectivity, and its mutation significantly impacted overall survival. In addition, SLITRK6 was found to be low expressed in tumor cells. To summarize, SLITRK6 mutation was found to significantly affect the occurrence and prognosis of HCC. SLITRK6 was confirmed as a new potential gene target for HCC, which may provide a new theoretical basis for personalized diagnosis and chemotherapy of HCC in the future.
Collapse
|