1
|
Hatasaki YC, Kobayashi R, Watanabe RR, Hara M, Ueno H, Noji H. Engineering of IF 1 -susceptive bacterial F 1 -ATPase. Protein Sci 2024; 33:e4942. [PMID: 38501464 PMCID: PMC10949317 DOI: 10.1002/pro.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the β subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the β subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .
Collapse
Affiliation(s)
- Yuichiro C. Hatasaki
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Computational ScienceInstitute for Molecular ScienceOkazakiAichiJapan
| | - Ryo R. Watanabe
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Mayu Hara
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Digital Bioanalysis LaboratoryThe University of TokyoTokyoJapan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Digital Bioanalysis LaboratoryThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Reisman BJ, Guo H, Ramsey HE, Wright MT, Reinfeld BI, Ferrell PB, Sulikowski GA, Rathmell WK, Savona MR, Plate L, Rubinstein JL, Bachmann BO. Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase. Nat Chem Biol 2022; 18:360-367. [PMID: 34857958 PMCID: PMC8967781 DOI: 10.1038/s41589-021-00900-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.
Collapse
Affiliation(s)
- Benjamin J Reisman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Hui Guo
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Haley E Ramsey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Bradley I Reinfeld
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Huo LJ, Yang MC, Wang JX, Shi XZ. Mitochondrial ATPase inhibitor factor 1, MjATPIF1, is beneficial for WSSV replication in kuruma shrimp (Marsupenaeus japonicus). FISH & SHELLFISH IMMUNOLOGY 2020; 98:245-254. [PMID: 31945484 DOI: 10.1016/j.fsi.2020.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
ATPase Inhibitory Factor 1 (IF1) is a mitochondrial protein that functions as a physiological inhibitor of F1F0-ATP synthase. In the present study, a mitochondrial ATPase inhibitor factor 1 (MjATPIF1) was identified from kuruma shrimp (Marsupenaeus japonicus), which was demonstrated to participate in the viral immune reaction of white spot syndrome virus (WSSV). MjATPIF1 contained a mitochondrial ATPase inhibitor (IATP) domain, and was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine of shrimp. MjATPIF1 transcription was upregulated in hemocytes and intestines by WSSV. WSSV replication decreased after MjATPIF1 knockdown by RNA interference and increased following recombinant MjATPIF1 protein injection. Further study found that MjATPIF1 promoted the production of superoxide and activated the transcription factor nuclear factor kappa B (NF-κB, Dorsal) to induce the transcription of WSSV RNAs. These results demonstrate that MjATPIF1 benefits WSSV replication in kuruma shrimp by inducing superoxide production and NF-κB activation.
Collapse
Affiliation(s)
- Li-Jie Huo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Eisel B, Hartrampf FWW, Meier T, Trauner D. Reversible optical control of F 1 F o -ATP synthase using photoswitchable inhibitors. FEBS Lett 2018; 592:343-355. [PMID: 29292505 PMCID: PMC6175411 DOI: 10.1002/1873-3468.12958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
F1 Fo -ATP synthase is one of the best studied macromolecular machines in nature. It can be inhibited by a range of small molecules, which include the polyphenols, resveratrol and piceatannol. Here, we introduce Photoswitchable Inhibitors of ATP Synthase, termed PIAS, which were synthetically derived from these polyphenols. They can be used to reversibly control the enzymatic activity of purified yeast Yarrowia lipolyticaATP synthase by light. Our experiments indicate that the PIAS bind to the same site in the ATP synthase F1 complex as the polyphenols in their trans form, but they do not bind in their cis form. The PIAS could be useful tools for the optical precision control of ATP synthase in a variety of biochemical and biotechnological applications.
Collapse
Affiliation(s)
- Bianca Eisel
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Department of Life Sciences, Imperial College London, UK
| | | | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Department of Life Sciences, Imperial College London, UK
| | - Dirk Trauner
- Department of Chemistry, University of Munich, Germany.,Department of Chemistry, New York University, NY, USA
| |
Collapse
|
5
|
Kebede B, Wrigley SK, Prashar A, Rahlff J, Wolf M, Reinshagen J, Gribbon P, Imhoff JF, Silber J, Labes A, Ellinger B. Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and Subsequent Optimisation of Bioactive Secondary Metabolite Production. Mar Drugs 2017; 15:md15040084. [PMID: 28333084 PMCID: PMC5408231 DOI: 10.3390/md15040084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 12/25/2022] Open
Abstract
As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields.
Collapse
Affiliation(s)
- Bethlehem Kebede
- Hypha Discovery Ltd., Russell Building, Brunel Science Park, Kingston Lane, Uxbridge, Middlesex UB8 3PQ, UK.
| | - Stephen K Wrigley
- Hypha Discovery Ltd., Russell Building, Brunel Science Park, Kingston Lane, Uxbridge, Middlesex UB8 3PQ, UK.
| | - Anjali Prashar
- Hypha Discovery Ltd., Russell Building, Brunel Science Park, Kingston Lane, Uxbridge, Middlesex UB8 3PQ, UK.
| | - Janina Rahlff
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | - Markus Wolf
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | - Jeanette Reinshagen
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | - Philip Gribbon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | - Johannes F Imhoff
- Helmholtz Centre for Ocean Research (GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany.
| | - Johanna Silber
- Helmholtz Centre for Ocean Research (GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany.
| | - Antje Labes
- Flensburg University of Applied Sciences, Kanzleistr. 91-93, 24943 Flensburg, Germany.
| | - Bernhard Ellinger
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany.
| |
Collapse
|
6
|
Karunadharma PP, Basisty N, Chiao YA, Dai DF, Drake R, Levy N, Koh WJ, Emond MJ, Kruse S, Marcinek D, Maccoss MJ, Rabinovitch PS. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB J 2015; 29:3582-92. [PMID: 25977255 DOI: 10.1096/fj.15-272666] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 11/11/2022]
Abstract
The mitochondrial respiratory chain (RC) produces most of the cellular ATP and requires strict quality-control mechanisms. To examine RC subunit proteostasis in vivo, we measured RC protein half-lives (HLs) in mice by liquid chromatography-tandem mass spectrometry with metabolic [(2)H3]-leucine heavy isotope labeling under divergent conditions. We studied 7 tissues/fractions of young and old mice on control diet or one of 2 diet regimens (caloric restriction or rapamycin) that altered protein turnover (42 conditions in total). We observed a 6.5-fold difference in mean HL across tissues and an 11.5-fold difference across all conditions. Normalization to the mean HL of each condition showed that relative HLs were conserved across conditions (Spearman's ρ = 0.57; P < 10(-4)), but were highly heterogeneous between subunits, with a 7.3-fold mean range overall, and a 2.2- to 4.6-fold range within each complex. To identify factors regulating this conserved distribution, we performed statistical analyses to study the correlation of HLs to the properties of the subunits. HLs significantly correlated with localization within the mitochondria, evolutionary origin, location of protein-encoding, and ubiquitination levels. These findings challenge the notion that all subunits in a complex turnover at comparable rates and suggest that there are common rules governing the differential proteolysis of RC protein subunits under divergent cellular conditions.
Collapse
Affiliation(s)
- Pabalu P Karunadharma
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Nathan Basisty
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Ying Ann Chiao
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Dao-Fu Dai
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Rachel Drake
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Nick Levy
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - William J Koh
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Mary J Emond
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Shane Kruse
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - David Marcinek
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Michael J Maccoss
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Peter S Rabinovitch
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
7
|
Galli GLJ, Richards JG. Mitochondria from anoxia-tolerant animals reveal common strategies to survive without oxygen. J Comp Physiol B 2014; 184:285-302. [DOI: 10.1007/s00360-014-0806-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
|
8
|
Cano-Estrada A, Vázquez-Acevedo M, Villavicencio-Queijeiro A, Figueroa-Martínez F, Miranda-Astudillo H, Cordeiro Y, Mignaco JA, Foguel D, Cardol P, Lapaille M, Remacle C, Wilkens S, González-Halphen D. Subunit–subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1439-48. [DOI: 10.1016/j.bbabio.2010.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/15/2010] [Accepted: 02/22/2010] [Indexed: 01/12/2023]
|
9
|
F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1362-77. [PMID: 20193659 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
|
10
|
Hunke C, Tadwal VS, Manimekalai MSS, Roessle M, Grüber G. The effect of NBD-Cl in nucleotide-binding of the major subunit alpha and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase. J Bioenerg Biomembr 2010; 42:1-10. [PMID: 20082212 DOI: 10.1007/s10863-009-9266-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/10/2009] [Indexed: 11/24/2022]
Abstract
Subunit alpha of the Escherichia coli F(1)F(O) ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of alpha allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K ( d )) of 1.6 microM of bound MgATP-ATTO-647N and 2.9 microM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 microM and 55 microM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC(50)), respectively. In contrast, no effect was observed in the presence of N,N'-dicyclohexylcarbodiimide. As subunit alpha is the homologue of subunit B of the A(1)A(O) ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC(50) values of 41 microM and 42 microM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively.
Collapse
Affiliation(s)
- Cornelia Hunke
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore
| | | | | | | | | |
Collapse
|
11
|
Molnár I, Gibson DM, Krasnoff SB. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 2010; 27:1241-75. [DOI: 10.1039/c001459c] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Kagawa Y. ATP synthase: from single molecule to human bioenergetics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:667-93. [PMID: 20689227 PMCID: PMC3066536 DOI: 10.2183/pjab.86.667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/30/2010] [Indexed: 05/20/2023]
Abstract
ATP synthase (F(o)F(1)) consists of an ATP-driven motor (F(1)) and a H(+)-driven motor (F(o)), which rotate in opposite directions. F(o)F(1) reconstituted into a lipid membrane is capable of ATP synthesis driven by H(+) flux. As the basic structures of F(1) (alpha(3)beta(3)gammadeltaepsilon) and F(o) (ab(2)c(10)) are ubiquitous, stable thermophilic F(o)F(1) (TF(o)F(1)) has been used to elucidate molecular mechanisms, while human F(1)F(o) (HF(1)F(o)) has been used to study biomedical significance. Among F(1)s, only thermophilic F(1) (TF(1)) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TF(o)F(1), HF(o)F(1) is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HF(o)F(1) were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HF(o)F(1) is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity.
Collapse
|
13
|
The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci U S A 2009; 106:21597-601. [PMID: 19995987 DOI: 10.1073/pnas.0910365106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the complex between bovine mitochondrial F(1)-ATPase and a stator subcomplex has been determined at a resolution of 3.2 A. The resolved region of the stator contains residues 122-207 of subunit b; residues 5-25 and 35-57 of F(6); 3 segments of subunit d from residues 30-40, 65-74, and 85-91; and residues 1-146 and 169-189 of the oligomycin sensitivity conferral protein (OSCP). The stator subcomplex represents its membrane distal part, and its structure has been augmented with an earlier structure of a subcomplex containing residues 79-183, 3-123, and 5-70 of subunits b, d, and F(6), respectively, which extends to the surface of the inner membrane of the mitochondrion. The N-terminal domain of the OSCP links the stator with F(1)-ATPase via alpha-helical interactions with the N-terminal region of subunit alpha(E). Its C-terminal domain makes extensive helix-helix interactions with the C-terminal alpha-helix of subunit b from residues 190-207. Subunit b extends as a continuous 160-A long alpha-helix from residue 188 back to residue 79 near to the surface of the inner mitochondrial membrane. This helix appears to be stiffened by other alpha-helices in subunits d and F(6), but the structure can bend inward toward the F(1) domain around residue 146 of subunit b. The linker region between the 2 domains of the OSCP also appears to be flexible, enabling the stator to adjust its shape as it passes over the changing profile of the F(1) domain during a catalytic cycle. The structure of the membrane extrinsic part of bovine ATP synthase is now complete.
Collapse
|
14
|
Johnson KM, Swenson L, Opipari AW, Reuter R, Zarrabi N, Fierke CA, Börsch M, Glick GD. Mechanistic basis for differential inhibition of the F1Fo-ATPase by aurovertin. Biopolymers 2009; 91:830-40. [PMID: 19462418 DOI: 10.1002/bip.21262] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial F(1)F(o)-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F(1)F(o)-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the beta subunits in the F(1) domain and inhibits F(1)F(o)-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F(1)F(o)-ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower K(i) values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F(1)F(o)-ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single-molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F(1)F(o)-ATPase catalyzes ATP synthesis and hydrolysis.
Collapse
Affiliation(s)
- Kathryn M Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kumar A, Manimekalai MSS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Grüber G. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase. Proteins 2009; 75:807-19. [PMID: 19003877 DOI: 10.1002/prot.22289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A strategically placed tryptophan in position of Arg416 was used as an optical probe to monitor adenosine triphosphate and adenosine-diphosphate binding to subunit B of the A(1)A(O) adenosine triphosphate (ATP) synthase from Methanosarcina mazei Gö1. Tryptophan fluorescence and fluorescence correlation spectroscopy gave binding constants indicating a preferred binding of ATP over ADP to the protein. The X-ray crystal structure of the R416W mutant protein in the presence of ATP was solved to 2.1 A resolution, showing the substituted Trp-residue inside the predicted adenine-binding pocket. The cocrystallized ATP molecule could be trapped in a so-called transition nucleotide-binding state. The high resolution structure shows the phosphate residues of the ATP near the P-loop region (S150-E158) and its adenine ring forms pi-pi interaction with Phe149. This transition binding position of ATP could be confirmed by tryptophan emission spectra using the subunit B mutant F149W. The trapped ATP position, similar to the one of the binding region of the antibiotic efrapeptin in F(1)F(O) ATP synthases, is discussed in light of a transition nucleotide-binding state of ATP while on its way to the final binding pocket. Finally, the inhibitory effect of efrapeptin C in ATPase activity of a reconstituted A(3)B(3)- and A(3)B(R416W)(3)-subcomplex, composed of subunit A and the B subunit mutant R416W, of the A(1)A(O) ATP synthase is shown.
Collapse
Affiliation(s)
- Anil Kumar
- Division of Structural and Computational Biology, Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen LS, Nowak BJ, Ayres ML, Krett NL, Rosen ST, Zhang S, Gandhi V. Inhibition of ATP synthase by chlorinated adenosine analogue. Biochem Pharmacol 2009; 78:583-91. [PMID: 19477165 DOI: 10.1016/j.bcp.2009.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 01/22/2023]
Abstract
8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; F(O) intermembrane base and F1 domain, containing alpha and beta subunits. Crystal structures of both alpha and beta subunits that bind to the substrate, ADP, are known in tight binding (alpha(dp)beta(dp)) and loose binding (alpha(tp)beta(tp)) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the alpha(tp)beta(tp) state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (alpha(dp)beta(dp)) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF(3)(-). Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase.
Collapse
Affiliation(s)
- Lisa S Chen
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Toogood PL. Mitochondrial drugs. Curr Opin Chem Biol 2008; 12:457-63. [PMID: 18602018 DOI: 10.1016/j.cbpa.2008.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 01/30/2023]
Abstract
Mitochondria are cellular organelles that perform pivotal functions essential for ATP production, homeostasis, and metabolism. Moreover, mitochondria are integral to a variety of cell death and survival pathways. These roles identify mitochondria as a potential target for drugs to treat metabolic and hyperproliferative diseases. Differences in the redox state of pathogenic versus non-pathogenic cells may be exploited to achieve selective anti-proliferative and cytotoxic activity against target cell populations. Pro-oxidant drugs, such as Trisenox and Elesclomol, are demonstrating clinical utility in the treatment of cancer. Results obtained with Bz-423 in mice demonstrate the potential for mitochondria-targeted drugs to control disorders of immune function. Research associating an elevated oxidant state with mitochondrial damage, degenerative disease, and aging dictates the need for a better understanding of when and how pharmacological manipulation of mitochondrial function provides most therapeutic benefit.
Collapse
Affiliation(s)
- Peter L Toogood
- Lycera Corporation, 1663 Snowberry Ridge Road, Ann Arbor, MI 48103, USA.
| |
Collapse
|
18
|
|
19
|
Gledhill JR, Montgomery MG, Leslie AGW, Walker JE. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Proc Natl Acad Sci U S A 2007; 104:15671-6. [PMID: 17895376 PMCID: PMC1994141 DOI: 10.1073/pnas.0707326104] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Indexed: 11/18/2022] Open
Abstract
The structure of bovine F(1)-ATPase inhibited by a monomeric form of the inhibitor protein, IF(1), known as I1-60His, lacking most of the dimerization region, has been determined at 2.1-A resolution. The resolved region of the inhibitor from residues 8-50 consists of an extended structure from residues 8-13, followed by two alpha-helices from residues 14-18 and residues 21-50 linked by a turn. The binding site in the beta(DP)-alpha(DP) catalytic interface is complex with contributions from five different subunits of F(1)-ATPase. The longer helix extends from the external surface of F(1) via a deep groove made from helices and loops in the C-terminal domains of subunits beta(DP), alpha(DP), beta(TP), and alpha(TP) to the internal cavity surrounding the central stalk. The linker and shorter helix interact with the gamma-subunit in the central stalk, and the N-terminal region extends across the central cavity to interact with the nucleotide binding domain of the alpha(E) subunit. To form these complex interactions and penetrate into the core of the enzyme, it is likely that the initial interaction of the inhibitor with F(1) forms via the open conformation of the beta(E) subunit. Then, as two ATP molecules are hydrolyzed, the beta(E)-alpha(E) interface converts to the beta(DP)-alpha(DP) interface via the beta(TP)-alpha(TP) interface, trapping the inhibitor progressively in its binding site and a nucleotide in the catalytic site of subunit beta(DP). The inhibition probably arises by IF(1) imposing the structure and properties of the beta(TP)-alpha(TP) interface on the beta(DP)-alpha(DP) interface, thereby preventing it from hydrolyzing the bound ATP.
Collapse
Affiliation(s)
- Jonathan R. Gledhill
- *Medical Research Council Dunn Human Nutrition Unit, Cambridge CB2 0XY, United Kingdom; and
| | - Martin G. Montgomery
- *Medical Research Council Dunn Human Nutrition Unit, Cambridge CB2 0XY, United Kingdom; and
| | - Andrew G. W. Leslie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - John E. Walker
- *Medical Research Council Dunn Human Nutrition Unit, Cambridge CB2 0XY, United Kingdom; and
| |
Collapse
|