1
|
Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, Antoł A, Travisano M, Nespolo RF. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol 2018; 8:4619-4630. [PMID: 29760902 PMCID: PMC5938455 DOI: 10.1002/ece3.3979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/27/2023] Open
Abstract
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
Collapse
Affiliation(s)
| | - Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | | | - María Josefina Poupin
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Thomas Ledger
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China.,CSIRO Oceans & Atmosphere Hobart TAS Australia
| | - Andrzej Antoł
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis MN USA
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile.,Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB) Santiago Chile
| |
Collapse
|
2
|
Paleo-López R, Quintero-Galvis JF, Solano-Iguaran JJ, Sanchez-Salazar AM, Gaitan-Espitia JD, Nespolo RF. A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts. Ecol Evol 2016; 6:3851-61. [PMID: 27516851 PMCID: PMC4972215 DOI: 10.1002/ece3.2097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow‐down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell‐size and fermentation versatility). We found that speciation rates are constant during the time‐range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell‐size), suggesting that lineages resemble each other in trait‐values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell‐size. We also found a significant phylogenetic regression between cell‐size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common‐garden conditions combined with comparative analyses are warranted.
Collapse
Affiliation(s)
- Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Jaiber J Solano-Iguaran
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Angela M Sanchez-Salazar
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Juan D Gaitan-Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile; CSIRO Oceans & Atmosphere GPO Box 1538 Hobart 7001 Tasmania Australia
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile; Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago 6513677 Chile
| |
Collapse
|
3
|
Ma M, Han P, Zhang R, Li H. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress. Can J Microbiol 2013; 59:589-97. [PMID: 24011341 DOI: 10.1139/cjm-2012-0745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.
Collapse
Affiliation(s)
- Manli Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, People's Republic of China
| | | | | | | |
Collapse
|
4
|
Fernandes RL, Carlquist M, Lundin L, Heins AL, Dutta A, Sørensen SJ, Jensen AD, Nopens I, Lantz AE, Gernaey KV. Cell mass and cell cycle dynamics of an asynchronous budding yeast population: Experimental observations, flow cytometry data analysis, and multi-scale modeling. Biotechnol Bioeng 2012; 110:812-26. [DOI: 10.1002/bit.24749] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/05/2012] [Indexed: 02/02/2023]
|
5
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
6
|
Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, Bork P, Huber W, Steinmetz LM. High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol 2010; 11:R24. [PMID: 20193063 PMCID: PMC2864564 DOI: 10.1186/gb-2010-11-3-r24] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/21/2009] [Accepted: 03/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on protein-coding genes. To explore the complex transcriptome architecture underlying the budding yeast cell cycle, we used 8 bp tiling arrays to generate a 5 minute-resolution, strand-specific expression atlas of the whole genome. RESULTS We discovered 523 antisense transcripts, of which 80 cycle or are located opposite periodically expressed mRNAs, 135 unannotated intergenic non-coding RNAs, of which 11 cycle, and 109 cell-cycle-regulated protein-coding genes that had not previously been shown to cycle. We detected periodic expression coupling of sense and antisense transcript pairs, including antisense transcripts opposite of key cell-cycle regulators, like FAR1 and TAF2. CONCLUSIONS Our dataset presents the most comprehensive resource to date on gene expression during the budding yeast cell cycle. It reveals periodic expression of both protein-coding and non-coding RNA and profiles the expression of non-annotated RNAs throughout the cell cycle for the first time. This data enables hypothesis-driven mechanistic studies concerning the functions of non-coding RNAs.
Collapse
Affiliation(s)
- Marina V Granovskaia
- EMBL - European Molecular Biology Laboratory, Department of Genome Biology, Meyerhofstr, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Alberghina L, Höfer T, Vanoni M. Molecular networks and system-level properties. J Biotechnol 2009; 144:224-33. [PMID: 19616593 DOI: 10.1016/j.jbiotec.2009.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 11/17/2022]
Abstract
Molecular systems biology aims to describe the functions of complex biological processes through recursive integration of molecular analysis, modeling, simulation and theory. It focuses on networks that originate from interconnection of genes, proteins and metabolites whose dynamic interactions generate, as an emergent property of the system, the corresponding function. Although evolutionary optimized, intracellular biochemical parameters, such as the expression level of gene products or the affinity between two or more proteins, must have a permissible range that gives robustness against perturbations to the system. Using the yeast G(1)-to-S transition network as an example we show that sophisticated relations exist among network structure, emergent property and robustness. Different emergent properties are generated from the same network by changing the strength of its interactions, not only by altering expression level, but also through mono and multi-site phosphorylation/dephosphorylation. Besides, multi-site protein phosphorylation modules, widespread in cell cycle, may ensure robust and coherent timing of cell cycle transitions as it happens for the onset of DNA replication. In conclusion, the modulation of biological function/emergent property by modifying interaction strength provides an efficient, highly tunable device to regulate biological processes. Furthermore, the principles outlined herein may provide new insight to network analysis in drug discovery.
Collapse
Affiliation(s)
- Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy.
| | | | | |
Collapse
|
8
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
9
|
Kikuchi Y, Mizuuchi E, Nogami S, Morishita S, Ohya Y. Involvement of Rho-type GTPase in control of cell size in Saccharomyces cerevisiae. FEMS Yeast Res 2007; 7:569-78. [PMID: 17302939 DOI: 10.1111/j.1567-1364.2007.00213.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Maintaining specific cell size, which is important for many organisms, is achieved by coordinating cell growth and cell division. In the budding yeast Saccharomyces cerevisiae, the existence of two cell-size checkpoints is proposed: at the first checkpoint, cell size is monitored before budding at the G1/S transition, and at the second checkpoint, actin depolymerization occurring in the small bud is monitored before the G2/M transition. Morphological analyses have revealed that the small GTPase Rho1p participates in cell-size control at both the G1/S and the G2/M boundaries. One group of rho1 mutants (rho1A) underwent premature entry into mitosis, leading to the birth of abnormally small cells. In another group of rho1 mutants (rho1B), the mother cells failed to reach an appropriate size before budding, and expression of the G1 cyclin Cln2p began at an earlier phase of the cell cycle. Analyses of mutants defective in Rho1p effector proteins indicate that Skn7p, Fks1p and Mpk1p are involved in cell-size control. Thus, Rho1p and its downstream regulatory pathways are involved in controlling cell size in S. cerevisiae.
Collapse
Affiliation(s)
- Yo Kikuchi
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | |
Collapse
|
10
|
Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, Marzluff WF, Jones AM. A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell 2006; 17:4257-69. [PMID: 16855027 PMCID: PMC1635373 DOI: 10.1091/mbc.e06-01-0046] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 07/03/2006] [Accepted: 07/12/2006] [Indexed: 01/08/2023] Open
Abstract
Signal transduction involving heterotrimeric G proteins is universal among fungi, animals, and plants. In plants and fungi, the best understood function for the G protein complex is its modulation of cell proliferation and one of several important signals that are known to modulate the rate at which these cells proliferate is D-glucose. Arabidopsis thaliana seedlings lacking the beta subunit (AGB1) of the G protein complex have altered cell division in the hypocotyl and are D-glucose hypersensitive. With the aim to discover new elements in G protein signaling, we screened for gain-of-function suppressors of altered cell proliferation during early development in the agb1-2 mutant background. One agb1-2-dependent suppressor, designated sgb1-1(D) for suppressor of G protein beta1 (agb1-2), restored to wild type the altered cell division in the hypocotyl and sugar hypersensitivity of the agb1-2 mutant. Consistent with AGB1 localization, SGB1 is found at the highest steady-state level in tissues with active cell division, and this level increases in hypocotyls when grown on D-glucose and sucrose. SGB1 is shown here to be a Golgi-localized hexose transporter and acts genetically with AGB1 in early seedling development.
Collapse
Affiliation(s)
| | | | | | | | | | - William F. Marzluff
- Departments of *Biology
- Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
11
|
Abstract
Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called "reverse recruitment." An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
Collapse
Affiliation(s)
- George M Santangelo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-5018, USA.
| |
Collapse
|
12
|
Overton MC, Chinault SL, Blumer KJ. Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 4:1963-70. [PMID: 16339714 PMCID: PMC1317502 DOI: 10.1128/ec.4.12.1963-1970.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mark C Overton
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110-1010, USA
| | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|