1
|
Wei Y, Li M, Hu Y, Lu J, Wang L, Yin Q, Hong X, Tian J, Wang H. PCC0208057 as a small molecule inhibitor of TRPC6 in the treatment of prostate cancer. Front Pharmacol 2024; 15:1352373. [PMID: 38567350 PMCID: PMC10986179 DOI: 10.3389/fphar.2024.1352373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor, whose morbidity and mortality keep the top three in the male-related tumors in developed countries. Abnormal ion channels, such as transient receptor potential canonical 6 (TRPC6), are reported to be involved in the carcinogenesis and progress of prostate cancer and have become potential drug targets against prostate cancer. Here, we report a novel small molecule inhibitor of TRPC6, designated as PCC0208057, which can suppress the proliferation and migration of prostate cancer cells in vitro, and inhibit the formation of Human umbilical vein endothelial cells cell lumen. PCC0208057 can effectively inhibit the growth of xenograft tumor in vivo. Molecular mechanism studies revealed that PCC0208057 could directly bind and inhibit the activity of TRPC6, which then induces the prostate cancer cells arrested in G2/M phase via enhancing the phosphorylation of Nuclear Factor of Activated T Cells (NFAT) and Cdc2. Taken together, our study describes for the first time that PCC0208057, a novel TRPC6 inhibitor, might be a promising lead compound for treatment of prostate cancer.
Collapse
Affiliation(s)
- Yingjie Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
2
|
Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A. Intracellular Ca 2+ signalling: unexpected new roles for the usual suspect. Front Physiol 2023; 14:1210085. [PMID: 37576340 PMCID: PMC10413985 DOI: 10.3389/fphys.2023.1210085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Guéguinou M, Felix R, Marionneau-Lambot S, Oullier T, Penna A, Kouba S, Gambade A, Fourbon Y, Ternant D, Arnoult C, Simon G, Bouchet AM, Chantôme A, Harnois T, Haelters JP, Jaffrès PA, Weber G, Bougnoux P, Carreaux F, Mignen O, Vandier C, Potier-Cartereau M. Synthetic alkyl-ether-lipid promotes TRPV2 channel trafficking trough PI3K/Akt-girdin axis in cancer cells and increases mammary tumour volume. Cell Calcium 2021; 97:102435. [PMID: 34167050 DOI: 10.1016/j.ceca.2021.102435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
The Transient Receptor Potential Vanilloid type 2 (TRPV2) channel is highly selective for Ca2+ and can be activated by lipids, such as LysoPhosphatidylCholine (LPC). LPC analogues, such as the synthetic alkyl-ether-lipid edelfosine or the endogenous alkyl-ether-lipid Platelet Activating Factor (PAF), modulates ion channels in cancer cells. This opens the way to develop alkyl-ether-lipids for the modulation of TRPV2 in cancer. Here, we investigated the role of 2-Acetamido-2-Deoxy-l-O-Hexadecyl-rac-Glycero-3-PhosphatidylCholine (AD-HGPC), a new alkyl-ether-lipid (LPC analogue), on TRPV2 trafficking and its impact on Ca2+ -dependent cell migration. The effect of AD-HGPC on the TRPV2 channel and tumour process was further investigated using calcium imaging and an in vivo mouse model. Using molecular and pharmacological approaches, we dissected the mechanism implicated in alkyl-ether-lipids sensitive TRPV2 trafficking. We found that TRPV2 promotes constitutive Ca2+ entry, leading to migration of highly metastatic breast cancer cell lines through the PI3K/Akt-Girdin axis. AD-HGPC addresses the functional TRPV2 channel in the plasma membrane through Golgi stimulation and PI3K/Akt/Rac-dependent cytoskeletal reorganization, leading to constitutive Ca2+ entry and breast cancer cell migration (without affecting the development of metastasis), in a mouse model. We describe, for the first time, the biological role of a new alkyl-ether-lipid on TRPV2 channel trafficking in breast cancer cells and highlight the potential modulation of TRPV2 by alkyl-ether-lipids as a novel avenue for research in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France; PATCH Team, EA 7501 GICC, Faculté de Médecine, Université de Tours, F-37032, France
| | - Romain Felix
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | | | - Thibauld Oullier
- Inserm UMR 1235 TENS, Faculté de Médecine, Université de Nantes, F-44035, France
| | - Aubin Penna
- STIM Team, ERL CNRS 7349, UFR SFA Pole Biologie Santé, Université de Poitiers, F-86073, France
| | - Sana Kouba
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Audrey Gambade
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Yann Fourbon
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - David Ternant
- PATCH Team, EA 7501 GICC, Faculté de Médecine, Université de Tours, F-37032, France
| | - Christophe Arnoult
- PATCH Team, EA 7501 GICC, Faculté de Médecine, Université de Tours, F-37032, France
| | - Gaëlle Simon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Ana Maria Bouchet
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Aurélie Chantôme
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Thomas Harnois
- STIM Team, ERL CNRS 7349, UFR SFA Pole Biologie Santé, Université de Poitiers, F-86073, France
| | - Jean-Pierre Haelters
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Gunther Weber
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Philippe Bougnoux
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - François Carreaux
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Université de Rennes, F-35700, France
| | - Olivier Mignen
- Inserm UMR 1227 Immunothérapies et Pathologies Lymphocytaires B, CHU Morvan, Université de Bretagne Occidentale, Brest, F-29609, France
| | - Christophe Vandier
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France.
| |
Collapse
|
4
|
Abstract
Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer. [BMB Reports 2020; 53(3): 125-132].
Collapse
Affiliation(s)
- Dongki Yang
- Departments of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Jaehong Kim
- Departments of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
5
|
Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol 2020; 11:968. [PMID: 32733237 PMCID: PMC7358640 DOI: 10.3389/fphar.2020.00968] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer, the second cause of death worldwide, is characterized by several common criteria, known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance, angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in external and internal biological membranes, diffusing Ca2+ ions down their electrochemical gradient. Numerous physiological functions are mediated by calcium channels, ranging from intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels play important roles in human physiology and it is not a surprise the increasing number of evidences connecting calcium channels disorders with tumor cells growth, survival and migration. Multiple studies suggest that calcium signals are augmented in various cancer cell types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable channels signaling in cancer with special attention to the mechanisms behind the remodeling of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular calcium homeostasis and signaling, contributing to the transformation of normal cells into their tumor counterparts. Several compounds reported to counteract several cancer hallmarks also modulate the activity and/or the expression of these channels including non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium permeable channels targeted by these compounds in cancer and their action mechanism will be discussed also in the review.
Collapse
Affiliation(s)
- Sendoa Tajada
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
6
|
Singh J, Hussain Y, Luqman S, Meena A. Targeting Ca 2+ signalling through phytomolecules to combat cancer. Pharmacol Res 2019; 146:104282. [PMID: 31129179 DOI: 10.1016/j.phrs.2019.104282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Cancer is amongst the life-threatening public health issue worldwide, hence responsible for millions of death every year. It is affecting human health regardless of their gender, age, eating habits, and ecological location. Many drugs and therapies are available for its cure still the need for effective targeted drugs and therapies are of paramount importance. In the recent past, Ca2+ signalling (including channels/transporters/pumps) are being studied as a plausible target for combating the cancer menace. Many evidence has shown that the intracellular Ca2+ homeostasis is altered in cancer cells and the remodelling is linked with tumor instigation, angiogenesis, progression, and metastasis. Focusing on these altered Ca2+ signalling tool kit for cancer treatment is a cross-cutting and emerging area of research. In addition, there are numerous phytomolecules which can be exploited as a potential Ca2+ (channels/transporters/ pumps) modulators in the context of targeting Ca2+ signalling in the cancer cell. In the present review, a list of plant-based potential Ca2+ (channel/transporters/pumps) modulators has been reported which could have application in the framework of repurposing the potential drugs to target Ca2+ signalling pathways in cancer cells. This review also aims to gain attention in and support for prospective research in this field.
Collapse
Affiliation(s)
- Jyoti Singh
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
TRPM2 mediates distruption of autophagy machinery and correlates with the grade level in prostate cancer. J Cancer Res Clin Oncol 2019; 145:1297-1311. [DOI: 10.1007/s00432-019-02898-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
|
8
|
Sagredo AI, Sagredo EA, Pola V, Echeverría C, Andaur R, Michea L, Stutzin A, Simon F, Marcelain K, Armisén R. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J Cell Physiol 2018; 234:2037-2050. [PMID: 30343491 DOI: 10.1002/jcp.27371] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.
Collapse
Affiliation(s)
- Alfredo I Sagredo
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile
| | - Eduardo A Sagredo
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile
| | - Victor Pola
- Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - César Echeverría
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Facultad de Medicina, Universidad de Atacama, Copiapo, Chile
| | - Rodrigo Andaur
- Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - Luis Michea
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Andrés Stutzin
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katherine Marcelain
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - Ricardo Armisén
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| |
Collapse
|
9
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
10
|
Villalobos C, Sobradillo D, Hernández-Morales M, Núñez L. Remodeling of Calcium Entry Pathways in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:449-66. [DOI: 10.1007/978-3-319-26974-0_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Schinke EN, Bii V, Nalla A, Rae DT, Tedrick L, Meadows GG, Trobridge GD. A novel approach to identify driver genes involved in androgen-independent prostate cancer. Mol Cancer 2014; 13:120. [PMID: 24885513 PMCID: PMC4098713 DOI: 10.1186/1476-4598-13-120] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/13/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Insertional mutagenesis screens have been used with great success to identify oncogenes and tumor suppressor genes. Typically, these screens use gammaretroviruses (γRV) or transposons as insertional mutagens. However, insertional mutations from replication-competent γRVs or transposons that occur later during oncogenesis can produce passenger mutations that do not drive cancer progression. Here, we utilized a replication-incompetent lentiviral vector (LV) to perform an insertional mutagenesis screen to identify genes in the progression to androgen-independent prostate cancer (AIPC). METHODS Prostate cancer cells were mutagenized with a LV to enrich for clones with a selective advantage in an androgen-deficient environment provided by a dysregulated gene(s) near the vector integration site. We performed our screen using an in vitro AIPC model and also an in vivo xenotransplant model for AIPC. Our approach identified proviral integration sites utilizing a shuttle vector that allows for rapid rescue of plasmids in E. coli that contain LV long terminal repeat (LTR)-chromosome junctions. This shuttle vector approach does not require PCR amplification and has several advantages over PCR-based techniques. RESULTS Proviral integrations were enriched near prostate cancer susceptibility loci in cells grown in androgen-deficient medium (p < 0.001), and five candidate genes that influence AIPC were identified; ATPAF1, GCOM1, MEX3D, PTRF, and TRPM4. Additionally, we showed that RNAi knockdown of ATPAF1 significantly reduces growth (p < 0.05) in androgen-deficient conditions. CONCLUSIONS Our approach has proven effective for use in PCa, identifying a known prostate cancer gene, PTRF, and also several genes not previously associated with prostate cancer. The replication-incompetent shuttle vector approach has broad potential applications for cancer gene discovery, and for interrogating diverse biological and disease processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99210-1495, USA.
| |
Collapse
|
12
|
Liu Q, Wang X. Effect of TRPV2 cation channels on the proliferation, migration and invasion of 5637 bladder cancer cells. Exp Ther Med 2013; 6:1277-1282. [PMID: 24223658 PMCID: PMC3820795 DOI: 10.3892/etm.2013.1301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential vanilloid 2 (TRPV2), a nonselective cation channel, has become an attractive target gene for tumor studies due to its wide range of physiological and pathological functions. However, its specific role in bladder cancer development and progression remains unclear. The aim of the present study was to investigate the effects of TRPV2 on the proliferation, migration and invasion of 5637 bladder cancer cells in vitro. Rat TRPV2 cDNA was transfected into 5637 bladder cancer cells and changes in the behavior of the cells were detected. It was observed that TRPV2 enhanced bladder cancer cell migration and invasion; however, it did not affect cell proliferation in vitro. TRPV2 activity, which may be mediated by direct matrix metalloproteinase 2 (MMP2) regulation, is important in bladder tumor development and progression. The results of this study suggest that TRPV2 channels are a potential therapeutic target for bladder carcinoma.
Collapse
Affiliation(s)
- Quanliang Liu
- Department of Urology Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | | |
Collapse
|
13
|
Hiroi H, Momoeda M, Watanabe T, Ito M, Ikeda K, Tsutsumi R, Hosokawa Y, Koizumi M, Zenri F, Muramatsu M, Taketani Y, Inoue S. Expression and regulation of transient receptor potential cation channel, subfamily M, member 2 (TRPM2) in human endometrium. Mol Cell Endocrinol 2013; 365:146-52. [PMID: 23142700 DOI: 10.1016/j.mce.2012.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/09/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022]
Abstract
To identify estrogen-responsive genes, we previously isolated estrogen receptor (ER)-binding DNA fragments from human genomic DNA using a recombinant ER protein. Six DNA fragments, each including a perfect palindromic estrogen response element (ERE), were obtained. The nucleotide sequence of one of the six fragments (E1 fragment) showed that the ERE of the E1 fragment is located in the 3'-untranslated region (UTR) of transient receptor potential cation channel, subfamily M, member 2 (TRPM2). Here, we confirmed the estrogen-dependent enhancer activity of the ERE of the E1 fragment by chloramphenicol acetyltransferase assay. TRPM2 mRNA expression was investigated in human endometrium, cultured human endometrial stromal cells (ESCs), and cultured human endometrial epithelial cells (EECs) using RT-PCR. Quantitative RT-PCR revealed that TRPM2 mRNA expression in ESCs increased after 17β-estradiol (E2) treatment. This study demonstrated for the first time that TRPM2 is an estrogen-responsive gene expressed in human endometrial cells.
Collapse
Affiliation(s)
- Hisahiko Hiroi
- Department of Obstetrics and Gynecology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mergler S, Cheng Y, Skosyrski S, Garreis F, Pietrzak P, Kociok N, Dwarakanath A, Reinach PS, Kakkassery V. Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res 2012; 94:157-73. [DOI: 10.1016/j.exer.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/04/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
15
|
Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells. Cell Signal 2012; 24:233-46. [DOI: 10.1016/j.cellsig.2011.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022]
|
16
|
TRPV channels in tumor growth and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:947-67. [PMID: 21290335 DOI: 10.1007/978-94-007-0265-3_49] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca(2+)-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.
Collapse
|
17
|
5-Benzyloxytryptamine as an antagonist of TRPM8. Bioorg Med Chem Lett 2010; 20:7076-9. [DOI: 10.1016/j.bmcl.2010.09.099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022]
|
18
|
Pharmacological and functional properties of TRPM8 channels in prostate tumor cells. Pflugers Arch 2010; 461:99-114. [PMID: 21052713 DOI: 10.1007/s00424-010-0895-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
Prostate cancer (PC) is a major health problem in adult males. TRPM8, a cationic TRP channel activated by cooling and menthol is upregulated in PC. However, the precise role of TRPM8 in PC is still unclear. Some studies hypothesized that TRPM8-mediated transmembrane Ca(2+) fluxes play a key role in cellular proliferation of PC cells. In contrast, other findings suggest that high TRPM8 levels may reduce the metastatic potential of PC cells. A detailed understanding of the response of TRPM8 channels to pharmacological modulators of their activity is relevant when considering potential therapies, targeting this ion channel to treat PC. We characterized the pharmacological and functional properties of native TRPM8 channels in four human prostate cell lines, PNT1A, LNCaP, DU145, and PC3, commonly used as experimental models of PC. PNT1A is a non-tumoral prostate cell line while the other three correspond to different stages of PC. Here, we show that cold- and agonist-evoked [Ca(2+)](i) responses in PC cells are much less sensitive to well-characterized agonists (menthol and icilin) and antagonists (BCTC, clotrimazole, and DD01050) of TRPM8 channels, compared to TRPM8 channels in other tissues, suggesting a different molecular composition and/or spatial organization. In addition, the forced overexpression of human TRPM8 facilitated the trafficking of TRPM8 channels residing in the endoplasmic reticulum to the plasma membrane, leading to a marked potentiation in the efficacy of the different blockers. These results predict that blockers of canonical TRPM8 channels may be less effective in halting proliferation of PC cells than expected.
Collapse
|
19
|
Armisén R, Marcelain K, Simon F, Tapia JC, Toro J, Quest AF, Stutzin A. TRPM4 enhances cell proliferation through up-regulation of the β-catenin signaling pathway. J Cell Physiol 2010; 226:103-9. [DOI: 10.1002/jcp.22310] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Ortar G, Petrocellis LD, Morera L, Moriello AS, Orlando P, Morera E, Nalli M, Marzo VD. (−)-Menthylamine derivatives as potent and selective antagonists of transient receptor potential melastatin type-8 (TRPM8) channels. Bioorg Med Chem Lett 2010; 20:2729-32. [DOI: 10.1016/j.bmcl.2010.03.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
21
|
Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis 2009; 13:195-201. [PMID: 20029400 PMCID: PMC2871075 DOI: 10.1038/pcan.2009.55] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have identified a novel function for a member of the transient receptor potential (TRP) protein super-family, TRPM2, in prostate cancer cell proliferation. TRPM2 encodes a non-selective cation-permeable ion channel. We found that selectively knocking down TRPM2 with the small interfering RNA technique inhibited the growth of prostate cancer cells but not of non-cancerous cells. The subcellular localization of this protein is also remarkably different between cancerous and non-cancerous cells. In BPH-1 (benign), TRPM2 protein is homogenously located near the plasma membrane and in the cytoplasm, whereas in the cancerous cells (PC-3 and DU-145), a significant amount of the TRPM2 protein is located in the nuclei in a clustered pattern. Furthermore, we have found that TRPM2 inhibited nuclear ADP-ribosylation in prostate cancer cells. However, TRPM2 knockdown-induced inhibition of proliferation is independent of the activity of poly(ADP-ribose) polymerases. We conclude that TRPM2 is essential for prostate cancer cell proliferation and may be a potential target for the selective treatment of prostate cancer.
Collapse
|
22
|
Malagarie-Cazenave S, Olea-Herrero N, Vara D, Díaz-Laviada I. Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett 2008; 583:141-7. [DOI: 10.1016/j.febslet.2008.11.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/29/2022]
|
23
|
Munaron L, Tomatis C, Fiorio Pla A. The secret marriage between calcium and tumor angiogenesis. Technol Cancer Res Treat 2008; 7:335-9. [PMID: 18642972 DOI: 10.1177/153303460800700408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endothelial cell biochemistry and responsiveness to a wide variety of external stimula is regulated by intracellular calcium concentration. During the last twenty years, electrophysiology and functional imaging based on the use of fluorescent probes provided several informations about the dynamics and role of calcium at the single cell level: highly diverse extracellular agonists, such as proangiogenic growth factors and vasoactive compounds, trigger increases in intracellular calcium and specific informations are transduced for proliferation, differentiation, death, movement in physiological and pathological conditions. Obviously, the investigation at multicellular and tissutal levels is much more complex. In this review we discuss the potential specific roles of calcium signaling in tumor angiogenesis progression trying to address two key questions: (i) how can this ion play specific roles in the angiogenesis regulation; and (ii) could it be used as a target to interfere with or prevent tumor vascularization?
Collapse
Affiliation(s)
- Luca Munaron
- Department of Animal and Human Biology, University of Turin, Italy.
| | | | | |
Collapse
|
24
|
Goswami C, Hucho T. Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 2008; 275:4684-99. [PMID: 18754773 DOI: 10.1111/j.1742-4658.2008.06617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much work has focused on the electrophysiological properties of transient receptor potential channels. Recently, a novel aspect of importance emerged: the interplay of transient receptor potential channels with the cytoskeleton. Recent data suggest a direct interaction and functional repercussion for both binding partners. The bi-directionality of physical and functional interaction renders therefore, the cytoskeleton a potent integration point of complex biological signalling events, from both the cytoplasm and the extracellular space. In this minireview, we focus mostly on the interaction of the cytoskeleton with transient receptor potential vanilloid channels. Thereby, we point out the functional importance of cytoskeleton components both as modulator and as modulated downstream effector. The resulting implications for patho-biological situations are discussed.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
25
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Reaves BJ, Wolstenholme AJ. The TRP channel superfamily: insights into how structure, protein-lipid interactions and localization influence function. Biochem Soc Trans 2007; 35:77-80. [PMID: 17233605 DOI: 10.1042/bst0350077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRP (transient receptor potential) cationic channels are key molecules that are involved in a variety of diverse biological processes ranging from fertility to osmosensation and nociception. Increasing our knowledge of these channels will help us to understand a range of physiological and pathogenic processes, as well as highlighting potential therapeutic drug targets. The founding members of the TRP family, Drosophila TRP and TRPL (TRP-like) proteins, were identified within the last two decades and there has been a subsequent explosion in the number and type of TRP channel described. Although information is accumulating as to the function of some of the TRP channels, the activation and inactivation mechanisms, structure, and interacting proteins of many, if not most, are awaiting elucidation. The Cell and Molecular Biology of TRP Channels Meeting held at the University of Bath included speakers working on a number of the different subfamilies of TRP channels and provided a basis for highlighting both similarities and differences between these groups. As the TRP channels mediate diverse functions, this meeting also brought together an audience with wide-ranging research interests, including biochemistry, cell biology, physiology and neuroscience, and inspired lively discussion on the issues reviewed herein.
Collapse
Affiliation(s)
- B J Reaves
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | |
Collapse
|