1
|
Topaloudis A, Cumer T, Lavanchy E, Ducrest AL, Simon C, Machado AP, Paposhvili N, Roulin A, Goudet J. The recombination landscape of the barn owl, from families to populations. Genetics 2025; 229:1-50. [PMID: 39545468 PMCID: PMC11708917 DOI: 10.1093/genetics/iyae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Homologous recombination is a meiotic process that generates diversity along the genome and interacts with all evolutionary forces. Despite its importance, studies of recombination landscapes are lacking due to methodological limitations and limited data. Frequently used approaches include linkage mapping based on familial data that provides sex-specific broad-scale estimates of realized recombination and inferences based on population linkage disequilibrium that reveal a more fine-scale resolution of the recombination landscape, albeit dependent on the effective population size and the selective forces acting on the population. In this study, we use a combination of these 2 methods to elucidate the recombination landscape for the Afro-European barn owl (Tyto alba). We find subtle differences in crossover placement between sexes that lead to differential effective shuffling of alleles. Linkage disequilibrium-based estimates of recombination are concordant with family-based estimates and identify large variation in recombination rates within and among linkage groups. Larger chromosomes show variation in recombination rates, while smaller chromosomes have a universally high rate that shapes the diversity landscape. We find that recombination rates are correlated with gene content, genetic diversity, and GC content. We find no conclusive differences in the recombination landscapes between populations. Overall, this comprehensive analysis enhances our understanding of recombination dynamics, genomic architecture, and sex-specific variation in the barn owl, contributing valuable insights to the broader field of avian genomics.
Collapse
Affiliation(s)
- Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Celine Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Nika Paposhvili
- Institute of Ecology, Ilia State University, Tbilisi 0162, Georgia
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Zhao Q, Xiong Z, Cheng C, Wang Y, Feng X, Yu X, Lou Q, Chen J. Meiotic crossovers revealed by differential visualization of homologous chromosomes using enhanced haplotype oligo-painting in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39661709 DOI: 10.1111/pbi.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The interaction dynamics of homologous chromosomes during meiosis, such as recognition, pairing, synapsis, recombination, and segregation are vital for species fertility and genetic diversity within populations. Meiotic crossover (CO), a prominent feature of meiosis, ensures the faithful segregation of homologous chromosomes and enriches genetic diversity within a population. Nevertheless, visually distinguishing homologous chromosomes and COs remains an intractable challenge in cytological studies, particularly in non-model or plants with small genomes, limiting insights into meiotic dynamics. In the present study, we developed a robust and reliable enhanced haplotype oligo-painting (EHOP) technique to image small amounts of oligos, enabling visual discrimination of homologous chromosomes. Using EHOP developed based on sequence polymorphisms and reconstructed oligonucleotides, we visually distinguished parental and most recombinant chromosomes in cucumber F1 hybrids and F2 populations. Results from EHOP revealed that meiotic CO events preferentially occur in the 30-60% intervals of chromosome arms with lower sequence polymorphisms and significant recombination bias exists between cultivated and ancestral chromosomes. Due to the occupation of extensive heterochromatin occupancy, it is not yet possible to precisely identify the meiotic COs present in the central portion of chr2 and chr4. Notably, CO accessibility was universally detected in the cytological centromere region in F2 populations, a feature rarely observed in crops with large genomes. EHOP demonstrated exceptional performance in distinguishing homologous chromosomes and holds significant potential for broad application in studying homologous chromosome interactions.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenhui Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianbo Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Brazier T, Glémin S. Diversity in Recombination Hotspot Characteristics and Gene Structure Shape Fine-Scale Recombination Patterns in Plant Genomes. Mol Biol Evol 2024; 41:msae183. [PMID: 39302634 DOI: 10.1093/molbev/msae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
During the meiosis of many eukaryote species, crossovers tend to occur within narrow regions called recombination hotspots. In plants, it is generally thought that gene regulatory sequences, especially promoters and 5' to 3' untranslated regions, are enriched in hotspots, but this has been characterized in a handful of species only. We also lack a clear description of fine-scale variation in recombination rates within genic regions and little is known about hotspot position and intensity in plants. To address this question, we constructed fine-scale recombination maps from genetic polymorphism data and inferred recombination hotspots in 11 plant species. We detected gradients of recombination in genic regions in most species, yet gradients varied in intensity and shape depending on specific hotspot locations and gene structure. To further characterize recombination gradients, we decomposed them according to gene structure by rank and number of exons. We generalized the previously observed pattern that recombination hotspots are organized around the boundaries of coding sequences, especially 5' promoters. However, our results also provided new insight into the relative importance of the 3' end of genes in some species and the possible location of hotspots away from genic regions in some species. Variation among species seemed driven more by hotspot location among and within genes than by differences in size or intensity among species. Our results shed light on the variation in recombination rates at a very fine scale, revealing the diversity and complexity of genic recombination gradients emerging from the interaction between hotspot location and gene structure.
Collapse
Affiliation(s)
- Thomas Brazier
- Unité Mixte de Recherche (UMR) 6553 - ECOBIO (Ecosystems, Biodiversity, Evolution), University of Rennes, CNRS, Rennes, France
| | - Sylvain Glémin
- Unité Mixte de Recherche (UMR) 6553 - ECOBIO (Ecosystems, Biodiversity, Evolution), University of Rennes, CNRS, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Jiang X, Li D, Du H, Wang P, Guo L, Zhu G, Zhang C. Genomic features of meiotic crossovers in diploid potato. HORTICULTURE RESEARCH 2023; 10:uhad079. [PMID: 37323232 PMCID: PMC10261879 DOI: 10.1093/hr/uhad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Abstract
Meiotic recombination plays an important role in genome evolution and crop improvement. Potato (Solanum tuberosum L.) is the most important tuber crop in the world, but research about meiotic recombination in potato is limited. Here, we resequenced 2163 F2 clones derived from five different genetic backgrounds and identified 41 945 meiotic crossovers. Some recombination suppression in euchromatin regions was associated with large structural variants. We also detected five shared crossover hotspots. The number of crossovers in each F2 individual from the accession Upotato 1 varied from 9 to 27, with an average of 15.5, 78.25% of which were mapped within 5 kb of their presumed location. We show that 57.1% of the crossovers occurred in gene regions, with poly-A/T, poly-AG, AT-rich, and CCN repeats enriched in the crossover intervals. The recombination rate is positively related with gene density, SNP density, Class II transposon, and negatively related with GC density, repeat sequence density and Class I transposon. This study deepens our understanding of meiotic crossovers in potato and provides useful information for diploid potato breeding.
Collapse
Affiliation(s)
- Xiuhan Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangtao Zhu
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | | |
Collapse
|
5
|
Abeyratne CR, Macaya-Sanz D, Zhou R, Barry KW, Daum C, Haiby K, Lipzen A, Stanton B, Yoshinaga Y, Zane M, Tuskan GA, DiFazio SP. High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa. G3 (BETHESDA, MD.) 2023; 13:jkac269. [PMID: 36250890 PMCID: PMC9836356 DOI: 10.1093/g3journal/jkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems.
Collapse
Affiliation(s)
| | - David Macaya-Sanz
- Department of Forest Ecology & Genetics, CIFOR-INIA, CSIC, Madrid 28040, Spain
| | - Ran Zhou
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Yuko Yoshinaga
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Matthew Zane
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Gerald A Tuskan
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
6
|
Al Salameen F, Habibi N, Al Amad S, Al Doaij B. Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS. PLANTS (BASEL, SWITZERLAND) 2022; 11:1435. [PMID: 35684208 PMCID: PMC9183190 DOI: 10.3390/plants11111435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Natural populations of Rhanterium eppaposum Oliv. (Arfaj), a perennial forage shrub, have depleted due to unethical human interventions and climate change in Kuwait. Therefore, there is an urgent need to conserve this native plant through the assessment of its genetic diversity and population structure. Genotyping by sequencing (GBS) has recently emerged as a powerful tool for the molecular diversity analysis of higher plants without prior knowledge of their genome. This study represents the first effort in using GBS to discover genome-wide single nucleotide polymorphisms (SNPs) of local Rhanterium plants to assess the genetic diversity present in landraces collected from six different locations in Kuwait. The study generated a novel set of 11,231 single nucleotide polymorphisms (SNPs) and indels (insertions and deletions) in 98 genotypes of Rhanterium. The analysis of molecular variance (AMOVA) revealed ~1.5% variation residing among the six populations, ~5% among the individuals within the population and 93% variation present within the populations (FST = 0.029; p = 0.0). Bayesian and UPGMA analyses identified two admixed clusters of the tested samples; however, the principal coordinates analysis returned the complete population as a single group. Mantel's test returned a very weak correlation coefficient of r2 = 0.101 (p = 0.00) between the geographic and genetic distance. These findings are useful for the native species to formulate conservation strategies for its sustainable management and desert rehabilitation.
Collapse
Affiliation(s)
| | - Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (F.A.S.); (S.A.A.); (B.A.D.)
| | | | | |
Collapse
|
7
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
8
|
Eriksson M, Rafajlović M. The Effect of the Recombination Rate between Adaptive Loci on the Capacity of a Population to Expand Its Range. Am Nat 2021; 197:526-542. [PMID: 33908832 DOI: 10.1086/713669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPrevious theoretical work on range expansions over heterogeneous environments showed that there is a critical environmental gradient where range expansion stops. For populations with freely recombining loci underlying the trait under selection (hereafter, "adaptive loci"), the critical gradient in one-dimensional habitats depends on the fitness cost of dispersal and the strength of selection relative to genetic drift. Here, we extend the previous work in two directions and ask, What is the role of the recombination rate between the adaptive loci during range expansions? And what effect does the ability of selfing as opposed to obligate outcrossing have on range expansions? To answer these questions, we use computer simulations. We demonstrate that while reduced recombination rates between adaptive loci slow down range expansions as a result of poor purging of locally deleterious alleles at the expansion front, they may also allow a species to occupy a greater range. In addition, we find that the allowance of selfing may improve the ability of populations to expand their ranges, for example, because selfing among potentially rare high-fitness individuals facilitates the establishment and maintenance of locally well-adapted genotypes. We conclude that during range expansions there is a trade-off between positive and negative effects of recombination within and between individuals.
Collapse
|
9
|
Schwarzkopf EJ, Motamayor JC, Cornejo OE. Genetic differentiation and intrinsic genomic features explain variation in recombination hotspots among cocoa tree populations. BMC Genomics 2020; 21:332. [PMID: 32349675 PMCID: PMC7191684 DOI: 10.1186/s12864-020-6746-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recombination plays an important evolutionary role by breaking up haplotypes and shuffling genetic variation. This process impacts the ability of selection to eliminate deleterious mutations or increase the frequency of beneficial mutations in a population. To understand the role of recombination generating and maintaining haplotypic variation in a population, we can construct fine-scale recombination maps. Such maps have been used to study a variety of model organisms and proven to be informative of how selection and demographics shape species-wide variation. Here we present a fine-scale recombination map for ten populations of Theobroma cacao – a non-model, long-lived, woody crop. We use this map to elucidate the dynamics of recombination rates in distinct populations of the same species, one of which is domesticated. Results Mean recombination rates in range between 2.5 and 8.6 cM/Mb for most populations of T. cacao with the exception of the domesticated Criollo (525 cM/Mb) and Guianna, a more recently established population (46.5 cM/Mb). We found little overlap in the location of hotspots of recombination across populations. We also found that hotspot regions contained fewer known retroelement sequences than expected and were overrepresented near transcription start and termination sites. We find mutations in FIGL-1, a protein shown to downregulate cross-over frequency in Arabidopsis, statistically associated to higher recombination rates in domesticated Criollo. Conclusions We generated fine-scale recombination maps for ten populations of Theobroma cacao and used them to understand what processes are associated with population-level variation in this species. Our results provide support to the hypothesis of increased recombination rates in domesticated plants (Criollo population). We propose a testable mechanistic hypothesis for the change in recombination rate in domesticated populations in the form of mutations to a previously identified recombination-suppressing protein. Finally, we establish a number of possible correlates of recombination hotspots that help explain general patterns of recombination in this species.
Collapse
Affiliation(s)
| | | | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
10
|
Raz A, Dahan-Meir T, Melamed-Bessudo C, Leshkowitz D, Levy AA. Redistribution of Meiotic Crossovers Along Wheat Chromosomes by Virus-Induced Gene Silencing. FRONTIERS IN PLANT SCIENCE 2020; 11:635139. [PMID: 33613593 PMCID: PMC7890124 DOI: 10.3389/fpls.2020.635139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.
Collapse
Affiliation(s)
- Amir Raz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Science, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
- Amir Raz,
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Avraham A. Levy,
| |
Collapse
|
11
|
Garavello M, Cuenca J, Dreissig S, Fuchs J, Navarro L, Houben A, Aleza P. Analysis of Crossover Events and Allele Segregation Distortion in Interspecific Citrus Hybrids by Single Pollen Genotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:615. [PMID: 32523591 PMCID: PMC7261893 DOI: 10.3389/fpls.2020.00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/17/2023]
Abstract
In citrus, a classical method of studying crossovers and segregation distortion (SD) is the genetic analysis of progenies. A new strategy combining fluorescence-activated cell sorting and whole genome amplification of haploid pollen nuclei with a large set of molecular markers, offers the opportunity to efficiently determine the frequency of crossovers and the identification of SD without the need to generate segregating populations. Here we have analyzed meiotic crossover events in a pollen nuclei population from "Eureka" lemon and the allelic SD was evaluated in a pollen nuclei population from a clementine × sweet orange hybrid ("CSO"). Data obtained from the "CSO" pollen nuclei population were compared to those obtained from genotyping of a segregating population ("RTSO") arising from a hand-made sexual hybridization between diploid non apomictic selected tangor (mandarin × sweet orange; "RTO" tangor) as female parent pollinated with "CSO" tangor as male parent. The analysis of crossovers rates on chromosome 1 revealed the presence of up to five crossovers events on one arm and four on the corresponding other arm, with an average of 1.97 crossovers per chromosome while no crossover events were observed in five "Eureka" lemon pollen nuclei. The rate of SD observed in "CSO" pollen nuclei (13.8%) was slightly lower than that recovered in the "RTSO" population (20.7%). In the pollen nuclei population, SD was found on linkage group (LG) 2, while the "RTSO" population showed SD on LGs 2 and 7. Potential male gametic selection mechanisms were distinguished in pollen grains, while in the population, mechanisms of gametophytic selection and/or zygotic selection were observed. This methodology is a very useful tool to facilitate research focused on the reproductive biology of citrus and study the mechanisms that affect crossovers and SD.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- Concordia Agricultural Experiment Station, National Agricultural Technology Institute, Entre Ríos, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Pablo Aleza,
| |
Collapse
|
12
|
Calderón-González Á, Pouilly N, Muños S, Grand X, Coque M, Velasco L, Pérez-Vich B. An SSR-SNP Linkage Map of the Parasitic Weed Orobanche cumana Wallr. Including a Gene for Plant Pigmentation. FRONTIERS IN PLANT SCIENCE 2019; 10:797. [PMID: 31275343 PMCID: PMC6594261 DOI: 10.3389/fpls.2019.00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Sunflower broomrape (Orobanche cumana Wallr.) is a holoparasitic plant that causes major yield losses to sunflower crops in the Old World. Efforts to understand how this parasitic weed recognizes and interacts with sunflowers are important for developing long-term genetic resistance strategies. However, such studies are hampered by the lack of genetic tools for O. cumana. The objectives of this research were to construct a genetic linkage map of this species using SSR and SNP markers, and mapping the Pg locus that is involved in plant pigmentation. The genetic map was developed from the progenies of a cross between the O. cumana inbred lines EK-12 and EK-A1, which originated from populations belonging to two distant and geographically separated gene pools identified in Spain. The inbred lines also differed in plant pigmentation, with EK-A1 lacking anthocyanin pigmentation (pgpg genotype). A genetic map comprising 26 SSR and 701 SNP markers was constructed, which displayed 19 linkage groups (LGs), corresponding to the 19 chromosome pairs of O. cumana. The total length of the map was 1795.7 cM, with an average distance between two adjacent positions of 2.5 cM and a maximum map distance of 41.9 cM. The Pg locus mapped to LG19 between the SNP markers OS02468 and OS01653 at 7.5 and 3.4 cM, respectively. This study constitutes the first linkage map and trait mapping study in Orobanche spp., laying a key foundation for further genome characterization and providing a basis for mapping additional traits such as those having a key role in parasitism.
Collapse
Affiliation(s)
- Álvaro Calderón-González
- Instituto de Agricultura Sostenible (IAS) – Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Nicolas Pouilly
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594-441, Castanet-Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594-441, Castanet-Tolosan, France
| | | | | | - Leonardo Velasco
- Instituto de Agricultura Sostenible (IAS) – Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Begoña Pérez-Vich
- Instituto de Agricultura Sostenible (IAS) – Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
13
|
Linkage-based genome assembly improvement of oil palm (Elaeis guineensis). Sci Rep 2019; 9:6619. [PMID: 31036825 PMCID: PMC6488618 DOI: 10.1038/s41598-019-42989-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Meiotic crossovers in outbred species, such as oil palm (Elaeis guineensis Jacq., 2n = 32) contribute to allelic re-assortment in the genome. Such genetic variation is usually exploited in breeding to combine positive alleles for trait superiority. A good quality reference genome is essential for identifying the genetic factors underlying traits of interest through linkage or association studies. At the moment, an AVROS pisifera genome is publicly available for oil palm. Distribution and frequency of crossovers throughout chromosomes in different origins of oil palm are still unclear. Hence, an ultrahigh-density genomic linkage map of a commercial Deli dura x AVROS pisifera family was constructed using the OP200K SNP array, to evaluate the genetic alignment with the genome assembly. A total of 27,890 linked SNP markers generated a total map length of 1,151.7 cM and an average mapping interval of 0.04 cM. Nineteen linkage groups represented 16 pseudo-chromosomes of oil palm, with 61.7% of the mapped SNPs present in the published genome. Meanwhile, the physical map was also successfully extended from 658 Mb to 969 Mb by assigning unplaced scaffolds to the pseudo-chromosomes. A genic linkage map with major representation of sugar and lipid biosynthesis pathways was subsequently built for future studies on oil related quantitative trait loci (QTL). This study improves the current physical genome of the commercial oil palm, and provides important insights into its recombination landscape, eventually unlocking the full potential genome sequence-enabled biology for oil palm.
Collapse
|
14
|
Weng Z, Wolc A, Su H, Fernando RL, Dekkers JCM, Arango J, Settar P, Fulton JE, O'Sullivan NP, Garrick DJ. Identification of recombination hotspots and quantitative trait loci for recombination rate in layer chickens. J Anim Sci Biotechnol 2019; 10:20. [PMID: 30891237 PMCID: PMC6390344 DOI: 10.1186/s40104-019-0332-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background The frequency of recombination events varies across the genome and between individuals, which may be related to some genomic features. The objective of this study was to assess the frequency of recombination events and to identify QTL (quantitative trait loci) for recombination rate in two purebred layer chicken lines. Methods A total of 1200 white-egg layers (WL) were genotyped with 580 K SNPs and 5108 brown-egg layers (BL) were genotyped with 42 K SNPs (single nucleotide polymorphisms). Recombination events were identified within half-sib families and both the number of recombination events and the recombination rate was calculated within each 0.5 Mb window of the genome. The 10% of windows with the highest recombination rate on each chromosome were considered to be recombination hotspots. A BayesB model was used separately for each line to identify genomic regions associated with the genome-wide number of recombination event per meiosis. Regions that explained more than 0.8% of genetic variance of recombination rate were considered to harbor QTL. Results Heritability of recombination rate was estimated at 0.17 in WL and 0.16 in BL. On average, 11.3 and 23.2 recombination events were detected per individual across the genome in 1301 and 9292 meioses in the WL and BL, respectively. The estimated recombination rates differed significantly between the lines, which could be due to differences in inbreeding levels, and haplotype structures. Dams had about 5% to 20% higher recombination rates per meiosis than sires in both lines. Recombination rate per 0.5 Mb window had a strong negative correlation with chromosome size and a strong positive correlation with GC content and with CpG island density across the genome in both lines. Different QTL for recombination rate were identified in the two lines. There were 190 and 199 non-overlapping recombination hotspots detected in WL and BL respectively, 28 of which were common to both lines. Conclusions Differences in the recombination rates, hotspot locations, and QTL regions associated with genome-wide recombination were observed between lines, indicating the breed-specific feature of detected recombination events and the control of recombination events is a complex polygenic trait. Electronic supplementary material The online version of this article (10.1186/s40104-019-0332-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziqing Weng
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Anna Wolc
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA.,2Hy-Line International, Dallas Center, IA 50063 USA
| | - Hailin Su
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Rohan L Fernando
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Jack C M Dekkers
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Jesus Arango
- 2Hy-Line International, Dallas Center, IA 50063 USA
| | - Petek Settar
- 2Hy-Line International, Dallas Center, IA 50063 USA
| | | | | | - Dorian J Garrick
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA.,3AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, 4442 New Zealand
| |
Collapse
|
15
|
Gutierrez-Gonzalez JJ, Mascher M, Poland J, Muehlbauer GJ. Dense genotyping-by-sequencing linkage maps of two Synthetic W7984×Opata reference populations provide insights into wheat structural diversity. Sci Rep 2019; 9:1793. [PMID: 30741967 PMCID: PMC6370774 DOI: 10.1038/s41598-018-38111-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Wheat (Triticum aestivum) genetic maps are a key enabling tool for genetic studies. We used genotyping-by-sequencing-(GBS) derived markers to map recombinant inbred line (RIL) and doubled haploid (DH) populations from crosses of W7984 by Opata, and used the maps to explore features of recombination control. The RIL and DH populations, SynOpRIL and SynOpDH, were composed of 906 and 92 individuals, respectively. Two high-density genetic linkage framework maps were constructed of 2,842 and 2,961 cM, harboring 3,634 and 6,580 markers, respectively. Using imputation, we added 43,013 and 86,042 markers to the SynOpRIL and SynOpDH maps. We observed preferential recombination in telomeric regions and reduced recombination in pericentromeric regions. Recombination rates varied between subgenomes, with the D genomes of the two populations exhibiting the highest recombination rates of 0.26-0.27 cM/Mb. QTL mapping identified two additive and three epistatic loci associated with crossover number. Additionally, we used published POPSEQ data from SynOpDH to explore the structural variation in W7984 and Opata. We found that chromosome 5AS is missing from W7984. We also found 2,332 variations larger than 100 kb. Structural variants were more abundant in distal regions, and overlapped 9,196 genes. The two maps provide a resource for trait mapping and genomic-assisted breeding.
Collapse
Affiliation(s)
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland OT, Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA.
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
16
|
Chao Y, Chen W, Chen C, Ho H, Yeh C, Kuo Y, Su C, Yen S, Hsueh H, Yeh J, Hsu H, Tsai Y, Kuo T, Chang S, Chen K, Shih M. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2027-2041. [PMID: 29704444 PMCID: PMC6230949 DOI: 10.1111/pbi.12936] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 05/04/2023]
Abstract
The Orchidaceae is a diverse and ecologically important plant family. Approximately 69% of all orchid species are epiphytes, which provide diverse microhabitats for many small animals and fungi in the canopy of tropical rainforests. Moreover, many orchids are of economic importance as food flavourings or ornamental plants. Phalaenopsis aphrodite, an epiphytic orchid, is a major breeding parent of many commercial orchid hybrids. We provide a high-quality chromosome-scale assembly of the P. aphrodite genome. The total length of all scaffolds is 1025.1 Mb, with N50 scaffold size of 19.7 Mb. A total of 28 902 protein-coding genes were identified. We constructed an orchid genetic linkage map, and then anchored and ordered the genomic scaffolds along the linkage groups. We also established a high-resolution pachytene karyotype of P. aphrodite and completed the assignment of linkage groups to the 19 chromosomes using fluorescence in situ hybridization. We identified an expansion in the epiphytic orchid lineage of FRS5-like subclade associated with adaptations to the life in the canopy. Phylogenetic analysis further provides new insights into the orchid lineage-specific duplications of MADS-box genes, which might have contributed to the variation in labellum and pollinium morphology and its accessory structure. To our knowledge, this is the first orchid genome to be integrated with a SNP-based genetic linkage map and validated by physical mapping. The genome and genetic map not only offer unprecedented resources for increasing breeding efficiency in horticultural orchids but also provide an important foundation for future studies in adaptation genomics of epiphytes.
Collapse
Affiliation(s)
- Ya‐Ting Chao
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wan‐Chieh Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Chun‐Yi Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Hsiu‐Yin Ho
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Chih‐Hsin Yeh
- Department of AgronomyNational Taiwan UniversityTaipeiTaiwan
- Taoyuan District Agricultural Research and Extension StationCouncil of Agriculture, Executive YuanTaoyuanTaiwan
| | - Yi‐Tzu Kuo
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Chun‐Lin Su
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Shao‐Hua Yen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Hao‐Yen Hsueh
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Jen‐Hau Yeh
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Hui‐Lan Hsu
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Hui Tsai
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Tzu‐Yen Kuo
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Song‐Bin Chang
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Kai‐Yi Chen
- Department of AgronomyNational Taiwan UniversityTaipeiTaiwan
| | - Ming‐Che Shih
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
17
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Tai HH, De Koeyer D, Sønderkær M, Hedegaard S, Lagüe M, Goyer C, Nolan L, Davidson C, Gardner K, Neilson J, Paudel JR, Murphy A, Bizimungu B, Wang HY, Xiong X, Halterman D, Nielsen KL. Verticillium dahliae Disease Resistance and the Regulatory Pathway for Maturity and Tuberization in Potato. THE PLANT GENOME 2018; 11. [PMID: 29505631 DOI: 10.3835/plantgenome2017.05.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Kleb. is a pathogenic fungus causing wilting, chlorosis, and early dying in potato ( L.). Genetic mapping of resistance to was done using a diploid population of potato. The major quantitative trait locus (QTL) for resistance was found on chromosome 5. The gene, controlling earliness of maturity and tuberization, was mapped within the interval. Another QTL on chromosome 9 co-localized with the wilt resistance gene marker. Epistasis analysis indicated that the loci on chromosomes 5 and 9 had a highly significant interaction, and that functioned downstream of The alleles were sequenced and found to encode StCDF1.1 and StCDF1.3. Interaction between the resistance allele and the was demonstrated, but not for Genome-wide expression QTL (eQTL) analysis was performed and genes with eQTL at the and loci were both found to have similar functions involving the chloroplast, including photosynthesis, which declines in both maturity and wilt. Among the gene ontology (GO) terms that were specific to genes with eQTL at the , but not the locus, were those associated with fungal defense. These results suggest that controls fungal defense and reduces early dying in wilt through affecting genetic pathway controlling tuberization timing.
Collapse
|
19
|
Laurent B, Palaiokostas C, Spataro C, Moinard M, Zehraoui E, Houston RD, Foulongne‐Oriol M. High-resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two-speed genome evolution. MOLECULAR PLANT PATHOLOGY 2018; 19:341-354. [PMID: 27998012 PMCID: PMC6638080 DOI: 10.1111/mpp.12524] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 05/25/2023]
Abstract
Recombination is a major evolutionary force, increasing genetic diversity and permitting efficient coevolution of fungal pathogen(s) with their host(s). The ascomycete Fusarium graminearum is a devastating pathogen of cereal crops, and can contaminate food and feed with harmful mycotoxins. Previous studies have suggested a high adaptive potential of this pathogen, illustrated by an increase in pathogenicity and resistance to fungicides. In this study, we provide the first detailed picture of the crossover events occurring during meiosis and discuss the role of recombination in pathogen evolution. An experimental recombinant population (n = 88) was created and genotyped using 1306 polymorphic markers obtained from restriction site-associated DNA sequencing (RAD-seq) and aligned to the reference genome. The construction of a high-density linkage map, anchoring 99% of the total length of the reference genome, allowed the identification of 1451 putative crossovers, positioned at a median resolution of 24 kb. The majority of crossovers (87.2%) occurred in a relatively small portion of the genome (30%). All chromosomes demonstrated recombination-active sections, which had a near 15-fold higher crossover rate than non-active recombinant sections. The recombination rate showed a strong positive correlation with nucleotide diversity, and recombination-active regions were enriched for genes with a putative role in host-pathogen interaction, as well as putative diversifying genes. Our results confirm the preliminary analysis observed in other F. graminearum strains and suggest a conserved 'two-speed' recombination landscape. The consequences with regard to the evolutionary potential of this major fungal pathogen are also discussed.
Collapse
Affiliation(s)
- Benoit Laurent
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | | | - Cathy Spataro
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | - Magalie Moinard
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | - Enric Zehraoui
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | - Ross D. Houston
- The Roslin Institute, University of EdinburghMidlothianEH25 9RGUK
| | | |
Collapse
|
20
|
Wang B, Liu H, Liu Z, Dong X, Guo J, Li W, Chen J, Gao C, Zhu Y, Zheng X, Chen Z, Chen J, Song W, Hauck A, Lai J. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC PLANT BIOLOGY 2018; 18:17. [PMID: 29347909 PMCID: PMC5774087 DOI: 10.1186/s12870-018-1233-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/14/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plant Architecture Related Traits (PATs) are of great importance for maize breeding, and mainly controlled by minor effect quantitative trait loci (QTLs). However, cloning or even fine-mapping of minor effect QTLs is very difficult in maize. Theoretically, large population and high density genetic map can be helpful for increasing QTL mapping resolution and accuracy, but such a possibility have not been actually tested. RESULTS Here, we employed a genotyping-by-sequencing (GBS) strategy to construct a linkage map with 16,769 marker bins for 1021 recombinant inbred lines (RILs). Accurately mapping of well studied genes P1, pl1 and r1 underlying silk color demonstrated the map quality. After QTL analysis, a total of 51 loci were mapped for six PATs. Although all of them belong to minor effect alleles, the lengths of the QTL intervals, with a minimum and median of 1.03 and 3.40 Mb respectively, were remarkably reduced as compared with previous reports using smaller size of population or small number of markers. Several genes with known function in maize were shown to be overlapping with or close neighboring to these QTL peaks, including na1, td1, d3 for plant height, ra1 for tassel branch number, and zfl2 for tassel length. To further confirm our mapping results, a plant height QTL, qPH1a, was verified by an introgression lines (ILs). CONCLUSIONS We demonstrated a method for high resolution mapping of minor effect QTLs in maize, and the resulted comprehensive QTLs for PATs are valuable for maize molecular breeding in the future.
Collapse
Affiliation(s)
- Baobao Wang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Han Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhipeng Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jinjie Guo
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jing Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chi Gao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yanbin Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xinmei Zheng
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zongliang Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Andrew Hauck
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Cannon CH, Scher CL. Exploring the potential of gametic reconstruction of parental genotypes by F 1 hybrids as a bridge for rapid introgression. Genome 2017; 60:713-719. [PMID: 28732173 DOI: 10.1139/gen-2016-0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interspecific hybridization and genetic introgression are commonly observed in natural populations of many species, especially trees. Among oaks, gene flow between closely related species has been well documented. And yet, hybridization does not lead to a "melting pot", i.e., the homogenization of phenotypic traits. Here, we explore how the combination of several common reproductive and genomic traits could create an avenue for interspecific gene flow that partially explains this apparent paradox. During meiosis, F1 hybrids will produce approximately (½)n "reconstructed" parental gametes, where n equals the number of chromosomes. Crossing over would introduce a small amount of introgressive material. The resulting parental-type gametophytes would probably possess a similar fertilization advantage as conspecific pollen. The resulting "backcross" would actually be the genetic equivalent of a conspecific out-cross, with a small amount of heterospecific DNA captured through crossing over. Even with detailed genomic analysis, the resulting offspring would not appear to be a backcross. This avenue for rapid introgression between species through the F1 hybrid will be viable for organisms that meet certain conditions: low base chromosome number, conserved genomic structure and size, production of billions of gametes/gametophytes during each reproductive event, and conspecific fertilization advantage.
Collapse
Affiliation(s)
- Charles H Cannon
- The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA.,The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - C Lane Scher
- The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA.,The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| |
Collapse
|
22
|
Kasianov AS, Klepikova AV, Kulakovskiy IV, Gerasimov ES, Fedotova AV, Besedina EG, Kondrashov AS, Logacheva MD, Penin AA. High-quality genome assembly of Capsella bursa-pastoris reveals asymmetry of regulatory elements at early stages of polyploid genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:278-291. [PMID: 28387959 DOI: 10.1111/tpj.13563] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 05/22/2023]
Abstract
Polyploidization and subsequent sub- and neofunctionalization of duplicated genes represent a major mechanism of plant genome evolution. Capsella bursa-pastoris, a widespread ruderal plant, is a recent allotetraploid and, thus, is an ideal model organism for studying early changes following polyploidization. We constructed a high-quality assembly of C. bursa-pastoris genome and a transcriptome atlas covering a broad sample of organs and developmental stages (available online at http://travadb.org/browse/Species=Cbp). We demonstrate that expression of homeologs is mostly symmetric between subgenomes, and identify a set of homeolog pairs with discordant expression. Comparison of promoters within such pairs revealed emerging asymmetry of regulatory elements. Among them there are multiple binding sites for transcription factors controlling the regulation of photosynthesis and plant development by light (PIF3, HY5) and cold stress response (CBF). These results suggest that polyploidization in C. bursa-pastoris enhanced its plasticity of response to light and temperature, and allowed substantial expansion of its distribution range.
Collapse
Affiliation(s)
- Artem S Kasianov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str, Moscow, 119333, Russia
| | - Anna V Klepikova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
| | - Ivan V Kulakovskiy
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str, Moscow, 119333, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia
| | - Evgeny S Gerasimov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna V Fedotova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elizaveta G Besedina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey S Kondrashov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Ecology and Evolution, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, MI, USA
| | - Maria D Logacheva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya str, Kazan, 420008, Russia
| | - Aleksey A Penin
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps. Genetics 2017; 203:1807-25. [PMID: 27516617 DOI: 10.1534/genetics.115.185900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
During a selective sweep, characteristic patterns of linkage disequilibrium can arise in the genomic region surrounding a selected locus. These have been used to infer past selective sweeps. However, the recombination rate is known to vary substantially along the genome for many species. We here investigate the effectiveness of current (Kelly's [Formula: see text] and [Formula: see text]) and novel statistics at inferring hard selective sweeps based on linkage disequilibrium distortions under different conditions, including a human-realistic demographic model and recombination rate variation. When the recombination rate is constant, Kelly's [Formula: see text] offers high power, but is outperformed by a novel statistic that we test, which we call [Formula: see text] We also find this statistic to be effective at detecting sweeps from standing variation. When recombination rate fluctuations are included, there is a considerable reduction in power for all linkage disequilibrium-based statistics. However, this can largely be reversed by appropriately controlling for expected linkage disequilibrium using a genetic map. To further test these different methods, we perform selection scans on well-characterized HapMap data, finding that all three statistics-[Formula: see text] Kelly's [Formula: see text] and [Formula: see text]-are able to replicate signals at regions previously identified as selection candidates based on population differentiation or the site frequency spectrum. While [Formula: see text] replicates most candidates when recombination map data are not available, the [Formula: see text] and [Formula: see text] statistics are more successful when recombination rate variation is controlled for. Given both this and their higher power in simulations of selective sweeps, these statistics are preferred when information on local recombination rate variation is available.
Collapse
|
24
|
Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:189-203. [PMID: 28090692 DOI: 10.1111/tpj.13478] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 05/21/2023]
Abstract
Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Betty Pelgas
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanç Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John Mackay
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, 0X1 3RB, UK
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
25
|
Zheng X, Li L, Liang F, Tan C, Tang S, Yu S, Diao Y, Li S, Hu Z. Pedigree-based genome re-sequencing reveals genetic variation patterns of elite backbone varieties during modern rice improvement. Sci Rep 2017; 7:292. [PMID: 28331200 PMCID: PMC5428501 DOI: 10.1038/s41598-017-00415-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
Rice breeding has achieved great productivity improvements by semi-dwarf varieties and hybrid vigour. Due to poor understanding of genetic basis of elite backbone varieties, the continuous increasing in rice yield still faces great challenges. Here, 52 elite rice varieties from three historical representative pedigrees were re-sequenced with 10.1× depth on average, and ~6.5 million single nucleotide polymorphisms (SNPs) were obtained. We identified thousands of low-diversity genomic regions and 0-diversity genes during breeding. Using pedigree information, we also traced SNP transmission patterns and observed breeding signatures in pedigree. These regions included the larger number of key well-known functional genes. Besides, 35 regions spanning 0.16% of the rice gnome had been differentially selected between conventional and restorer pedigrees. These genes identified here will be useful to the further pedigree breeding. Our study provides insights into the genetic basis of backbone varieties and will have immediate implications for performing genome-wide breeding by design.
Collapse
Affiliation(s)
- Xingfei Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Lanzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Fan Liang
- Nextomics Biosciences, Wuhan, 430075, P.R. China
| | - Changjun Tan
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Shuzhu Tang
- Agricultural College of Yangzhou University, Yangzhou, 225009, P.R. China
| | - Sibin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Shuangcheng Li
- Rice Institute, Sichuan Agricultural University, Chengdou, 611130, China.
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
26
|
Demirci S, van Dijk ADJ, Sanchez Perez G, Aflitos SA, de Ridder D, Peters SA. Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:554-564. [PMID: 27797425 DOI: 10.1111/tpj.13406] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 05/20/2023]
Abstract
We determined the crossover (CO) distribution, frequency and genomic sequences involved in interspecies meiotic recombination by using parent-assigned variants of 52 F6 recombinant inbred lines obtained from a cross between tomato, Solanum lycopersicum, and its wild relative, Solanum pimpinellifolium. The interspecific CO frequency was 80% lower than reported for intraspecific tomato crosses. We detected regions showing a relatively high and low CO frequency, so-called hot and cold regions. Cold regions coincide to a large extent with the heterochromatin, although we found a limited number of smaller cold regions in the euchromatin. The CO frequency was higher at the distal ends of chromosomes than in pericentromeric regions and higher in short arm euchromatin. Hot regions of CO were detected in euchromatin, and COs were more often located in non-coding regions near the 5' untranslated region of genes than expected by chance. Besides overrepresented CCN repeats, we detected poly-A/T and AT-rich motifs enriched in 1-kb promoter regions flanking the CO sites. The most abundant sequence motifs at CO sites share weak similarity to transcription factor-binding sites, such as for the C2H2 zinc finger factors class and MADS box factors, while InterPro scans detected enrichment for genes possibly involved in the repair of DNA breaks.
Collapse
Affiliation(s)
- Sevgin Demirci
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gabino Sanchez Perez
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Saulo A Aflitos
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
27
|
Pereira TNS, Neto MF, de Souza MM, da Costa Geronimo IG, de Melo CAF, Pereira MG. Cytological Characterization of Brazilian Green Dwarf Coconut (<i>Cocos nucifera</i> L.) <i>via</i> Meiosis and Conventional and Differential Karyotyping. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Telma Nair Santana Pereira
- Universidade Estadual do Norte Fluminense, Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Melhoramento Genético Vegetal
| | - Monique Freitas Neto
- Universidade Estadual do Norte Fluminense, Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Melhoramento Genético Vegetal
| | | | - Ingrid Gaspar da Costa Geronimo
- Universidade Estadual do Norte Fluminense, Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Melhoramento Genético Vegetal
| | | | - Messias Gonzaga Pereira
- Universidade Estadual do Norte Fluminense, Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Melhoramento Genético Vegetal
| |
Collapse
|
28
|
Calvente A, Santos JL, Rufas JS. Do Exogenous DNA Double-Strand Breaks Change Incomplete Synapsis and Chiasma Localization in the Grasshopper Stethophyma grossum? PLoS One 2016; 11:e0168499. [PMID: 28005992 PMCID: PMC5179137 DOI: 10.1371/journal.pone.0168499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023] Open
Abstract
Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous DSBs also lead to alterations in the recombination pattern of some species in which full homologous synapsis is achieved at pachytene. We have carried out a similar approach in males of the grasshopper Stethophyma grossum, whose homologues show incomplete synapsis and proximal chiasma localization. After irradiating males with γ rays we have studied the distribution of both the histone variant γ-H2AX and the recombinase RAD51. These proteins are cytological markers of DSBs at early prophase I. We have inferred synaptonemal complex (SC) formation via identification of SMC3 and RAD 21 cohesin subunits. Whereas thick and thin SMC3 filaments would correspond to synapsed and unsynapsed regions, the presence of RAD21 is only restricted to synapsed regions. Results show that irradiated spermatocytes maintain restricted synapsis between homologues. However, the frequency and distribution of chiasmata in metaphase I bivalents is slightly changed and quadrivalents were also observed. These results could be related to the singular nuclear polarization displayed by the spermatocytes of this species.
Collapse
Affiliation(s)
- Adela Calvente
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Luis Santos
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio S. Rufas
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Jena KK, Ballesfin MLE, Vinarao RB. Development of Oryza sativa L. by Oryza punctata Kotschy ex Steud. monosomic addition lines with high value traits by interspecific hybridization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1873-1886. [PMID: 27318700 DOI: 10.1007/s00122-016-2745-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
This paper describes the development of monosomic alien addition and disomic introgression lines through a cross between autotetraploid indica rice and Oryza punctata toward tapping valuable traits for rice improvement. Oryza punctata is a distantly related wild Oryza species having BB genome with untapped genetic resources for rice improvement. Low crossability between the cultivated O. sativa and O. punctata restricts the success of transferring many desirable traits into cultivated rice. Artificially induced autotetraploids of an elite breeding line, IR31917-45-3-2, were produced and crossed with O. punctata. Allotriploid F1 plants were backcrossed to IR31917-45-3-2 and generated progenies with extra chromosomes from O. punctata. Twenty BC1F1 and 59 BC2F1 plants were produced with chromosome numbers ranging from 24 (2n) to 29 (2n + 5) and 2n (24) to 26 (2n + 2), respectively. Eleven monosomic alien addition lines (MAALs) were characterized morphologically and cytologically and designated as MAAL 1-12. MAALs were genotyped using O. punctata genome-specific molecular markers and detected chromosome segments inherited from O. punctata. O. punctata introgressions across all the chromosomes of O. sativa were identified except for chromosome 8. The most frequent introgressions were observed in chromosomes 4, 6, 10, and 11, which could be the recombination hotspots between A and B genomes. Some of the qualitative traits such as black hull, purple coleoptile base, purple stigma, long awn, and short grain size from O. punctata were inherited in some disomic introgression lines (DILs). Several DILs inherited genes from O. punctata conferring resistance to brown planthopper, green leafhopper, and diseases such as bacterial blight and blast. This is the first report on successful gene transfer from O. punctata into O. sativa.
Collapse
Affiliation(s)
- Kshirod K Jena
- Novel Gene Resources Laboratory, Plant Breeding Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | - Ma LaRue E Ballesfin
- Novel Gene Resources Laboratory, Plant Breeding Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ricky B Vinarao
- Novel Gene Resources Laboratory, Plant Breeding Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
30
|
Duroy PO, Perrier X, Laboureau N, Jacquemoud-Collet JP, Iskra-Caruana ML. How endogenous plant pararetroviruses shed light on Musa evolution. ANNALS OF BOTANY 2016; 117:625-41. [PMID: 26971286 PMCID: PMC4817503 DOI: 10.1093/aob/mcw011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/06/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Banana genomes harbour numerous copies of viral sequences derived from banana streak viruses (BSVs) - dsDNA viruses belonging to the family Caulimoviridae.These viral integrants (eBSVs) are mostly defective, probably as a result of 'pseudogenization' driven by host genome evolution. However, some can give rise to infection by releasing a functional viral genome following abiotic stresses. These distinct infective eBSVs correspond to the three main widespread BSV species (BSOLV, BSGFV and BSIMV), fully described within the Musa balbisiana B genomes of the seedy diploid 'Pisang Klutuk Wulung' (PKW). METHODS We characterize eBSV distribution among a Musa sampling including seedy BB diploids and interspecific hybrids with Musa acuminate exhibiting different levels of ploidy for the B genome (ABB, AAB, AB). We used representative samples of the two areas of sympatry between M. acuminate and M. balbisiana species representing the native area of the most widely cultivated AAB cultivars (in India and in East Asia, ranging from the Philippines to New Guinea). Seventy-seven accessions were characterized using eBSV-related PCR markers and Southern hybridization approaches. We coded both sets of results to create a common dissimilarity matrix with which to interpret eBSV distribution. KEY RESULTS We propose a Musa phylogeny driven by the M. balbisiana genome based on a dendrogram resulting from a joint neighbour-joining analysis of the three BSV species, showing for the first time lineages between BB and ABB/AAB hybrids. eBSVs appear to be relevant phylogenetic markers that can illustrate theM. balbisiana phylogeography story. CONCLUSION The theoretical implications of this study for further elucidation of the historical and geographical process of Musa domestication are numerous. Discovery of banana plants with B genome non-infective for eBSV opens the way to the introduction of new genitors in programmes of genetic banana improvement.
Collapse
|
31
|
He Y, Wang M, Sun Q, Pawlowski WP. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation. Methods Mol Biol 2016; 1429:177-88. [PMID: 27511175 DOI: 10.1007/978-1-4939-3622-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi.
Collapse
Affiliation(s)
- Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100083, China
| | - Minghui Wang
- Institute of Biotechnology, Biotechnology Resource Center and Section of Plant Biology in School of IntegrativePlant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Institute of Biotechnology, Biotechnology Resource Center, Cornell University, Ithaca, NY, 14853, USA
| | - Wojciech P Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
32
|
Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, Cattivelli L. Next generation breeding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:3-13. [PMID: 26566820 DOI: 10.1016/j.plantsci.2015.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 05/18/2023]
Abstract
The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement.
Collapse
Affiliation(s)
- Delfina Barabaschi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Francesca Desiderio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Andrea Volante
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Rice Research Unit, SS 11 to Torino Km 2.5, 13100 Vercelli, Italy
| | - Patrizia Vaccino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Research Unit for Cereal Selection in Continental areas, via R. Forlani, e, 26866 S. Angelo Lodigiano, Italy
| | - Giampiero Valè
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Rice Research Unit, SS 11 to Torino Km 2.5, 13100 Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy.
| |
Collapse
|
33
|
Silva-Junior OB, Grattapaglia D. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis. THE NEW PHYTOLOGIST 2015; 208:830-45. [PMID: 26079595 DOI: 10.1111/nph.13505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/06/2015] [Indexed: 05/03/2023]
Abstract
We used high-density single nucleotide polymorphism (SNP) data and whole-genome pooled resequencing to examine the landscape of population recombination (ρ) and nucleotide diversity (ϴw ), assess the extent of linkage disequilibrium (r(2) ) and build the highest density linkage maps for Eucalyptus. At the genome-wide level, linkage disequilibrium (LD) decayed within c. 4-6 kb, slower than previously reported from candidate gene studies, but showing considerable variation from absence to complete LD up to 50 kb. A sharp decrease in the estimate of ρ was seen when going from short to genome-wide inter-SNP distances, highlighting the dependence of this parameter on the scale of observation adopted. Recombination was correlated with nucleotide diversity, gene density and distance from the centromere, with hotspots of recombination enriched for genes involved in chemical reactions and pathways of the normal metabolic processes. The high nucleotide diversity (ϴw = 0.022) of E. grandis revealed that mutation is more important than recombination in shaping its genomic diversity (ρ/ϴw = 0.645). Chromosome-wide ancestral recombination graphs allowed us to date the split of E. grandis (1.7-4.8 million yr ago) and identify a scenario for the recent demographic history of the species. Our results have considerable practical importance to Genome Wide Association Studies (GWAS), while indicating bright prospects for genomic prediction of complex phenotypes in eucalypt breeding.
Collapse
Affiliation(s)
- Orzenil B Silva-Junior
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasilia, 70770-970, DF, Brazil
- Laboratório de Bioinformática, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasilia, DF, 70770-970, Brazil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, Brasilia, DF, 70790-160, Brazil
| | - Dario Grattapaglia
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasilia, 70770-970, DF, Brazil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, Brasilia, DF, 70790-160, Brazil
| |
Collapse
|
34
|
Kumar A, Seetan R, Mergoum M, Tiwari VK, Iqbal MJ, Wang Y, Al-Azzam O, Šimková H, Luo MC, Dvorak J, Gu YQ, Denton A, Kilian A, Lazo GR, Kianian SF. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 2015; 16:800. [PMID: 26475137 PMCID: PMC4609151 DOI: 10.1186/s12864-015-2030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. METHODS In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. RESULTS A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. CONCLUSION This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Raed Seetan
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Mohamed Mergoum
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Vijay K Tiwari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Muhammad J Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yi Wang
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Omar Al-Azzam
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Hana Šimková
- Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
- Institute of Experimental Botany, Šlechtitelů 31, 783-71, Olomouc, Czech Republic
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Anne Denton
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla, ACT2600, Australia
| | - Gerard R Lazo
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
35
|
Salinas Castellanos LC, Chomilier J, Hernández-Torres J. Recombination of chl-fus gene (Plastid Origin) downstream of hop: a locus of chromosomal instability. BMC Genomics 2015; 16:573. [PMID: 26238241 PMCID: PMC4522979 DOI: 10.1186/s12864-015-1780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/14/2015] [Indexed: 11/26/2022] Open
Abstract
Background The co-chaperone Hop [heat shock protein (HSP) organizing protein] has been shown to act as an adaptor for protein folding and maturation, in concert with Hsp70 and Hsp90. The hop gene is of eukaryotic origin. Likewise, the chloroplast elongation factor G (cEF-G) catalyzes the translocation step in chloroplast protein synthesis. The chl-fus gene, which encodes the cEF-G protein, is of plastid origin. Both proteins, Hop and cEF-G, derived from domain duplications. It was demonstrated that the nuclear chl-fus gene locates in opposite orientation to a hop gene in Glycine max. We explored 53 available plant genomes from Chlorophyta to higher plants, to determine whether the chl-fus gene was transferred directly downstream of the primordial hop in the proto-eukaryote host cell. Since both genes came from exon/module duplication events, we wanted to explore the involvement of introns in the early origin and the ensuing evolutionary changes in gene structure. Results We reconstructed the evolutionary history of the two convergent plant genes, on the basis of their gene structure, microsynteny and microcolinearity, from 53 plant nuclear genomes. Despite a high degree (72 %) of microcolinearity among vascular plants, our results demonstrate that their adjacency was a product of chromosomal rearrangements. Based on predicted exon − intron structures, we inferred the molecular events giving rise to the current form of genes. Therefore, we propose a simple model of exon/module shuffling by intronic recombinations in which phase-0 introns were essential for domain duplication, and a phase-1 intron for transit peptide recruiting. Finally, we demonstrate a natural susceptibility of the intergenic region to recombine or delete, seriously threatening the integrity of the chl-fus gene for the future. Conclusions Our results are consistent with the interpretation that the chl-fus gene was transferred from the chloroplast to a chromosome different from that of hop, in the primitive photosynthetic eukaryote, and much later before the appearance of angiosperms, it was recombined downstream of hop. Exon/module shuffling mediated by symmetric intron phases (i.e., phase-0 introns) was essential for gene evolution. The intergenic region is prone to recombine, risking the integrity of both genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1780-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jacques Chomilier
- IMPMC, UPMC, CNRS UMR 7590, MNHN, IRD, Paris, France and RPBS, Paris, France.
| | - Jorge Hernández-Torres
- Laboratorio de Biología Molecular, Escuela de Biología, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga, Colombia.
| |
Collapse
|
36
|
Víquez-Zamora M, Caro M, Finkers R, Tikunov Y, Bovy A, Visser RGF, Bai Y, van Heusden S. Mapping in the era of sequencing: high density genotyping and its application for mapping TYLCV resistance in Solanum pimpinellifolium. BMC Genomics 2014; 15:1152. [PMID: 25526885 PMCID: PMC4367842 DOI: 10.1186/1471-2164-15-1152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/12/2014] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS). RESULTS A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides. CONCLUSIONS The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.
Collapse
Affiliation(s)
- Marcela Víquez-Zamora
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
- />Graduate School Experimental Plant Sciences, Wageningen, 6708 PB the Netherlands
| | - Myluska Caro
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Graduate School Experimental Plant Sciences, Wageningen, 6708 PB the Netherlands
| | - Richard Finkers
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Yury Tikunov
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Arnaud Bovy
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Richard GF Visser
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Yuling Bai
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
| | - Sjaak van Heusden
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| |
Collapse
|
37
|
Abstract
Nucleotide diversity is greater in maize than in most organisms studied to date, so allelic pairs in a hybrid tend to be highly polymorphic. Most recombination events between such pairs of maize polymorphic alleles are crossovers. However, intragenic recombination events not associated with flanking marker exchange, corresponding to noncrossover gene conversions, predominate between alleles derived from the same progenitor. In these dimorphic heterozygotes, the two alleles differ only at the two mutant sites between which recombination is being measured. To investigate whether gene conversion at the bz locus is polarized, two large diallel crossing matrices involving mutant sites spread across the bz gene were performed and more than 2,500 intragenic recombinants were scored. In both diallels, around 90% of recombinants could be accounted for by gene conversion. Furthermore, conversion exhibited a striking polarity, with sites located within 150 bp of the start and stop codons converting more frequently than sites located in the middle of the gene. The implications of these findings are discussed with reference to recent data from genome-wide studies in other plants.
Collapse
|
38
|
Weng ZQ, Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Recombination locations and rates in beef cattle assessed from parent-offspring pairs. Genet Sel Evol 2014; 46:34. [PMID: 24885305 PMCID: PMC4071795 DOI: 10.1186/1297-9686-46-34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/16/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recombination events tend to occur in hotspots and vary in number among individuals. The presence of recombination influences the accuracy of haplotype phasing and the imputation of missing genotypes. Genes that influence genome-wide recombination rate have been discovered in mammals, yeast, and plants. Our aim was to investigate the influence of recombination on haplotype phasing, locate recombination hotspots, scan the genome for Quantitative Trait Loci (QTL) and identify candidate genes that influence recombination, and quantify the impact of recombination on the accuracy of genotype imputation in beef cattle. METHODS 2775 Angus and 1485 Limousin parent-verified sire/offspring pairs were genotyped with the Illumina BovineSNP50 chip. Haplotype phasing was performed with DAGPHASE and BEAGLE using UMD3.1 assembly SNP (single nucleotide polymorphism) coordinates. Recombination events were detected by comparing the two reconstructed chromosomal haplotypes inherited by each offspring with those of their sires. Expected crossover probabilities were estimated assuming no interference and a binomial distribution for the frequency of crossovers. The BayesB approach for genome-wide association analysis implemented in the GenSel software was used to identify genomic regions harboring QTL with large effects on recombination. BEAGLE was used to impute Angus genotypes from a 7K subset to the 50K chip. RESULTS DAGPHASE was superior to BEAGLE in haplotype phasing, which indicates that linkage information from relatives can improve its accuracy. The estimated genetic length of the 29 bovine autosomes was 3097 cM, with a genome-wide recombination distance averaging 1.23 cM/Mb. 427 and 348 windows containing recombination hotspots were detected in Angus and Limousin, respectively, of which 166 were in common. Several significant SNPs and candidate genes, which influence genome-wide recombination were localized in QTL regions detected in the two breeds. High-recombination rates hinder the accuracy of haplotype phasing and genotype imputation. CONCLUSIONS Small population sizes, inadequate half-sib family sizes, recombination, gene conversion, genotyping errors, and map errors reduce the accuracy of haplotype phasing and genotype imputation. Candidate regions associated with recombination were identified in both breeds. Recombination analysis may improve the accuracy of haplotype phasing and genotype imputation from low- to high-density SNP panels.
Collapse
Affiliation(s)
- Zi-Qing Weng
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Mahdi Saatchi
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Robert D Schnabel
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy F Taylor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Dorian J Garrick
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
39
|
Rosenbloom DIS, Allen B. Frequency-dependent selection can lead to evolution of high mutation rates. Am Nat 2014; 183:E131-53. [PMID: 24739203 DOI: 10.1086/675505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Theoretical and experimental studies have shown that high mutation rates can be advantageous, especially in novel or fluctuating environments. Here we examine how frequency-dependent competition may lead to fluctuations in trait frequencies that exert upward selective pressure on mutation rates. We use a mathematical model to show that cyclical trait dynamics generated by "rock-paper-scissors" competition can cause the mutation rate in a population to converge to a high evolutionarily stable mutation rate, reflecting a trade-off between generating novelty and reproducing past success. Introducing recombination lowers the evolutionarily stable mutation rate but allows stable coexistence between mutation rates above and below the evolutionarily stable rate. Even considering strong mutational load and ignoring the costs of faithful replication, evolution favors positive mutation rates if the selective advantage of prevailing in competition exceeds the ratio of recombining to nonrecombining offspring. We discuss a number of genomic mechanisms that may meet our theoretical requirements for the adaptive evolution of mutation. Overall, our results suggest that local mutation rates may be higher on genes influencing cyclical competition and that global mutation rates in asexual species may be higher in populations subject to strong cyclical competition.
Collapse
Affiliation(s)
- Daniel I S Rosenbloom
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
40
|
Zhang S, Chen W, Xin L, Gao Z, Hou Y, Yu X, Zhang Z, Qu S. Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing. HORTICULTURE RESEARCH 2014; 1:14045. [PMID: 26504548 PMCID: PMC4596325 DOI: 10.1038/hortres.2014.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 07/25/2014] [Indexed: 05/06/2023]
Abstract
The apple (Malus × domestica Borkh.) cultivar 'Su Shuai' exhibits greater disease resistance, shorter internodes and lighter fruit flavor compared with its parents 'Golden Delicious' and 'Indo'. To obtain a comprehensive overview of the sequence variation in these three horticultural traits, the genomes of 'Su Shuai' and 'Indo' were resequenced using next-generation sequencing and compared to the genome of 'Golden Delicious'. A wide range of genetic variations were detected, including 2 454 406 and 18 749 349 single nucleotide polymorphism (SNP) and 59 547 and 50 143 structural variants (SVs) in the 'Indo' and 'Su Shuai' genomes, respectively. Among the SVs in 'Su Shuai', 17 genes related to disease resistance, 10 genes related to Gibberellin (GA) and 19 genes associated with fruit flavor were identified. The expression patterns of eight of the SV genes were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results of this study illustrate the genomic variation in these cultivars and provide evidence for a genetic basis for the horticultural traits of disease resistance, short internodes and lighter flavor exhibited in these cultivars. These results provide a genetic basis for the phenotypic characteristics of 'Su Shuai' and, as such, these SVs could serve as gene-specific molecular markers in maker-assisted breeding of apples.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
42
|
Fresnedo-Ramírez J, Martínez-García PJ, Parfitt DE, Crisosto CH, Gradziel TM. Heterogeneity in the entire genome for three genotypes of peach [Prunus persica (L.) Batsch] as distinguished from sequence analysis of genomic variants. BMC Genomics 2013; 14:750. [PMID: 24182359 PMCID: PMC4046826 DOI: 10.1186/1471-2164-14-750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/19/2013] [Indexed: 12/22/2022] Open
Abstract
Background Peach [Prunus persica (L.) Batsch] is an economically important fruit crop that has become a genetic-genomic model for all Prunus species in the family Rosaceae. A doubled haploid reference genome sequence length of 227.3 Mb, a narrow genetic base contrasted by a wide phenotypic variability, the generation of cultivars through hybridization with subsequent clonal propagation, and the current accessibility of many founder genotypes, as well as the pedigree of modern commercial cultivars make peach a model for the study of inter-cultivar genomic heterogeneity and its shaping by artificial selection. Results The quantitative genomic differences among the three genotypes studied as genomic variants, included small variants (SNPs and InDels) and structural variants (SV) (duplications, inversions and translocations). The heirloom cultivar 'Georgia Belle’ and an almond by peach introgression breeding line 'F8,1-42’ are more heterogeneous than is the modern cultivar 'Dr. Davis’ when compared to the peach reference genome ('Lovell’). A pair-wise comparison of consensus genome sequences with 'Lovell’ showed that 'F8,1-42’ and 'Georgia Belle’ were more divergent than were 'Dr. Davis’ and 'Lovell’. Conclusions A novel application of emerging bioinformatics tools to the analysis of ongoing genome sequencing project outputs has led to the identification of a range of genomic variants. Results can be used to delineate the genomic and phenotypic differences among peach genotypes. For crops such as fruit trees, the availability of old cultivars, breeding selections and their pedigrees, make them suitable models for the study of genome shaping by artificial selection. The findings from the study of such genomic variants can then elucidate the control of pomological traits and the characterization of metabolic pathways, thus facilitating the development of protocols for the improvement of Prunus crops. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-14-750) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Fresnedo-Ramírez
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
43
|
Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc.). PLoS One 2013; 8:e59562. [PMID: 23555708 PMCID: PMC3610739 DOI: 10.1371/journal.pone.0059562] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.
Collapse
|
44
|
Kumar A, Simons K, Iqbal MJ, de Jiménez MM, Bassi FM, Ghavami F, Al-Azzam O, Drader T, Wang Y, Luo MC, Gu YQ, Denton A, Lazo GR, Xu SS, Dvorak J, Kianian PMA, Kianian SF. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 2012. [PMID: 23127207 DOI: 10.1186/1471‐2164‐13‐597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. RESULTS Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker scaffolds of the D-genome. CONCLUSIONS The RH panel reported here is the first developed for any wild ancestor of a major cultivated plant species. The results provided insight into various aspects of RH mapping in plants, including the genetically effective cell number for wheat (for the first time) and the potential implementation of this technique in other plant species. This RH panel will be an invaluable resource for mapping gene based markers, developing a complete marker scaffold for the whole genome sequence assembly, fine mapping of markers and functional characterization of genes and gene networks present on the D-genome.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kumar A, Simons K, Iqbal MJ, de Jiménez MM, Bassi FM, Ghavami F, Al-Azzam O, Drader T, Wang Y, Luo MC, Gu YQ, Denton A, Lazo GR, Xu SS, Dvorak J, Kianian PMA, Kianian SF. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 2012; 13:597. [PMID: 23127207 PMCID: PMC3542274 DOI: 10.1186/1471-2164-13-597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. RESULTS Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker scaffolds of the D-genome. CONCLUSIONS The RH panel reported here is the first developed for any wild ancestor of a major cultivated plant species. The results provided insight into various aspects of RH mapping in plants, including the genetically effective cell number for wheat (for the first time) and the potential implementation of this technique in other plant species. This RH panel will be an invaluable resource for mapping gene based markers, developing a complete marker scaffold for the whole genome sequence assembly, fine mapping of markers and functional characterization of genes and gene networks present on the D-genome.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012; 13:339. [PMID: 22827734 PMCID: PMC3443642 DOI: 10.1186/1471-2164-13-339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012. [PMID: 22827734 DOI: 10.1186/1471‐2164‐13‐339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Paape T, Zhou P, Branca A, Briskine R, Young N, Tiffin P. Fine-scale population recombination rates, hotspots, and correlates of recombination in the Medicago truncatula genome. Genome Biol Evol 2012; 4:726-37. [PMID: 22554552 PMCID: PMC3381680 DOI: 10.1093/gbe/evs046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recombination rates vary across the genome and in many species show significant relationships with several genomic features, including distance to the centromere, gene density, and GC content. Studies of fine-scale recombination rates have also revealed that in several species, there are recombination hotspots, that is, short regions with recombination rates 10–100 greater than those in surrounding regions. In this study, we analyzed whole-genome resequence data from 26 accessions of the model legume Medicago truncatula to gain insight into the genomic features that are related to high- and low-recombination rates and recombination hotspots at 1 kb scales. We found that high-recombination regions (1-kb windows among those in the highest 5% of the distribution) on all three chromosomes were significantly closer to the centromere, had higher gene density, and lower GC content than low-recombination windows. High-recombination windows are also significantly overrepresented among some gene functional categories—most strongly NB–ARC and LRR genes, both of which are important in plant defense against pathogens. Similar to high-recombination windows, recombination hotspots (1-kb windows with significantly higher recombination than the surrounding region) are significantly nearer to the centromere than nonhotspot windows. By contrast, we detected no difference in gene density or GC content between hotspot and nonhotspot windows. Using linear model wavelet analysis to examine the relationship between recombination and genomic features across multiple spatial scales, we find a significant negative correlation with distance to the centromere across scales up to 512 kb, whereas gene density and GC content show significantly positive and negative correlations, respectively, only up to 64 kb. Correlations between recombination and genomic features, particularly gene density and polymorphism, suggest that they are scale dependent and need to be assessed at scales relevant to the evolution of those features.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Plant Biology, University of Minnesota, MN, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Bessoltane N, Toffano-Nioche C, Solignac M, Mougel F. Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLoS One 2012; 7:e36229. [PMID: 22567142 PMCID: PMC3342173 DOI: 10.1371/journal.pone.0036229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/28/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. METHODOLOGY We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. CONCLUSIONS Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals.
Collapse
Affiliation(s)
- Nadia Bessoltane
- Laboratoire Evolution Génomes Spéciation, CNRS, Gif-sur-Yvette, France
- Université Paris-Sud and CNRS, Institut de Génétique et Microbiologie, UMR8621, Orsay, France
| | - Claire Toffano-Nioche
- Université Paris-Sud and CNRS, Institut de Génétique et Microbiologie, UMR8621, Orsay, France
| | - Michel Solignac
- Laboratoire Evolution Génomes Spéciation, CNRS, Gif-sur-Yvette, France
- Université Paris Sud, Orsay, France
| | - Florence Mougel
- Laboratoire Evolution Génomes Spéciation, CNRS, Gif-sur-Yvette, France
- Université Paris Sud, Orsay, France
| |
Collapse
|
50
|
Brachet E, Sommermeyer V, Borde V. Interplay between modifications of chromatin and meiotic recombination hotspots. Biol Cell 2012; 104:51-69. [PMID: 22188336 DOI: 10.1111/boc.201100113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/18/2011] [Indexed: 01/08/2023]
Abstract
Meiotic recombination lies at the heart of sexual reproduction. It is essential for producing viable gametes with a normal haploid genomic content and its dysfunctions can be at the source of aneuploidies, such as the Down syndrome, or many genetic disorders. Meiotic recombination also generates genetic diversity that is transmitted to progeny by shuffling maternal and paternal alleles along chromosomes. Recombination takes place at non-random chromosomal sites called 'hotspots'. Recent evidence has shown that their location is influenced by properties of chromatin. In addition, many studies in somatic cells have highlighted the need for changes in chromatin dynamics to allow the process of recombination. In this review, we discuss how changes in the chromatin landscape may influence the recombination map, and reciprocally, how recombination events may lead to epigenetic modifications at sites of recombination, which could be transmitted to progeny.
Collapse
Affiliation(s)
- Elsa Brachet
- Institut Curie, Centre de Recherche, Paris, France
| | | | | |
Collapse
|