1
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
HDL and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:49-61. [DOI: 10.1007/978-981-19-1592-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
4
|
Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun 2014; 5:4699. [DOI: 10.1038/ncomms5699] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
|
5
|
Du X, Yang H. Endosomal cholesterol trafficking: protein factors at a glance. Acta Biochim Biophys Sin (Shanghai) 2013; 45:11-7. [PMID: 23165745 DOI: 10.1093/abbs/gms095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The delivery of low-density lipoprotein-derived cholesterol (LDL-C) from endosomal compartments to the plasma membrane and the endoplasmic reticulum (ER) is an important yet poorly understood cellular process. Niemann-Pick C1 (NPC1), a multi-pass integral membrane protein on the limiting membranes of late endosomes (LE)/lysosomes (Ly), is known to insert lumenal LDL-C to the limiting membrane of LE/Ly. Recent progress has identified novel cytoplasmic proteins that regulate the exit of LDL-C from LE/Ly, such as ORP5, a member of the oxysterol-binding protein-related protein (ORPs) family, and Hrs/VPS27, a well-established regulator of the endosomal sorting complex required for transport pathway. Whereas ORP5/ORPs may serve as cytosolic cholesterol carriers and deliver cholesterol in a non-vesicular manner, how Hrs/VPS27 regulate endosomal cholesterol sorting remains enigmatic. We discuss the functional relationship between NPC1, Hrs, and ORP5, and formulate possible schemes on how LDL-C may be moved from endosomal compartments to other cellular organelles.
Collapse
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
6
|
Ambardekar VV, Han HY, Varney ML, Vinogradov SV, Singh RK, Vetro JA. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes. Biomaterials 2010; 32:1404-11. [PMID: 21047680 DOI: 10.1016/j.biomaterials.2010.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/10/2010] [Indexed: 12/31/2022]
Abstract
Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC.
Collapse
Affiliation(s)
- Vishakha V Ambardekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | | | | | | | |
Collapse
|
7
|
Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci (Lond) 2010; 119:265-72. [PMID: 20491656 PMCID: PMC2891001 DOI: 10.1042/cs20100266] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dysregulated macrophage cholesterol homoeostasis lies at the heart of early and developing atheroma, and removal of excess cholesterol from macrophage foam cells, by efficient transport mechanisms, is central to stabilization and regression of atherosclerotic lesions. The present study demonstrates that transient overexpression of STARD3 {START [StAR (steroidogenic acute regulatory protein)-related lipid transfer] domain 3; also known as MLN64 (metastatic lymph node 64)}, an endosomal cholesterol transporter and member of the 'START' family of lipid trafficking proteins, induces significant increases in macrophage ABCA1 (ATP-binding cassette transporter A1) mRNA and protein, enhances [(3)H]cholesterol efflux to apo (apolipoprotein) AI, and reduces biosynthesis of cholesterol, cholesteryl ester, fatty acids, triacylglycerol and phospholipids from [(14)C]acetate, compared with controls. Notably, overexpression of STARD3 prevents increases in cholesterol esterification in response to acetylated LDL (low-density lipoprotein), blocking cholesteryl ester deposition. Thus enhanced endosomal trafficking via STARD3 induces an anti-atherogenic macrophage lipid phenotype, positing a potentially therapeutic strategy.
Collapse
|
8
|
Schmitz G, Grandl M. The molecular mechanisms of HDL and associated vesicular trafficking mechanisms to mediate cellular lipid homeostasis. Arterioscler Thromb Vasc Biol 2010; 29:1718-22. [PMID: 19846837 DOI: 10.1161/atvbaha.108.179507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
HDL functions mainly as a cholesterol scavenger, facilitating transport of cholesterol to the liver for conversion to bile acids and secretion into the bile for elimination or recycling in the enterohepatic bile acid cycle. Because of its major function in cholesterol clearance, HDL is in general considered to be atheroprotective. From cell cholesterol can be removed by efflux especially to apoA-I and HDL as extracellular acceptors which transport the cholesterol to the liver for excretion. This process is called reverse cholesterol transport. In this context the ATP binding cassette transporter protein ABCA1 facilitates cellular cholesterol and phospholipid release to apoA-I-containing HDL precursors. In addition ABCA1 plays a role in vesicular lipid transport mechanisms required for HDL particle formation. In general to maintain intracellular lipid homeostasis, sterols and associated lipids move between cellular compartments by vesicular and nonvesicular pathways. However, cholesterol sorting on vesicle formation is poorly understood. This review summarizes the current knowledge of the molecular mechanisms of HDL and associated vesicular trafficking mechanisms to mediate cellular lipid homeostasis.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
9
|
Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The Multifaceted Photocytotoxic Profile of Hypericin. Mol Pharm 2009; 6:1775-89. [DOI: 10.1021/mp900166q] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Theodossis A. Theodossiou
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - John S. Hothersall
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Peter A. De Witte
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Alexandros Pantos
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Patrizia Agostinis
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
10
|
Deficiency of niemann-pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in Gag accumulation in late endosomal/lysosomal compartments. J Virol 2009; 83:7982-95. [PMID: 19474101 DOI: 10.1128/jvi.00259-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) relies on cholesterol-laden lipid raft membrane microdomains for entry into and egress out of susceptible cells. In the present study, we examine the need for intracellular cholesterol trafficking pathways with respect to HIV-1 biogenesis using Niemann-Pick type C-1 (NPC1)-deficient (NPCD) cells, wherein these pathways are severely compromised, causing massive accumulation of cholesterol in late endosomal/lysosomal (LE/L) compartments. We have found that induction of an NPC disease-like phenotype through treatment of various cell types with the commonly used hydrophobic amine drug U18666A resulted in profound suppression of HIV-1 release. Further, NPCD Epstein-Barr virus-transformed B lymphocytes and fibroblasts from patients with NPC disease infected with a CD4-independent strain of HIV-1 or transfected with an HIV-1 proviral clone, respectively, replicated HIV-1 poorly compared to normal cells. Infection of the NPCD fibroblasts with a vesicular stomatitis virus G-pseudotyped strain of HIV-1 produced similar results, suggesting a postentry block to HIV-1 replication in these cells. Examination of these cells using confocal microscopy showed an accumulation and stabilization of Gag in LE/L compartments. Additionally, normal HIV-1 production could be restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increased HIV-1 release. Taken together, our findings demonstrate that intact intracellular cholesterol trafficking pathways mediated by NPC1 are needed for efficient HIV-1 production.
Collapse
|
11
|
Abstract
Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events. Sphingolipids, cholesterol, and glycerophospholipids, notably the phosphoinositides, are required for the segregation of signaling microdomains and for the generation of second messengers. They are also instrumental in the remodeling of the actin cytoskeleton and in directing membrane traffic. They accomplish these feats by congregating into liquid-ordered domains, by generating active metabolites that activate receptors, and by recruiting and anchoring specific protein ligands to the membrane, often altering their conformation and catalytic activity. A less appreciated role of acidic phospholipids is their contribution to the negative surface charge of the inner leaflet of the plasmalemma. The unique negativity of the inner aspect of the plasma membrane serves to attract and anchor key signaling and effector molecules that are required to initiate phagosome formation. Conversely, the loss of charge that accompanies phospholipid metabolism as phagosomes seal facilitates the dissociation of proteins and the termination of signaling and cytoskeleton assembly. In this manner, lipids provide a binary electrostatic switch to control phagocytosis.
Collapse
Affiliation(s)
- Tony Yeung
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
Lakkaraju A, Finnemann SC, Rodriguez-Boulan E. The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A 2007; 104:11026-31. [PMID: 17578916 PMCID: PMC1904145 DOI: 10.1073/pnas.0702504104] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins involved in cholesterol trafficking are known to contribute to the pathogenesis of atherosclerosis and Alzheimer's disease. Allelic variants in the cholesterol transporters apolipoprotein E and ATP-binding cassette protein A1 (ABCA1) have recently been associated with susceptibility to age-related macular degeneration (AMD). Histopathological analyses of eyes with AMD demonstrate the presence of cholesterol and cholesteryl ester deposits beneath the retinal pigment epithelium (RPE), implicating abnormal cholesterol trafficking in disease progression. Here, we show that A2E, a quaternary amine and retinoid by-product of the visual cycle, causes the accumulation of free and esterified cholesterol in RPE cells. The mechanism involves neither generalized alterations in late endosomal/lysosomal pH nor a direct inhibition of acid lipase activity. Rather, A2E prevents cholesterol efflux from these organelles, which in turn indirectly inhibits acid lipase, leading to a subsequent accumulation of cholesteryl esters. Transcriptional activation of the ABCA1 cholesterol transporter by agonists of the liver X receptor/peroxisome proliferator-activated receptor pathway relieves the A2E-induced block on cholesterol efflux and restores cholesterol homeostasis in RPE cells. Our data also demonstrate that A2E, which is a cone-shaped lipid, increases the chemical activity and displacement of cholesterol from model membranes, providing a biophysical mechanism for cholesterol sequestration in A2E-loaded cells. Although endogenously produced A2E in the RPE has been associated with macular degeneration, the precise mechanisms are unclear. Our results provide direct evidence that A2E causes aberrant cholesterol metabolism in RPE cells which could likely contribute to AMD progression.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- *Margaret M. Dyson Vision Research Institute, Department of Ophthalmology
- To whom correspondence may be addressed. E-mail: or
| | - Silvia C. Finnemann
- *Margaret M. Dyson Vision Research Institute, Department of Ophthalmology
- Department of Cell and Developmental Biology, and
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021
| | - Enrique Rodriguez-Boulan
- *Margaret M. Dyson Vision Research Institute, Department of Ophthalmology
- Department of Cell and Developmental Biology, and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
13
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|