1
|
Hua C, Xu Z, Tang N, Xu Y, Zhang Y, Li C. Identification of P450 Candidates Associated with the Biosynthesis of Physalin-Class Compounds in Physalis angulata. Int J Mol Sci 2023; 24:14077. [PMID: 37762378 PMCID: PMC10531436 DOI: 10.3390/ijms241814077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The Physalis genus has long been used as traditional medicine in the treatment of various diseases. Physalins, the characteristic class of compounds in this genus, are major bioactive constituents. To date, the biogenesis of physalins remains largely unknown, except for the recently established knowledge that 24-methyldesmosterol is a precursor of physalin. To identify the genes encoding P450s that are putatively involved in converting 24-methyldesmosterol to physalins, a total of 306 P450-encoding unigenes were retrieved from our recently constructed P. angulata transcriptome. Extensive phylogenetic analysis proposed 21 P450s that might participate in physalin biosynthesis. To validate the candidates, we developed a virus-induced gene silencing (VIGS) system for P. angulata, and four P450 candidates were selected for the VIGS experiments. The reduction in the transcripts of the four P450 candidates by VIGS all led to decreased levels of physalin-class compounds in the P. angulata leaves. Thus, this study provides a number of P450 candidates that are likely associated with the biosynthesis of physalin-class compounds, forming a strong basis to reveal the unknown physalin biosynthetic pathway in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.H.); (Z.X.); (N.T.); (Y.X.); (Y.Z.)
| |
Collapse
|
2
|
Laoué J, Depardieu C, Gérardi S, Lamothe M, Bomal C, Azaiez A, Gros-Louis MC, Laroche J, Boyle B, Hammerbacher A, Isabel N, Bousquet J. Combining QTL Mapping and Transcriptomics to Decipher the Genetic Architecture of Phenolic Compounds Metabolism in the Conifer White Spruce. FRONTIERS IN PLANT SCIENCE 2021; 12:675108. [PMID: 34079574 PMCID: PMC8166253 DOI: 10.3389/fpls.2021.675108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 05/05/2023]
Abstract
Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate change. Although the production of phenolic compounds (PCs) has been shown to be modulated by biotic and abiotic stresses, the genetic basis underlying the variation in their constitutive production level remains poorly documented in conifers. We used QTL mapping and RNA-Seq to explore the complex polygenic network underlying the constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years. QTL detection was performed for nine PCs and differentially expressed genes (DEGs) were identified between individuals with high and low PC contents for five PCs exhibiting stable QTLs across time. A total of 17 QTLs were detected for eight metabolites, including one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key transcription factors, and a subset of 137 genes showing opposite expression patterns in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward resolving the genomic architecture of PC production in spruce and facilitate the functional characterization of genes and transcriptional networks responsible for differences in constitutive production of PCs in conifers.
Collapse
Affiliation(s)
- Justine Laoué
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- *Correspondence: Justine Laoué
| | - Claire Depardieu
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Claude Bomal
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Aïda Azaiez
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Marie-Claude Gros-Louis
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Almuth Hammerbacher
- Department of Zoology, Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Jean Bousquet
| |
Collapse
|
3
|
Kainer D, Padovan A, Degenhardt J, Krause S, Mondal P, Foley WJ, Külheim C. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. THE NEW PHYTOLOGIST 2019; 223:1489-1504. [PMID: 31066055 DOI: 10.1111/nph.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
Terpenoid-based essential oils are economically important commodities, yet beyond their biosynthetic pathways, little is known about the genetic architecture of terpene oil yield from plants. Transport, storage, evaporative loss, transcriptional regulation and precursor competition may be important contributors to this complex trait. Here, we associate 2.39 million single nucleotide polymorphisms derived from shallow whole-genome sequencing of 468 Eucalyptus polybractea individuals with 12 traits related to the overall terpene yield, eight direct measures of terpene concentration and four biomass-related traits. Our results show that in addition to terpene biosynthesis, development of secretory cavities, where terpenes are both synthesized and stored, and transport of terpenes were important components of terpene yield. For sesquiterpene concentrations, the availability of precursors in the cytosol was important. Candidate terpene synthase genes for the production of 1,8-cineole and α-pinene, and β-pinene (which comprised > 80% of the total terpenes) were functionally characterized as a 1,8-cineole synthase and a β/α-pinene synthase. Our results provide novel insights into the genomic architecture of terpene yield and we provide candidate genes for breeding or engineering of crops for biofuels or the production of industrially valuable terpenes.
Collapse
Affiliation(s)
- David Kainer
- Center for BioEnergy Innovation, Bioscience Division, Oak Ridge National Laboratories, Oak Ridge, TN, 37831, USA
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Amanda Padovan
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- CSIRO, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Joerg Degenhardt
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Sandra Krause
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Prodyut Mondal
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Carsten Külheim
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
4
|
Padovan A, Keszei A, Hassan Y, Krause ST, Köllner TG, Degenhardt J, Gershenzon J, Külheim C, Foley WJ. Four terpene synthases contribute to the generation of chemotypes in tea tree (Melaleuca alternifolia). BMC PLANT BIOLOGY 2017; 17:160. [PMID: 28978322 PMCID: PMC5628445 DOI: 10.1186/s12870-017-1107-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Terpene rich leaves are a characteristic of Myrtaceae. There is significant qualitative variation in the terpene profile of plants within a single species, which is observable as "chemotypes". Understanding the molecular basis of chemotypic variation will help explain how such variation is maintained in natural populations as well as allowing focussed breeding for those terpenes sought by industry. The leaves of the medicinal tea tree, Melaleuca alternifolia, are used to produce terpinen-4-ol rich tea tree oil, but there are six naturally occurring chemotypes; three cardinal chemotypes (dominated by terpinen-4-ol, terpinolene and 1,8-cineole, respectively) and three intermediates. It has been predicted that three distinct terpene synthases could be responsible for the maintenance of chemotypic variation in this species. RESULTS We isolated and characterised the most abundant terpene synthases (TPSs) from the three cardinal chemotypes of M. alternifolia. Functional characterisation of these enzymes shows that they produce the dominant compounds in the foliar terpene profile of all six chemotypes. Using RNA-Seq, we investigated the expression of these and 24 additional putative terpene synthases in young leaves of all six chemotypes of M. alternifolia. CONCLUSIONS Despite contributing to the variation patterns observed, variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes. Other candidate terpene synthases as well as other levels of regulation must also be involved. The results of this study provide novel insights into the complexity of terpene biosynthesis in natural populations of a non-model organism.
Collapse
Affiliation(s)
- Amanda Padovan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Andras Keszei
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Yasmin Hassan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Sandra T. Krause
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, 06120 Halle, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Jörg Degenhardt
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, 06120 Halle, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Carsten Külheim
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - William J. Foley
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
5
|
Liao W, Zhao S, Zhang M, Dong K, Chen Y, Fu C, Yu L. Transcriptome Assembly and Systematic Identification of Novel Cytochrome P450s in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1468. [PMID: 28878800 PMCID: PMC5572210 DOI: 10.3389/fpls.2017.01468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 05/06/2023]
Abstract
Taxus spp. is a highly valuable medicinal plant with multiple pharmacological effects on various cancers. Cytochrome P450s (CYP450s) play important roles in the biosynthesis of active compounds in Taxus spp., such as the famous diterpenoid, Taxol. However, some specific CYP450 enzymes involved in the biosynthesis of Taxol remain unknown, and the systematic identification of CYP450s in Taxus has not been reported. In this study, 118 full-length and 175 partial CYP450 genes were identified in Taxus chinensis transcriptomes. The 118 full-length genes were divided into 8 clans and 29 families. The CYP71 clan included all A-type genes (52) belonging to 11 families. The other seven clans possessed 18 families containing 66 non-A-type genes. Two new gymnosperm-specific families were discovered, and were named CYP864 and CYP947 respectively. Protein sequence alignments revealed that all of the T. chinensis CYP450s hold distinct conserved domains. The expression patterns of all 118 CYP450 genes during the long-time subculture and MeJA elicitation were analyzed. Additionally, the expression levels of 15 novel CYP725 genes in different Taxus species were explored. Considering all the evidence, 6 CYP725s were identified to be candidates for Taxol biosynthesis. The cis-regulatory elements involved in the transcriptional regulation were also identified in the promoter regions of CYP725s. This study presents a comprehensive overview of the CYP450 gene family in T. chinensis and can provide important insights into the functional gene studies of Taxol biosynthesis.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Shengying Zhao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Meng Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kaige Dong
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Ying Chen
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- *Correspondence: Chunhua Fu
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Longjiang Yu
| |
Collapse
|
6
|
Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol I, Bohlmann J. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:189-212. [PMID: 26017574 DOI: 10.1111/tpj.12886] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/15/2015] [Indexed: 05/21/2023]
Abstract
White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.
Collapse
Affiliation(s)
- René L Warren
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony Raymond
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Greg A Taylor
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Benjamin P Vandervalk
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Hamid Mohamadi
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Daniel Paulino
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Readman Chiu
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Shaun D Jackman
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Gordon Robertson
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Chen Yang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Margarete Hoffmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Alvin Yanchuk
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Jean Bousquet
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - John MacKay
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Inanc Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
De La Torre AR, Lin YC, Van de Peer Y, Ingvarsson PK. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families. Genome Biol Evol 2015; 7:1002-15. [PMID: 25747252 PMCID: PMC4419791 DOI: 10.1093/gbe/evv044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.
Collapse
Affiliation(s)
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Genomics Research Institute, University of Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Sweden Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
8
|
Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK. Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem 2014; 2:35. [PMID: 24967222 PMCID: PMC4052220 DOI: 10.3389/fchem.2014.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum, and Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk medicine as herbal tea infusions for healing digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analyses but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius, and C. clusii.
Collapse
Affiliation(s)
- Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Antigoni Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Vasiliki Falara
- Department of Chemical Engineering, Delaware Biotechnology Institute, University of DelawareNewark, DE, USA
| | - Stella Givanoudi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Stefanos Kostas
- Department of Floriculture, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K. Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
9
|
Sud A, Chauhan RS, Tandon C. Mass spectrometric analysis of differentially expressed proteins in an endangered medicinal herb, Picrorhiza kurroa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:326405. [PMID: 24877081 PMCID: PMC4024425 DOI: 10.1155/2014/326405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/14/2014] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
Picrorhiza kurroa grown in the Northwestern Himalayan region is used in various herbal formulations but extensive harvesting of this plant has led it to near extinction. The active constituents responsible for the medicinal properties of P. kurroa have been identified as picroside-I and picroside-II which are present in a particular ratio (1:1.5) in herbal formulations like Picroliv. The biosynthetic pathway of picrosides has been partially deciphered till date and needs to be elucidated completely. Review of literature revealed that no information is available as of today on the proteome analysis of Picrorhiza kurroa w.r.t. picroside-II biosynthesis. Therefore, with the aim of identifying proteins associated with picroside biosynthesis in Picrorhiza kurroa, differential protein expression was studied under picroside accumulating versus nonaccumulating conditions using SDS-PAGE. A total of 19 differentially expressed proteins were identified using MALDI-TOF/TOF MS followed by MASCOT search. Proteins involved in diverse functions were identified amongst which the most important proteins were glyceraldehyde-3-phosphate dehydrogenase, 1-aminocyclopropane-1-carboxylate oxidase, photosystem I reaction centre subunit V, 2-oxoglutarate ferrous-dependent oxygenase and putative cytochrome P450 superfamily protein because of their role in picroside biosynthesis. These identified proteins provide an insight and a basic platform for thorough understanding of biosynthesis of secondary metabolites and various other physiological processes of P. kurroa.
Collapse
Affiliation(s)
- Amit Sud
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Chanderdeep Tandon
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| |
Collapse
|
10
|
Zhang N, Han Z, Sun G, Hoffman A, Wilson IW, Yang Y, Gao Q, Wu J, Xie D, Dai J, Qiu D. Molecular cloning and characterization of a cytochrome P450 taxoid 9á-hydroxylase in Ginkgo biloba cells. Biochem Biophys Res Commun 2013; 443:938-43. [PMID: 24380857 DOI: 10.1016/j.bbrc.2013.12.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
Abstract
Taxol is a well-known effective anticancer compound. Due to the inability to synthesize sufficient quantities of taxol to satisfy commercial demand, a biotechnological approach for a large-scale cell or cell-free system for its production is highly desirable. Several important genes in taxol biosynthesis are currently still unknown and have been shown to be difficult to isolate directly from Taxus, including the gene encoding taxoid 9α-hydroxylase. Ginkgo biloba suspension cells exhibit taxoid hydroxylation activity and provides an alternate means of identifying genes encoding enzymes with taxoid 9α-hydroxylation activity. Through analysis of high throughput RNA sequencing data from G. biloba, we identified two candidate genes with high similarity to Taxus CYP450s. Using in vitro cell-free protein synthesis assays and LC-MS analysis, we show that one candidate that belongs to the CYP716B, a subfamily whose biochemical functions have not been previously studied, possessed 9α-hydroxylation activity. This work will aid future identification of the taxoid 9α-hydroxylase gene from Taxus sp.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhentai Han
- Key Laboratory of Forest Ecological Environment of Ministry of Forestry, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Angela Hoffman
- Department of Chemistry, University of Portland, Portland, OR 97203, USA
| | - Iain W Wilson
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2001, Australia
| | - Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qian Gao
- Key Laboratory of Forest Ecological Environment of Ministry of Forestry, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dan Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
11
|
Foster AJ, Hall DE, Mortimer L, Abercromby S, Gries R, Gries G, Bohlmann J, Russell J, Mattsson J. Identification of genes in Thuja plicata foliar terpenoid defenses. PLANT PHYSIOLOGY 2013; 161:1993-2004. [PMID: 23388118 PMCID: PMC3613470 DOI: 10.1104/pp.112.206383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Thuja plicata (western redcedar) is a long-lived conifer species whose foliage is rarely affected by disease or insect pests, but can be severely damaged by ungulate browsing. Deterrence to browsing correlates with high foliar levels of terpenoids, in particular the monoterpenoid α-thujone. Here, we set out to identify genes whose products may be involved in the production of α-thujone and other terpenoids in this species. First, we generated a foliar transcriptome database from which to draw candidate genes. Second, we mapped the storage of thujones and other terpenoids to foliar glands. Third, we used global expression profiling to identify more than 600 genes that are expressed at high levels in foliage with glands, but can either not be detected or are expressed at low levels in a natural variant lacking foliar glands. Fourth, we used in situ RNA hybridization to map the expression of a putative monoterpene synthase to the epithelium of glands and used enzyme assays with recombinant protein of the same gene to show that it produces sabinene, the monoterpene precursor of α-thujone. Finally, we identified candidate genes with predicted enzymatic functions for the conversion of sabinene to α-thujone. Taken together, this approach generated both general resources and detailed functional characterization in the identification of genes of foliar terpenoid biosynthesis in T. plicata.
Collapse
|
12
|
Hamberger B, Bak S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120426. [PMID: 23297350 DOI: 10.1098/rstb.2012.0426] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.
Collapse
Affiliation(s)
- Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Copenhagen, Denmark.
| | | |
Collapse
|
13
|
Mitake M, Shidoji Y. Geranylgeraniol oxidase activity involved in oxidative formation of geranylgeranoic acid in human hepatoma cells. ACTA ACUST UNITED AC 2012; 33:15-24. [PMID: 22361882 DOI: 10.2220/biomedres.33.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Geranylgeranoic acid (GGA), a 20-carbon acyclic polyprenoic acid (all-trans 3,7,11,15-tetramethyl- 2,4,6,10,14-hexadecatetraenoic acid) and its derivatives were developed as synthetic "acyclic retinoids" for cancer chemoprevention. Previously, we have shown the natural occurrence of GGA in various medicinal herbs and reported enzymatic formation of GGA from geranylgeraniol (GGOH) through geranylgeranial (GGal) by rat liver homogenates. Here, we present several lines of evidence that a putative GGOH oxidase is involved in GGA synthesis by human hepatoma cell lysates. First, conversion of GGOH to GGal did not require exogenous NAD(+), whereas the conversion from GGal to GGA absolutely required additional NAD(+). Second, GGal synthesis from GGOH was coupled with consumption of oxygen from the reaction mixture. Third, GGOH-dependent GGal synthesis activity was proteinase K-resistant and even enhanced by proteinase K treatment; GGOH oxidase activity was enriched in the mitochondrial fraction. Finally, recombinant human monoamine oxidase (MAO)-B, but not MAO-A catalyzed oxidation of GGOH to GGal. These data suggest that a putative mitochondrial GGOH oxidase is involved in the initial step of GGA synthesis from GGOH.
Collapse
Affiliation(s)
- Maiko Mitake
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki, 851-2195, Japan
| | | |
Collapse
|
14
|
Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant. Int J Mol Sci 2012; 13:2744-2762. [PMID: 22489122 PMCID: PMC3317382 DOI: 10.3390/ijms13032744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/09/2011] [Accepted: 02/03/2012] [Indexed: 11/16/2022] Open
Abstract
A dwarf mutant (dwf1) was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene) was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1) displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR) and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210). Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.
Collapse
|
15
|
Zerbe P, Chiang A, Yuen M, Hamberger B, Hamberger B, Draper JA, Britton R, Bohlmann J. Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production. J Biol Chem 2012; 287:12121-31. [PMID: 22337889 DOI: 10.1074/jbc.m111.317669] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production.
Collapse
Affiliation(s)
- Philipp Zerbe
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Porth I, Hamberger B, White R, Ritland K. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics 2011; 12:608. [PMID: 22177423 PMCID: PMC3288119 DOI: 10.1186/1471-2164-12-608] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/16/2011] [Indexed: 12/03/2022] Open
Abstract
Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in the evolution of plant defense mechanisms against insect pests and provide substantial potential for the functional characterization of several not yet resolved alternative pathways in plant defenses.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | | | | | | |
Collapse
|
18
|
Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). PLANT MOLECULAR BIOLOGY 2011; 77:577-90. [PMID: 22002747 PMCID: PMC3215867 DOI: 10.1007/s11103-011-9832-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/23/2011] [Indexed: 05/19/2023]
Abstract
Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.
Collapse
Affiliation(s)
- Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Raimund Nagel
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Trygve Krekling
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Paal Krokene
- Norwegian Forest and Landscape Institute, Pb 115, 1431 Ås, Norway
| |
Collapse
|
19
|
Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. PLANT PHYSIOLOGY 2011; 157:1677-95. [PMID: 21994349 PMCID: PMC3327196 DOI: 10.1104/pp.111.185843] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism.
Collapse
|
20
|
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D. Cytochromes p450. THE ARABIDOPSIS BOOK 2011; 9:e0144. [PMID: 22303269 PMCID: PMC3268508 DOI: 10.1199/tab.0144] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization.
Collapse
Affiliation(s)
- Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Fred Beisson
- Department of Plant Biology and Environmental Microbiology, CEA/CNRS/Aix-Marseille Université, UMR 6191 Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Gerard Bishop
- Division of Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - René Höfer
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| | - Suzanne Paquette
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Department of Biological Structure, HSB G-514, Box 357420, University of Washington, Seattle, WA, 98195-9420
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
21
|
Verne S, Jaquish B, White R, Ritland C, Ritland K. Global transcriptome analysis of constitutive resistance to the white pine weevil in spruce. Genome Biol Evol 2011; 3:851-67. [PMID: 21852250 PMCID: PMC3296464 DOI: 10.1093/gbe/evr069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2011] [Indexed: 01/06/2023] Open
Abstract
Constitutive defense mechanisms are critical to the understanding of defense mechanisms in conifers because they constitute the first barrier to attacks by insect pests. In interior spruce, trees that are putatively resistant and susceptible to attacks by white pine weevil (Pissodes strobi) typically exhibit constitutive differences in traits such as resin duct size and number, bark thickness, and terpene content. To improve our knowledge of their genetic basis, we compared globally the constitutive expression levels of 17,825 genes between 20 putatively resistant and 20 putatively susceptible interior spruce trees from the British Columbia tree improvement program. We identified 54 upregulated and 137 downregulated genes in resistant phenotypes, relative to susceptible phenotypes, with a maximum fold change of 2.24 and 3.91, respectively. We found a puzzling increase of resistance by downregulated genes, as one would think that "procuring armaments" is the best defense. Also, although terpenes and phenolic compounds play an important role in conifer defense, we found few of these genes to be differentially expressed. We found 15 putative small heat-shock proteins (sHSP) and several other stress-related proteins to be downregulated in resistant trees. Downregulated putative sHSP belong to several sHSP classes and represented 58% of all tested putative sHSP. These proteins are well known to be involved in plant response to various kinds of abiotic stress; however, their role in constitutive resistance is not yet understood. The lack of correspondence between transcriptome profile clusters and phenotype classifications suggests that weevil resistance in spruce is a complex trait.
Collapse
Affiliation(s)
- Sébastien Verne
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barry Jaquish
- Kalamalka Forestry Centre, British Columbia Ministry of Forests, Lands and Natural Resource Operations, Vernon, British Columbia, Canada
| | - Rick White
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kermit Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Keeling CI, Madilao LL, Zerbe P, Dullat HK, Bohlmann J. The primary diterpene synthase products of Picea abies levopimaradiene/abietadiene synthase (PaLAS) are epimers of a thermally unstable diterpenol. J Biol Chem 2011; 286:21145-53. [PMID: 21518766 PMCID: PMC3122176 DOI: 10.1074/jbc.m111.245951] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/22/2011] [Indexed: 12/15/2022] Open
Abstract
The levopimaradiene/abietadiene synthase from Norway spruce (Picea abies; PaLAS) has previously been reported to produce a mixture of four diterpene hydrocarbons when incubated with geranylgeranyl diphosphate as the substrate: levopimaradiene, abietadiene, neoabietadiene, and palustradiene. However, variability in the assay products observed by GC-MS of this and orthologous conifer diterpene synthases over the past 15 years suggested that these diterpenes may not be the initial enzyme assay products but are rather the products of dehydration of an unstable alcohol. We have identified epimers of the thermally unstable allylic tertiary alcohol 13-hydroxy-8(14)-abietene as the products of PaLAS. The identification of these compounds, not previously described in conifers, as the initial products of PaLAS has considerable implications for our understanding of the complexity of the biosynthetic pathway of the structurally diverse diterpene resin acids of conifer defense.
Collapse
Affiliation(s)
- Christopher I. Keeling
- From the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lina L. Madilao
- From the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Philipp Zerbe
- From the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harpreet K. Dullat
- From the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jörg Bohlmann
- From the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
23
|
Muraguchi T, Okamoto K, Mitake M, Ogawa H, Shidoji Y. Polished rice as natural sources of cancer-preventing geranylgeranoic acid. J Clin Biochem Nutr 2011; 49:8-15. [PMID: 21765600 PMCID: PMC3128369 DOI: 10.3164/jcbn.10-110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 09/28/2010] [Indexed: 01/13/2023] Open
Abstract
Geranylgeranoic acid, a 20-carbon polyprenoic acid (all-trans 3,7,11,15-tetramethyl-2,4,6,10,14-hexadecatetraenoic acid) and its derivatives were previously developed as synthetic “acyclic retinoids” for cancer chemoprevention. Recently, we demonstrated the natural occurrence of geranylgeranoic acid in various medicinal herbs (Shidoji and Ogawa, 2004). In this present study, we present several lines of evidence to demonstrate that geranylgeranyl diphosphate taken in foods could be metabolized to GGA through geranylgeraniol and geranylgeranyl aldehyde via the following steps: 1) The conversion from geranylgeranyl diphosphate to geranylgeraniol was demonstrated to occur by the action of bovine intestinal alkaline phosphatase, with a Km of 46.1 µM. 2) Geranylgeraniol oxidase-mediated conversion of geranylgeraniol to geranylgeranyl aldehyde was revealed in rat liver homogenates, which activity was mainly localized in the mitochondrial fraction. The mitochondrial enzyme showed a Km of 92.9 µM. 3) The conversion of geranylgeranyl aldehyde to geranylgeranoic acid by geranylgeranyl aldehyde dehydrogenase in rat liver homogenates was absolutely dependent on exogenously added NAD+ or NADP+. The Km of the mitochondrial geranylgeranyl aldehyde dehydrogenase was 27.5 µM for geranylgeranyl aldehyde. Taken together, our data suggest that cancer preventive geranylgeranoic acid could be a physiological metabolite from commonly consumed foods.
Collapse
Affiliation(s)
- Takashi Muraguchi
- Molecular and Cellular Biology, Graduate School of Human Health Sciences, Siebold University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan
| | | | | | | | | |
Collapse
|
24
|
P450s in plant–insect interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:36-45. [DOI: 10.1016/j.bbapap.2010.09.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022]
|
25
|
Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:86-97. [PMID: 20074143 DOI: 10.1111/j.1744-7909.2010.00910.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Defense-related terpenoid biosynthesis in conifers is a dynamic process closely associated with specialized anatomical structures that allows conifers to cope with attack from many potential pests and pathogens. The constitutive and inducible terpenoid defense of conifers involves several hundred different monoterpenes, sesquiterpenes and diterpenes. Changing arrays of these many compounds are formed from the general isoprenoid pathway by activities of large gene families for two classes of enzymes, the terpene synthases and the cytochrome P450-dependent monooxygenases of the CYP720B group. Extensive studies have been conducted on the genomics, proteomics and molecular biochemical characterization of these enzymes. Many of the conifer terpene synthases are multi-product enzymes, and the P450 enzymes of the CYP720B group are promiscuous in catalyzing multiple oxidations, along homologous series of diterpenoids, from a broad spectrum of substrates. The terpene synthases and CYP720B genes respond to authentic or simulated insect attack with increased transcript levels, protein abundance and enzyme activity. The constitutive and induced oleoresin terpenoids for conifer defense accumulate in preformed cortical resin ducts and in xylem trauma-associated resin ducts. Formation of these resin ducts de novo in the cambium zone and developing xylem, following insect attack or treatment of trees with methyl jasmonate, is a unique feature of the induced defense of long-lived conifer trees.
Collapse
Affiliation(s)
- Katherine G Zulak
- Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | |
Collapse
|
26
|
Mizutani M, Ohta D. Diversification of P450 genes during land plant evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:291-315. [PMID: 20192745 DOI: 10.1146/annurev-arplant-042809-112305] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant cytochromes P450 (P450s) catalyze a wide variety of monooxygenation/hydroxylation reactions in primary and secondary metabolism. The number of P450 genes in plant genomes is estimated to be up to 1% of total gene annotations of each plant species. This implies that diversification within P450 gene superfamilies has led to the emergence of new metabolic pathways throughout land plant evolution. The conserved P450 families contribute to chemical defense mechanisms under terrestrial conditions and several are involved in hormone biosynthesis and catabolism. Species-specific P450 families are essential for the biosynthetic pathways of species-specialized metabolites. Future genome-wide analyses of P450 gene clusters and coexpression networks should help both in identifying the functions of many orphan P450s and in understanding the evolution of this versatile group of enzymes.
Collapse
Affiliation(s)
- Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | |
Collapse
|
27
|
Hamberger B, Hall D, Yuen M, Oddy C, Hamberger B, Keeling CI, Ritland C, Ritland K, Bohlmann J. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome. BMC PLANT BIOLOGY 2009; 9:106. [PMID: 19656416 PMCID: PMC2729077 DOI: 10.1186/1471-2229-9-106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/06/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. RESULTS We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. CONCLUSION We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.
Collapse
Affiliation(s)
- Björn Hamberger
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Dawn Hall
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Mack Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Claire Oddy
- Department of Forest Sciences, University of British Columbia, Vancouver, B. C., V6T 1Z4, Canada
| | - Britta Hamberger
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Carol Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, B. C., V6T 1Z4, Canada
| | - Kermit Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, B. C., V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
- Department of Forest Sciences, University of British Columbia, Vancouver, B. C., V6T 1Z4, Canada
| |
Collapse
|
28
|
Ralph SG, Chun HJE, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 2008; 9:484. [PMID: 18854048 PMCID: PMC2579922 DOI: 10.1186/1471-2164-9-484] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background Members of the pine family (Pinaceae), especially species of spruce (Picea spp.) and pine (Pinus spp.), dominate many of the world's temperate and boreal forests. These conifer forests are of critical importance for global ecosystem stability and biodiversity. They also provide the majority of the world's wood and fiber supply and serve as a renewable resource for other industrial biomaterials. In contrast to angiosperms, functional and comparative genomics research on conifers, or other gymnosperms, is limited by the lack of a relevant reference genome sequence. Sequence-finished full-length (FL)cDNAs and large collections of expressed sequence tags (ESTs) are essential for gene discovery, functional genomics, and for future efforts of conifer genome annotation. Results As part of a conifer genomics program to characterize defense against insects and adaptation to local environments, and to discover genes for the production of biomaterials, we developed 20 standard, normalized or full-length enriched cDNA libraries from Sitka spruce (P. sitchensis), white spruce (P. glauca), and interior spruce (P. glauca-engelmannii complex). We sequenced and analyzed 206,875 3'- or 5'-end ESTs from these libraries, and developed a resource of 6,464 high-quality sequence-finished FLcDNAs from Sitka spruce. Clustering and assembly of 147,146 3'-end ESTs resulted in 19,941 contigs and 26,804 singletons, representing 46,745 putative unique transcripts (PUTs). The 6,464 FLcDNAs were all obtained from a single Sitka spruce genotype and represent 5,718 PUTs. Conclusion This paper provides detailed annotation and quality assessment of a large EST and FLcDNA resource for spruce. The 6,464 Sitka spruce FLcDNAs represent the third largest sequence-verified FLcDNA resource for any plant species, behind only rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), and the only substantial FLcDNA resource for a gymnosperm. Our emphasis on capturing FLcDNAs and ESTs from cDNA libraries representing herbivore-, wound- or elicitor-treated induced spruce tissues, along with incorporating normalization to capture rare transcripts, resulted in a rich resource for functional genomics and proteomics studies. Sequence comparisons against five plant genomes and the non-redundant GenBank protein database revealed that a substantial number of spruce transcripts have no obvious similarity to known angiosperm gene sequences. Opportunities for future applications of the sequence and clone resources for comparative and functional genomics are discussed.
Collapse
Affiliation(s)
- Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Terpenoids (isoprenoids) encompass more than 40 000 structures and form the largest class of all known plant metabolites. Some terpenoids have well-characterized physiological functions that are common to most plant species. In addition, many of the structurally diverse plant terpenoids may function in taxonomically more discrete, specialized interactions with other organisms. Historically, specialized terpenoids, together with alkaloids and many of the phenolics, have been referred to as secondary metabolites. More recently, these compounds have become widely recognized, conceptually and/or empirically, for their essential ecological functions in plant biology. Owing to their diverse biological activities and their diverse physical and chemical properties, terpenoid plant chemicals have been exploited by humans as traditional biomaterials in the form of complex mixtures or in the form of more or less pure compounds since ancient times. Plant terpenoids are widely used as industrially relevant chemicals, including many pharmaceuticals, flavours, fragrances, pesticides and disinfectants, and as large-volume feedstocks for chemical industries. Recently, there has been a renaissance of awareness of plant terpenoids as a valuable biological resource for societies that will have to become less reliant on petrochemicals. Harnessing the powers of plant and microbial systems for production of economically valuable plant terpenoids requires interdisciplinary and often expensive research into their chemistry, biosynthesis and genomics, as well as metabolic and biochemical engineering. This paper provides an overview of the formation of hemi-, mono-, sesqui- and diterpenoids in plants, and highlights some well-established examples for these classes of terpenoids in the context of biomaterials and biofuels.
Collapse
Affiliation(s)
- Jörg Bohlmann
- Michael Smith Laboratories, 321-2185 East Mall, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
30
|
Field B, Osbourn AE. Metabolic diversification--independent assembly of operon-like gene clusters in different plants. Science 2008; 320:543-7. [PMID: 18356490 DOI: 10.1126/science.1154990] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering.
Collapse
Affiliation(s)
- Ben Field
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
31
|
Schmidt A, Gershenzon J. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. PHYTOCHEMISTRY 2007; 68:2649-59. [PMID: 17624381 DOI: 10.1016/j.phytochem.2007.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 05/16/2023]
Abstract
The conifer Picea abies (Norway spruce) employs terpenoid-based oleoresins as part of its constitutive and induced defense responses to herbivores and pathogens. The isoprenyl diphosphate synthases are branch-point enzymes of terpenoid biosynthesis leading to the various terpene classes. We isolated three genes encoding isoprenyl diphosphate synthases from P. abies cDNA libraries prepared from the bark and wood of methyl jasmonate-treated saplings and screened via a homology-based PCR approach using degenerate primers. Enzyme assays of the purified recombinant proteins expressed in Escherichia coli demonstrated that one gene (PaIDS 4) encodes a farnesyl diphosphate synthase and the other two (PaIDS 5 and PaIDS 6) encode geranylgeranyl diphosphate synthases. The sequences have moderate similarity to those of farnesyl diphosphate and geranylgeranyl diphosphate synthases already known from plants, and the kinetic properties of the enzymes are not unlike those of other isoprenyl diphosphate synthases. Of the three genes, only PaIDS 5 displayed a significant increase in transcript level in response to methyl jasmonate spraying, suggesting its involvement in induced oleoresin biosynthesis.
Collapse
Affiliation(s)
- Axel Schmidt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| | | |
Collapse
|