1
|
Cayla M, Rojas F, Silvester E, Venter F, Matthews KR. African trypanosomes. Parasit Vectors 2019; 12:190. [PMID: 31036044 PMCID: PMC6489224 DOI: 10.1186/s13071-019-3355-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a ‘golden age’ of discovery for these fascinating parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Juárez-Reyes A, Castaño I. Chromatin architecture and virulence-related gene expression in eukaryotic microbial pathogens. Curr Genet 2018; 65:435-443. [PMID: 30443783 DOI: 10.1007/s00294-018-0903-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022]
Abstract
A fundamental question in biology is to understand how appropriate transcriptional regulation and dense packaging of the genetic material within the eukaryotic nucleus are achieved. The exquisite gene expression control and other metabolic processes of DNA require a highly complex, multilayered, three-dimensional architecture of the chromatin and its specific compartmentalization within the nucleus. Some of these architectural and sub-nuclear positioning mechanisms have been extensively co-opted by eukaryotic pathogens to keep fine expression control and expansion of virulence-related gene families in Plasmodium falciparum, Trypanosoma brucei and Candida glabrata. For example non-linear interactions between distant cis-acting regions and the formation of chromatin loops are required for appropriate regulation of the expression of virulence-related multi-gene families encoding cell surface proteins. These gene families are located near the chromosome ends and tethered to the nuclear periphery. Consequently, only one or very few genes of the family are expressed at a time. These genes are involved in antigenic variation in parasites and the generation of subpopulations of cells with diverse antigenic proteins at the surface in some pathogenic fungi, making them highly efficient pathogens.
Collapse
Affiliation(s)
- Alejandro Juárez-Reyes
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico
| | - Irene Castaño
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
3
|
The nuclear envelope and gene organization in parasitic protozoa: Specializations associated with disease. Mol Biochem Parasitol 2016; 209:104-113. [PMID: 27475118 DOI: 10.1016/j.molbiopara.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
The parasitic protozoa Trypanosoma brucei and Plasmodium falciparum are lethal human parasites that have developed elegant strategies of immune evasion by antigenic variation. Despite the vast evolutionary distance between the two taxa, both parasites employ strict monoallelic expression of their membrane proteins, variant surface glycoproteins in Trypanosomes and the var, rif and stevor genes in Plasmodium, in order to evade their host's immune system. Additionally, both telomeric location and epigenetic controls are prominent features of these membrane proteins. As such, telomeres, chromatin structure and nuclear organization all contribute to control of gene expression and immune evasion. Here, we discuss the importance of epigenetics and sub-nuclear context for the survival of these disease-causing parasites.
Collapse
|
4
|
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol 2016; 18:1673-1688. [PMID: 27110662 DOI: 10.1111/cmi.12605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/20/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Katherine A Muratore
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis-St. Paul, MN, 55455, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
5
|
Matthews KR, McCulloch R, Morrison LJ. The within-host dynamics of African trypanosome infections. Philos Trans R Soc Lond B Biol Sci 2016; 370. [PMID: 26150654 PMCID: PMC4528486 DOI: 10.1098/rstb.2014.0288] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
African trypanosomes are single-celled protozoan parasites that are capable of long-term survival while living extracellularly in the bloodstream and tissues of mammalian hosts. Prolonged infections are possible because trypanosomes undergo antigenic variation-the expression of a large repertoire of antigenically distinct surface coats, which allows the parasite population to evade antibody-mediated elimination. The mechanisms by which antigen genes become activated influence their order of expression, most likely by influencing the frequency of productive antigen switching, which in turn is likely to contribute to infection chronicity. Superimposed upon antigen switching as a contributor to trypanosome infection dynamics is the density-dependent production of cell-cycle arrested parasite transmission stages, which limit the infection while ensuring parasite spread to new hosts via the bite of blood-feeding tsetse flies. Neither antigen switching nor developmental progression to transmission stages is driven by the host. However, the host can contribute to the infection dynamic through the selection of distinct antigen types, the influence of genetic susceptibility or trypanotolerance and the potential influence of host-dependent effects on parasite virulence, development of transmission stages and pathogenicity. In a zoonotic infection cycle where trypanosomes circulate within a range of host animal populations, and in some cases humans, there is considerable scope for a complex interplay between parasite immune evasion, transmission potential and host factors to govern the profile and outcome of infection.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Richard McCulloch
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
6
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
7
|
Recombination and Diversification of the Variant Antigen Encoding Genes in the Malaria Parasite Plasmodium falciparum. Microbiol Spectr 2016; 2. [PMID: 26104446 DOI: 10.1128/microbiolspec.mdna3-0022-2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most severe form of human malaria is caused by the protozoan parasite Plasmodium falciparum. These parasites invade and replicate within the circulating red blood cells of infected individuals leading to numerous disease manifestations, including severe anemia, altered circulation, and tissue inflammation. Malaria parasites are also known for their ability to maintain a chronic infection through antigenic variation, the ability to systematically alter the antigens displayed on the surface of infected cells and thereby avoid clearance by the host's antibody response. The genome of P. falciparum includes several large, multicopy gene families that encode highly variable forms of the surface proteins that are the targets of host immunity. Alterations in expression of genes within these families are responsible for antigenic variation. This process requires the continuous generation of new antigenic variants within these gene families, and studies have shown that new variants arise through extensive recombination and gene conversion events between family members. Malaria parasites possess an unusual complement of DNA repair pathways, thus the study of recombination between variant antigen encoding genes provides a unique view into the evolution of mobile DNA in an organism distantly related to the more closely studied model eukaryotes.
Collapse
|
8
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
9
|
Abstract
The genomes of more than 20 helminths have now been sequenced. Here we perform a meta-analysis of all sequenced genomes of nematodes and Platyhelminthes, and attempt to address the question of what are the defining characteristics of helminth genomes. We find that parasitic worms lack systems for surface antigenic variation, instead maintaining infections using their surfaces as the first line of defence against the host immune system, with several expanded gene families of genes associated with the surface and tegument. Parasite excretory/secretory products evolve rapidly, and proteases even more so, with each parasite exhibiting unique modifications of its protease repertoire. Endoparasitic flatworms show striking losses of metabolic capabilities, not matched by nematodes. All helminths do however exhibit an overall reduction in auxiliary metabolism (biogenesis of co-factors and vitamins). Overall, the prevailing pattern is that there are few commonalities between the genomes of independently evolved parasitic worms, with each parasite having undergone specific adaptations for their particular niche.
Collapse
|
10
|
The revolution of whole genome sequencing to study parasites. Mol Biochem Parasitol 2014; 195:77-81. [PMID: 25111965 DOI: 10.1016/j.molbiopara.2014.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Genome sequencing has revolutionized the way in which we approach biological research from fundamental molecular biology to ecology and epidemiology. In the last 10 years the field of genomics has changed enormously as technology has improved and the tools for genomic sequencing have moved out of a few dedicated centers and now can be performed on bench-top instruments. In this review we will cover some of the key discoveries that were catalyzed by some of the first genome projects and discuss how this field is developing, what the new challenges are and how this may impact on research in the near future.
Collapse
|
11
|
Hall JPJ, Wang H, Barry JD. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLoS Pathog 2013; 9:e1003502. [PMID: 23853603 PMCID: PMC3708902 DOI: 10.1371/journal.ppat.1003502] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/31/2013] [Indexed: 01/01/2023] Open
Abstract
A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG) coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct 'mosaic' VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.
Collapse
Affiliation(s)
- James P J Hall
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|
12
|
Ueti MW, Tan Y, Broschat SL, Castañeda Ortiz EJ, Camacho-Nuez M, Mosqueda JJ, Scoles GA, Grimes M, Brayton KA, Palmer GH. Expansion of variant diversity associated with a high prevalence of pathogen strain superinfection under conditions of natural transmission. Infect Immun 2012; 80:2354-60. [PMID: 22585962 PMCID: PMC3416468 DOI: 10.1128/iai.00341-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/03/2012] [Indexed: 02/05/2023] Open
Abstract
Superinfection occurs when a second, genetically distinct pathogen strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus, successful superinfection would require that the secondary strain express a unique set of variants. We tested this hypothesis under conditions of natural transmission in both temperate and tropical regions where, respectively, single-strain infections and strain superinfections of the tick-borne pathogen Anaplasma marginale predominate. Our conclusion that strain superinfection is associated with a significant increase in variant diversity is supported by progressive analysis of variant composition: (i) animals with naturally acquired superinfection had a statistically significantly greater number of unique variant sequences than animals either experimentally infected with single strains or infected with a single strain naturally, (ii) the greater number of unique sequences reflected a statistically significant increase in primary structural diversity in the superinfected animals, and (iii) the increase in primary structural diversity reflected increased combinations of the newly identified hypervariable microdomains. The role of population immunity in establishing temporal and spatial patterns of infection and disease has been well established. The results of the present study, which examined strain structure under conditions of natural transmission and population immunity, support that high levels of endemicity also drive pathogen divergence toward greater strain diversity.
Collapse
Affiliation(s)
- Massaro W. Ueti
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA
| | - Yunbing Tan
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, USA
| | - Shira L. Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | | | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genomicas, Universidad Autónoma de la Ciudad de Mexico, Mexico D.F., México
| | | | - Glen A. Scoles
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA
| | - Matthew Grimes
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Guy H. Palmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
MacGregor P, Szöőr B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 2012; 10:431-8. [PMID: 22543519 PMCID: PMC3834543 DOI: 10.1038/nrmicro2779] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During their life cycle, trypanosomes must overcome conflicting demands to ensure their survival and transmission. First, they must evade immunity without overwhelming the host. Second, they must generate and maintain transmission stages at sufficient levels to allow passage into their tsetse vector. Finally, they must rapidly commit to onward development when they enter the tsetse fly. On the basis of recent quantification and modelling of Trypanosoma brucei infection dynamics, we propose that the interplay between immune evasion and development achieves both infection chronicity and transmissibility. Moreover, we suggest that a novel form of bistable regulation ensures developmental commitment on entry into the tsetse fly midgut.
Collapse
Affiliation(s)
- Paula MacGregor
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
15
|
Abstract
The African trypanosome Trypanosoma brucei is a unicellular parasite which causes African sleeping sickness. Transcription in African trypanosomes displays some unusual features, as most of the trypanosome genome is transcribed as extensive polycistronic RNA Pol II (polymerase II) transcription units that are not transcriptionally regulated. In addition, RNA Pol I is used for transcription of a small subset of protein coding genes in addition to the rDNA (ribosomal DNA). These Pol I-transcribed protein coding genes include the VSG (variant surface glycoprotein) genes. Although a single trypanosome has many hundreds of VSG genes, the active VSG is transcribed in a strictly monoalleleic fashion from one of approx. 15 telomeric VSG ESs (expression sites). Originally, it was thought that chromatin was not involved in the transcriptional control of ESs; however, this view is now being re-evaluated. It has since been shown that the active ES is depleted of nucleosomes compared with silent ESs. In addition, a number of proteins involved in chromatin remodelling or histone modification and which play a role in ES silencing {including TbISWI [T. brucei ISWI (imitation-switch protein)] and DOT1B} have recently been identified. Lastly, the telomere-binding protein TbRAP1 (T. brucei RAP1) has been shown to establish a repressive gradient extending from the ES telomere end up to the ES promoter. We still need to determine which epigenetic factors are involved in ‘marking’ the active ES as part of the counting mechanism of monoallelic exclusion. The challenge will come in determining how these multiple regulatory layers contribute to ES control.
Collapse
|
16
|
Role of AP-1 in developmentally regulated lysosomal trafficking in Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1352-61. [PMID: 19581441 DOI: 10.1128/ec.00156-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
African trypanosomes are the causative agents of human trypanosomiasis (sleeping sickness). The pathogenic stage of the parasite has unique adaptations to life in the bloodstream of the mammalian host, including upregulation of endocytic and lysosomal activities. We investigated stage-specific requirements for cytoplasmic adaptor/clathrin machinery in post-Golgi apparatus biosynthetic sorting to the lysosome using RNA interference silencing of the Tbmu1 subunit of adaptor complex 1 (AP-1), in conjunction with immunolocalization, kinetic analyses of reporter transport, and quantitative endocytosis assays. Tbmu1 silencing was lethal in both stages, indicating a critical function(s) for the AP-1 machinery. Transport of soluble and membrane-bound secretory cargoes was Tbmu1 independent in both stages. In procyclic parasites, trafficking of the lysosomal membrane protein, p67, was disrupted, leading to cell surface mislocalization. The lysosomal protease trypanopain was also secreted, suggesting a transmembrane-sorting receptor for this soluble hydrolase. In bloodstream trypanosomes, both p67 and trypanopain trafficking were unaffected by Tbmu1 silencing, suggesting that AP-1 is not necessary for biosynthetic lysosomal trafficking. Endocytosis in bloodstream cells was also unaffected, indicating that AP-1 does not function at the flagellar pocket. These results indicate that post-Golgi apparatus sorting to the lysosome is critically dependent on the AP-1/clathrin machinery in procyclic trypanosomes but that this machinery is not necessary in bloodstream parasites. We propose a simple model for stage-specific default secretory trafficking in trypanosomes that is consistent with the behavior of other soluble and glycosylphosphatidylinositol-anchored cargos and which is influenced by upregulation of endocytosis in bloodstream parasites as an adaptation to life in the mammalian bloodstream.
Collapse
|
17
|
|
18
|
Bessat M, Ersfeld K. Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in Trypanosoma brucei. Mol Microbiol 2009; 71:1371-85. [PMID: 19183276 DOI: 10.1111/j.1365-2958.2009.06611.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Minichromosomes in the nuclear genome of Trypanosoma brucei exhibit unusual patterns of mitotic segregation. To address whether differences in their mode of segregation in relation to large chromosomes are reflected at a molecular level, we characterized two different proteins that have highly conserved functions in eukaryotic chromosomes segregation: the SMC3 protein, a component of the chromatid cohesion apparatus, and the protease separase that resolves the cohesin complex at the onset of anaphase and has, in other organisms, additional functions during mitosis. Using in situ hybridization we show that RNA interference-mediated depletion of SMC3 has no visible effect on the segregation of the minichromosomal population but interferes with the faithful mitotic separation of large chromosomes. In contrast, separase depletion causes missegregation of both mini- and large chromosomes. We also show that SMC3 persists as a soluble protein throughout the cell cycle and only associates with chromatin between G1 and metaphase. Separase is present in the cell during the entire cell cycle, but is excluded from the nucleus until the metaphase-anaphase transition, thereby providing a potential control mechanism to prevent the untimely cleavage of the cohesin complex.
Collapse
Affiliation(s)
- Mohamed Bessat
- Department of Biological Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
19
|
Dagenais TR, Demick KP, Bangs JD, Forest KT, Paulnock DM, Mansfield JM. T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect Immun 2009; 77:141-51. [PMID: 18936180 PMCID: PMC2612290 DOI: 10.1128/iai.00729-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/13/2008] [Accepted: 10/13/2008] [Indexed: 11/20/2022] Open
Abstract
Variable subregions within the variant surface glycoprotein (VSG) coat displayed by African trypanosomes are predicted sites for T- and B-cell recognition. Hypervariable subregion 1 (HV-1) is localized to an internal amphipathic alpha helix in VSG monomers and may have evolved due to selective pressure by host T-cell responses to epitopes within this subregion. The prediction of T-cell receptor-reactive sites and major histocompatibility complex class II binding motifs within the HV-1 subregion, coupled with the conservation of amino acid residues in other regions of the molecule sufficient to maintain secondary and tertiary VSG structure, prompted us to test the hypothesis that Th cells may preferentially recognize HV-1 subregion peptides. Thus, we examined the fine specificity of VSG-specific T-cell lines, T-cell hybridomas, and Th cells activated during infection. Our results demonstrate that T-cell epitopes are distributed throughout the N-terminal domain of VSG but are not clustered exclusively within HV-1 or other hypervariable subregions. In contrast, T-cell-reactive sites were not detected within the relatively conserved C-terminal domain of VSG. Overall, this study is the first to dissect the fine specificity of T-cell responses to the trypanosome VSG and suggests that evolution of a conserved HV-1 region may be unrelated to selective pressures exerted by host T-cell responses. This study also demonstrates that T cells do not recognize the relatively invariant C-terminal region of the VSG molecule during infection, suggesting that it could serve as a potential subunit vaccine to provide variant cross-specific immunity for African trypanosomiasis.
Collapse
Affiliation(s)
- Taylor R Dagenais
- Department of Bacteriology, Microbial Sciences Building, 1550 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I, Heath P, Kartvelishvili M, Mungall K, Harris D, Hauser H, Sanders M, Saunders D, Seeger K, Sharp S, Taylor JE, Walker D, White B, Young R, Cross GAM, Rudenko G, Barry JD, Louis EJ, Berriman M. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 2008; 3:e3527. [PMID: 18953401 PMCID: PMC2567434 DOI: 10.1371/journal.pone.0003527] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/23/2008] [Indexed: 11/27/2022] Open
Abstract
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.
Collapse
|
21
|
Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Aslett MA, Balasubrammaniam S, Borgwardt K, Brooks K, Carret C, Carver TJ, Cherevach I, Chillingworth T, Clark TG, Galinski MR, Hall N, Harper D, Harris D, Hauser H, Ivens A, Janssen CS, Keane T, Larke N, Lapp S, Marti M, Moule S, Meyer IM, Ormond D, Peters N, Sanders M, Sanders S, Sargeant TJ, Simmonds M, Smith F, Squares R, Thurston S, Tivey AR, Walker D, White B, Zuiderwijk E, Churcher C, Quail MA, Cowman AF, Turner CMR, Rajandream MA, Kocken CHM, Thomas AW, Newbold CI, Barrell BG, Berriman M. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 2008; 455:799-803. [PMID: 18843368 PMCID: PMC2656934 DOI: 10.1038/nature07306] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/30/2008] [Indexed: 11/08/2022]
Abstract
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.
Collapse
Affiliation(s)
- A Pain
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Young R, Taylor JE, Kurioka A, Becker M, Louis EJ, Rudenko G. Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 2008; 9:385. [PMID: 18700033 PMCID: PMC2533676 DOI: 10.1186/1471-2164-9-385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 08/12/2008] [Indexed: 12/28/2022] Open
Abstract
Background African trypanosomes (including Trypanosoma brucei) are unicellular parasites which multiply in the mammalian bloodstream. T. brucei has about twenty telomeric bloodstream form Variant Surface Glycoprotein (VSG) expression sites (BESs), of which one is expressed at a time in a mutually exclusive fashion. BESs are polycistronic transcription units, containing a variety of families of expression site associated genes (ESAGs) in addition to the telomeric VSG. These polymorphic ESAG families are thought to play a role in parasite-host adaptation, and it has been proposed that ESAG diversity might be related to host range. Analysis of the genetic diversity of these telomeric gene families has been confounded by the underrepresentation of telomeric sequences in standard libraries. We have previously developed a method to selectively isolate sets of trypanosome BES containing telomeres using Transformation associated recombination (TAR) cloning in yeast. Results Here we describe the isolation of repertoires of BES containing telomeres from three trypanosome subspecies: Trypanosoma brucei gambiense DAL 972 (causative agent of West-African trypanosomiasis), T. b. brucei EATRO 2340 (a nonhuman infective strain) and T. equiperdum STIB 818 (which causes a sexually transmitted disease in equines). We have sequenced and analysed the genetic diversity at four BES loci (BES promoter region, ESAG6, ESAG5 and ESAG2) from these three trypanosome BES repertoires. Conclusion With the exception of ESAG2, the BES sequence repertoires derived from T. b. gambiense are both less diverse than and nearly reciprocally monophyletic relative to those from T. b. brucei and T. equiperdum. Furthermore, although we find evidence for adaptive evolution in all three ESAG repertoires in T. b. brucei and T. equiperdum, only ESAG2 appears to be under diversifying selection in T. b. gambiense. This low level of variation in the T. b. gambiense BES sequence repertoires is consistent both with the relatively narrow host range of this subspecies and its apparent long-term clonality. However, our data does not show a clear correlation between size of trypanosome host range and either number of BESs or extent of ESAG genetic diversity.
Collapse
Affiliation(s)
- Rosanna Young
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Futse JE, Brayton KA, Dark MJ, Knowles DP, Palmer GH. Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proc Natl Acad Sci U S A 2008; 105:2123-7. [PMID: 18252822 PMCID: PMC2538888 DOI: 10.1073/pnas.0710333105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Indexed: 11/18/2022] Open
Abstract
A new pathogen strain can penetrate an immune host population only if it can escape immunity generated against the original strain. This model is best understood with influenza viruses, in which genetic drift creates antigenically distinct strains that can spread through host populations despite the presence of immunity against previous strains. Whether this selection model for new strains applies to complex pathogens responsible for endemic persistent infections, such as anaplasmosis, relapsing fever, and sleeping sickness, remains untested. These complex pathogens undergo rapid within-host antigenic variation by using sets of chromosomally encoded variants. Consequently, immunity is developed against a large repertoire of variants, dramatically changing the scope of genetic change needed for a new strain to evade existing immunity and establish coexisting infection, termed strain superinfection. Here, we show that the diversity in the alleles encoding antigenic variants between strains of a highly antigenically variant pathogen was equal to the diversity within strains, reflecting equivalent selection for variants to overcome immunity at the host population level as within an individual host. This diversity among strains resulted in expression of nonoverlapping variants that allowed a new strain to evade immunity and establish superinfection. Furthermore, we demonstrated that a single distinct allele allows strain superinfection. These results indicate that there is strong selective pressure to increase the diversity of the variant repertoire beyond what is needed for persistence within an individual host and provide an explanation, competition at the host population level, for the large genomic commitment to variant gene families in persistent pathogens.
Collapse
Affiliation(s)
- James E Futse
- Program in Vector-Borne Diseases, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
24
|
Zhuang Y, Futse JE, Brown WC, Brayton KA, Palmer GH. Maintenance of antibody to pathogen epitopes generated by segmental gene conversion is highly dynamic during long-term persistent infection. Infect Immun 2007; 75:5185-90. [PMID: 17785476 PMCID: PMC2168278 DOI: 10.1128/iai.00913-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple bacterial and protozoal pathogens utilize gene conversion to generate rapid intrahost antigenic variation. Both large- and small-genome pathogens expand the size of the variant pool via a combinatorial process in which oligonucleotide segments from distinct donor loci are recombined in various combinations into expression sites. Although the potential combinatorial diversity generated by this segmental gene conversion mechanism is quite large, the functional variant pool depends on whether immune responses against the recombined segments are generated and maintained, regardless of their specific combinatorial context. This question was addressed by tracking the Anaplasma marginale variant population and corresponding segment-specific immunoglobulin G (IgG) antibody responses during long-term infection. Antibody was induced early in A. marginale infection, predominately against the surface-exposed hypervariable region (HVR) rather than against the invariant conserved flanking domains, and these HVR oligopeptides were most immunogenic at the time of acute bacteremia, when the variant population is derived via recombination from a single donor locus. However antibody to HVR oligopeptides was not consistently maintained during persistent infection, despite reexpression of the same segment, although in a different combinatorial context. This dynamic antibody recognition over time was not attributable to the major histocompatibility complex haplotype of individual animals or use of specific msp2 donor alleles. In contrast, the position and context of an individual oligopeptide segment within the HVR were significant determinants of antibody recognition. The results unify the genetic potential of segmental gene conversion with escape from antibody recognition and identify immunological effects of variant mosaic structure.
Collapse
Affiliation(s)
- Yan Zhuang
- Program in Vector-Borne Diseases and Immunology, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA
| | | | | | | | | |
Collapse
|
25
|
Hutchinson OC, Picozzi K, Jones NG, Mott H, Sharma R, Welburn SC, Carrington M. Variant Surface Glycoprotein gene repertoires in Trypanosoma brucei have diverged to become strain-specific. BMC Genomics 2007; 8:234. [PMID: 17629915 PMCID: PMC1934917 DOI: 10.1186/1471-2164-8-234] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 07/13/2007] [Indexed: 12/05/2022] Open
Abstract
Background In a mammalian host, the cell surface of African trypanosomes is protected by a monolayer of a single variant surface glycoprotein (VSG). The VSG is central to antigenic variation; one VSG gene is expressed at any one time and there is a low frequency stochastic switch to expression of a different VSG gene. The genome of Trypanosoma brucei contains a repertoire of > 1000 VSG sequences. The degree of conservation of the genomic VSG repertoire in different strains has not been investigated in detail. Results Eighteen expressed VSGs from Ugandan isolates were compared with homologues (> 40 % sequence identity) in the two available T. brucei genome sequences. Fourteen homologues were present in the genome of Trypanosoma brucei brucei TREU927 from Kenya and fourteen in the genome of T. b. gambiense Dal972 from Cote d'Ivoire. The Ugandan VSGs averaged 71% and 73 % identity to homologues in T. b. brucei and T. b. gambiense respectively. The sequence divergence between homologous VSGs from the three different strains was not random but was more prevalent in the parts of the VSG believed to interact with the host immune system on the living trypanosome. Conclusion It is probable that the VSG repertoires in the different isolates contain many common VSG genes. The location of divergence between VSGs is consistent with selection for strain-specific VSG repertoires, possibly to allow superinfection of an animal by a second strain. A consequence of strain-specific VSG repertoires is that any vaccine based on large numbers of VSGs from a single strain will only provide partial protection against other strains.
Collapse
Affiliation(s)
- O Clyde Hutchinson
- Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, UK
| | - Kim Picozzi
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, EH25 9RG, UK
| | - Nicola G Jones
- Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Helen Mott
- Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Reuben Sharma
- Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Susan C Welburn
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, EH25 9RG, UK
| | - Mark Carrington
- Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
26
|
Lythgoe KA, Morrison LJ, Read AF, Barry JD. Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proc Natl Acad Sci U S A 2007; 104:8095-100. [PMID: 17463092 PMCID: PMC1876577 DOI: 10.1073/pnas.0606206104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Indexed: 11/18/2022] Open
Abstract
Pathogens often persist during infection because of antigenic variation in which they evade immunity by switching between distinct surface antigen variants. A central question is how ordered appearance of variants, an important determinant of chronicity, is achieved. Theories suggest that it results directly from a complex pattern of transition connectivity between variants or indirectly from effects such as immune cross-reactivity or differential variant growth rates. Using a mathematical model based only on known infection variables, we show that order in trypanosome infections can be explained more parsimoniously by a simpler combination of two key parasite-intrinsic factors: differential activation rates of parasite variant surface glycoprotein (VSG) genes and density-dependent parasite differentiation. The model outcomes concur with empirical evidence that several variants are expressed simultaneously and that parasitaemia peaks correlate with VSG genes within distinct activation probability groups. Our findings provide a possible explanation for the enormity of the recently sequenced VSG silent archive and have important implications for field transmission.
Collapse
Affiliation(s)
- Katrina A. Lythgoe
- *Institutes of Evolution, Immunology, and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; and
| | - Liam J. Morrison
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Andrew F. Read
- *Institutes of Evolution, Immunology, and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; and
| | - J. David Barry
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
27
|
Barnes RL, McCulloch R. Trypanosoma brucei homologous recombination is dependent on substrate length and homology, though displays a differential dependence on mismatch repair as substrate length decreases. Nucleic Acids Res 2007; 35:3478-93. [PMID: 17478508 PMCID: PMC1904282 DOI: 10.1093/nar/gkm249] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination functions universally in the maintenance of genome stability through the repair of DNA breaks and in ensuring the completion of replication. In some organisms, homologous recombination can perform more specific functions. One example of this is in antigenic variation, a widely conserved mechanism for the evasion of host immunity. Trypanosoma brucei, the causative agent of sleeping sickness in Africa, undergoes antigenic variation by periodic changes in its variant surface glycoprotein (VSG) coat. VSG switches involve the activation of VSG genes, from an enormous silent archive, by recombination into specialized expression sites. These reactions involve homologous recombination, though they are characterized by an unusually high rate of switching and by atypical substrate requirements. Here, we have examined the substrate parameters of T. brucei homologous recombination. We show, first, that the reaction is strictly dependent on substrate length and that it is impeded by base mismatches, features shared by homologous recombination in all organisms characterized. Second, we identify a pathway of homologous recombination that acts preferentially on short substrates and is impeded to a lesser extent by base mismatches and the mismatch repair machinery. Finally, we show that mismatches during T. brucei recombination may be repaired by short-patch mismatch repair.
Collapse
Affiliation(s)
| | - Richard McCulloch
- *To whom correspondence should be addressed. Tel: 0044 141 330 5946; Fax: 0044 141 330 5422;
| |
Collapse
|
28
|
Abstract
Trypanosomes are members of the kinetoplastida, a group of divergent protozoan parasites responsible for considerable morbidity and mortality worldwide. These organisms have highly complex life cycles requiring modification of their cell surface together with engagement of immune evasion systems to effect survival; both processes intimately involve the membrane trafficking system. The completion of three trypanosomatid and several additional protist genomes in the last few years is providing an exciting opportunity to evaluate, at the molecular level, the evolution and diversity of membrane trafficking across deep evolutionary time as well as to analyse in unprecedented detail the membrane trafficking systems of trypanosomes.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | |
Collapse
|
29
|
Nagawa F, Kishishita N, Shimizu K, Hirose S, Miyoshi M, Nezu J, Nishimura T, Nishizumi H, Takahashi Y, Hashimoto SI, Takeuchi M, Miyajima A, Takemori T, Otsuka AJ, Sakano H. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat Immunol 2006; 8:206-13. [PMID: 17187071 DOI: 10.1038/ni1419] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/06/2006] [Indexed: 12/20/2022]
Abstract
Jawless vertebrates have acquired immunity but do not have immunoglobulin-type antigen receptors. Variable lymphocyte receptors (VLRs) have been identified in lamprey that consist of multiple leucine-rich repeat (LRR) modules. An active VLR gene is generated by the assembly of a series of variable gene segments, including many that encode LRRs. Stepwise assembly of the gene segments seems to occur by replacement of the intervening DNA between the 5' and 3' constant-region genes. Here we report that lamprey (Lethenteron japonicum) assemble their VLR genes by a process involving 'copy choice'. Regions of short homology seemed to prime copying of donor LRR-encoding sequences into the recipient gene. Those LRR-encoding germline sequences were abundant and shared extensive sequence homologies. Such genomic organization permits initiation of copying anywhere in an LRR-encoding module for the generation of various hybrid LRRs. Thus, a vast repertoire of recombinant VLR genes could be generated not only by copying of various LRR segments in diverse combinations but also by the use of multiple sites in an LRR gene segment for priming.
Collapse
Affiliation(s)
- Fumikiyo Nagawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ginger ML. Trypanosomatid Biology and Euglenozoan Evolution: New Insights and Shifting Paradigms Revealed through Genome Sequencing. Protist 2005; 156:377-92. [PMID: 16310743 DOI: 10.1016/j.protis.2005.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|