1
|
Tong X, Poramba-Liyanage DW, van Hoolwerff M, Riemers FM, Montilla-Rojo J, Warin J, Salvatori D, Camus A, Meulenbelt I, Ramos YFM, Geijsen N, Tryfonidou MA, Shang P. Isolation and tracing of matrix-producing notochordal and chondrocyte cells using ACAN-2A-mScarlet reporter human iPSC lines. SCIENCE ADVANCES 2024; 10:eadp3170. [PMID: 39441923 PMCID: PMC11498221 DOI: 10.1126/sciadv.adp3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The development of human induced pluripotent stem cell (iPSC)-based regenerative therapies is challenged by the lack of specific cell markers to isolate differentiated cell types and improve differentiation protocols. This issue is particularly critical for notochordal-like cells and chondrocytes, which are crucial in treating back pain and osteoarthritis, respectively. Both cell types produce abundant proteoglycan aggrecan (ACAN), crucial for the extracellular matrix. We generated two human iPSC lines containing an ACAN-2A-mScarlet reporter. The reporter cell lines were validated using CRISPR-mediated transactivation and functionally validated during notochord and cartilage differentiation. The ability to isolate differentiated cell populations producing ACAN enables their enrichment even in the absence of specific cell markers and allows for comprehensive studies and protocol refinement. ACAN's prevalence in various tissues (e.g., cardiac and cerebral) underscores the reporter's versatility as a valuable tool for tracking matrix protein production in diverse cell types, benefiting developmental biology, matrix pathophysiology, and regenerative medicine.
Collapse
Affiliation(s)
- Xiaole Tong
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Deepani W. Poramba-Liyanage
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Joaquin Montilla-Rojo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Julie Warin
- Université de Nantes, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Daniela Salvatori
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Anne Camus
- Université de Nantes, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Yolande F. M. Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, Leiden, Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, Leiden, Netherlands
| |
Collapse
|
2
|
Yan XA, Shen E, Cui A, Zhou F, Zhuang Y. Assessing the causal relationship between CRP, IL-1α, IL-1β, and IL-6 levels and intervertebral disc degeneration: a two-sample Mendelian randomization study. Sci Rep 2024; 14:23716. [PMID: 39390000 PMCID: PMC11466971 DOI: 10.1038/s41598-024-73205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Growing research has suggested an association between chronic inflammation and Intervertebral disc degeneration (IVDD), but whether there is a causal effect remains unknown. This study adopted two-sample Mendelian randomization (MR) approach to explore the etiological role of chronic inflammation in IVDD risk. Here, summary statistics for C-reactive protein (CRP), interleukin (IL)-1 α , IL-1 β , IL-6 expression and IVDD were obtained from genome-wide association studies (GWAS) of European ancestry. MR analyses were conducted by using inverse variance weighted (IVW), Wald Ratio, weighted median, and MR-Egger method. Sensitivity analyses were conducted to assess the robustness of the results. The MR analyses suggested a lack of causal association of CRP, IL-6 , and IL-1 α levels on IVDD (CRP-IVDD: odds ratio [OR] = 0.97, 95% confidence interval [CI] 0.86-1.09, P = 0.583; IL-6-IVDD: OR = 1.04, 95% CI 0.86-1.27, P = 0.679; IL-1 α -IVDD: OR = 1.09, 95%CI 1.00-1.18, P = 0.058). However, there was a sign of a connection between genetically elevated IL-1 β levels and a decreased IVDD incidence (OR = 0.87, 95%CI 0.77-0.99, P = 0.03). Our findings suggest a connection between IL-1 β levels and the risk of IVDD. However, due to the support of only one SNP, heterogeneity and pleiotropy tests cannot be performed, the specific underlying mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Xin-An Yan
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erdong Shen
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Aiyong Cui
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fengjin Zhou
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Yan Zhuang
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Nayagam SM, Ramachandran K, Selvaraj G, Sunmathi R, Easwaran M, Palraj ND, Anand K S SV, Muthurajan R, Tangavel C, Rajasekaran S. Identification of extracellular matrix proteins in plasma as a potential biomarker for intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08481-6. [PMID: 39299936 DOI: 10.1007/s00586-024-08481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Recently, there has been significant focus on extracellular matrix proteolysis due to its importance in the pathological progression of intervertebral disc degeneration (IVDD). The present study investigates the circulating levels of extracellular matrix proteins in the plasma of IVDD and determines their potential relevance as biomarkers in disc degeneration. METHODS Global proteomic analysis was performed in the plasma samples of 10 healthy volunteers (HV) and 10 diseased subjects (DS) after depletion of highly abundant proteins such as albumin and IgG. RESULTS We identified 144 and 135 matrix-associated proteins in plasma samples from healthy volunteers (HV) and patients with disc degeneration (DS), respectively. Among these, 49 of the matrix-associated proteins were identical to the proteins found in intervertebral disc (IVD) tissues retrieved from the in-house library. Applying stringent parameters, we selected 28 proteins, with 26 present in DS and 21 in HV. 19 proteins were found common between the groups, two of which-aggrecan (ACAN) and fibulin 1 (FBLN1) - showed statistically significant differences. Specifically, ACAN was up-regulated and FBLN1 was down-regulated in the DS-plasma. In particular, DS-plasma exhibited specific expression of collagen type 2a1 (COL2A1), native to the nucleus pulposus. CONCLUSION The distinct presence of collagen type 2a1 and the elevated expression of aggrecan in IVDD plasma may serve as the basis for the development of a potential biomarker for monitoring the progression of disc degeneration.
Collapse
Affiliation(s)
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ganesh Selvaraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - R Sunmathi
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Murugesh Easwaran
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Narmatha Devi Palraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Sri Vijay Anand K S
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| |
Collapse
|
4
|
Mern DS, Thomé C. Collagen II enrichment through scAAV6-RNAi-mediated inhibition of matrix-metalloproteinases 3 and 13 in degenerative nucleus-pulposus cells degenerative disc disease and biological treatment strategies. Exp Biol Med (Maywood) 2024; 249:10048. [PMID: 39286594 PMCID: PMC11402661 DOI: 10.3389/ebm.2024.10048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Intervertebral disc (IVD) degeneration damaging the extracellular matrix (ECM) of IVDs is the main cause of spine-associated disorders. Degenerative disc disease (DDD) is a multifaceted disorder, where environmental factors, inflammatory cytokines and catabolic enzymes act together. DDD starts typically due to imbalance between ECM biosynthesis and degradation within IVDs, especially through unbalanced degradation of aggrecan and collagen II in nucleus pulposus (NP). Current treatment approaches are primarily based on conservative or surgical therapies, which are insufficient for biological regeneration. The disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) and matrix metalloproteinases (MMPs) are the key proteolytic enzymes for degradation of aggrecan and collagens. Previously, high expression levels of ADAMTS4, ADAMTS5, MMP3 and MMP13, which are accompanied with low levels of aggrecan and collagen II, were demonstrated in degenerative human NP cells. Moreover, self-complementary adeno-associated virus type 6 (scAAV6) mediated inhibitions of ADAMTS4 and ADAMTS5 by RNA-interference (RNAi) could specifically enhance aggrecan level. Thus, MMPs are apparently the main degrading enzymes of collagen II in NP. Furthermore, scAAV6-mediated inhibitions of MMP3 and MMP13 have not yet been investigated. Therefore, we attempted to enhance the level of collagen II in degenerative NP cells by scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13. MRI was used to determine preoperative grading of IVD degeneration in patients. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting MMP3 or MMP13; and analysed by fluorescence microscopy, FACS, MTT assay, RT-qPCR, ELISA and western blotting. scAAV6-shRNRs have no impact on cell viability and proliferation, despite high transduction efficiencies (98.6%) and transduction units (1383 TU/Cell). Combined knockdown of MMP3 (92.8%) and MMP13 (90.9%) resulted in highest enhancement of collagen II (143.2%), whereby treatment effects were significant over 56 days (p < 0.001). Conclusively, scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13 help to progress less immunogenic and enduring biological treatments in DDD.
Collapse
Affiliation(s)
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Deguchi T, Hashizume H, Terao C, Nakajima M, Teraguchi M, Yamada H, Tanaka S, Yoshimura N, Yoshida M, Ikegawa S. A longitudinal population-based study identifies THBS2 as a susceptibility gene for intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:3334-3342. [PMID: 38918228 DOI: 10.1007/s00586-024-08152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Intervertebral disc degeneration (IDD) is a common degenerative disease associated with ageing. Additionally, IDD is recognized as one of the leading causes of low back pain and disability in the working-age population and is the first step in the process leading to degenerative spinal changes. However, the genetic factors and regulatory mechanisms of IDD remain unknown. Therefore, we selected eight single nucleotide polymorphisms of genes to reveal the progression of IDD in a 7-year longitudinal study of the general population in Japan. METHODS IDD was evaluated in the Wakayama Spine Study (WSS), which is a population-based cohort study. Overall, 574 participants from the general population cohort who underwent whole spine magnetic resonance imaging and provided clinical information were included in this longitudinal survey. RESULTS The progression of IDD was affected only by THBS2 at the lumbar region, T12-L1 (p = 0.0044) and L3-4 (p = 0.0045). The significant interaction between THBS2 and age with IDD negatively affected the thoracic spines and passively influenced both the thoracolumbar junction and thoracic spines. The higher progression per year of Pfirrmann's score was rapid in young people with age; however, this decelerated the IDD progression per year in different ages. CONCLUSION Our longitudinal study found the genes associated with IDD progression and that genetic factors' impact on IDD differs depending on disc level and age.
Collapse
Affiliation(s)
- Tsuyoshi Deguchi
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 1-1 Yamadaoka, Suita-City, Japan
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, Japan
| | - Hiroshi Hashizume
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, Japan.
- School of Health and Nursing Science, Wakayama Medical University, 590 Mikazura, Wakayama City, Wakayama, 641-0011, Japan.
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Japan
| | - Masahiro Nakajima
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, 4-6-1 Shirokane, Minato-ku, Tokyo, 108-8639, Japan
| | - Masatoshi Teraguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Munehito Yoshida
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, 4-6-1 Shirokane, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
6
|
Hong Y, Duan Y, Zhu Z, Yu Q, Mo Z, Wang H, Zhou T, Liu Z, Bai J, Zhang X, Yang H, Zhu C, Li B. IL-1ra loaded chondroitin sulfate-functionalized microspheres for minimally invasive treatment of intervertebral disc degeneration. Acta Biomater 2024; 185:336-349. [PMID: 38969077 DOI: 10.1016/j.actbio.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1β, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70 % in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1β. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.
Collapse
Affiliation(s)
- Youzhi Hong
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Yudong Duan
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Qifan Yu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhanfeng Mo
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Tao Zhou
- Department of Spinal Surgery, Ma'anshan People's Hospital, Ma'anshan, Anhui, 243000, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215000, China
| | - Jianzhong Bai
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaoyu Zhang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huilin Yang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
7
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Cazzanelli P, Lamoca M, Hasler J, Hausmann ON, Mesfin A, Puvanesarajah V, Hitzl W, Wuertz-Kozak K. The role of miR-155-5p in inflammation and mechanical loading during intervertebral disc degeneration. Cell Commun Signal 2024; 22:419. [PMID: 39192354 DOI: 10.1186/s12964-024-01803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a multifactorial pathological process resulting in the dysregulation of IVD cell activity. The catabolic shift observed in IVD cells during degeneration leads to increased inflammation, extracellular matrix (ECM) degradation, aberrant intracellular signaling and cell loss. Importantly, these pathological processes are known to be interconnected and to collectively contribute to the progression of the disease. MicroRNAs (miRNAs) are known as strong post-transcriptional regulators, targeting multiple genes simultaneously and regulating numerous intracellular pathways. Specifically, miR-155-5p has been of particular interest since it is known as a pro-inflammatory mediator and contributing factor to diseases like cancer and osteoarthritis. This study investigated the role of miR-155-5p in IVD degeneration with a specific focus on inflammation and mechanosensing. METHODS Gain- and loss-of-function studies were performed through transfection of human Nucleus pulposus (NP) and Annulus fibrosus (AF) cells isolated from degenerated IVDs with miR-155-5p mimics, inhibitors or their corresponding non-targeting control. Transfected cells were then subjected to an inflammatory environment or mechanical loading. Conditioned media and cell lysates were collected for phosphorylation and cytokine secretion arrays as well as gene expression analysis. RESULTS Increased expression of miR-155-5p in AF cells resulted in significant upregulation of interleukin (IL)-8 cytokine secretion during cyclic stretching and a similar trend in IL-6 secretion during inflammation. Furthermore, miR-155-5p mimics increased the expression of the brain-derived neurotrophic factor (BDNF) in AF cells undergoing cyclic stretching. In NP cells, miR-155-5p gain-of-function resulted in the activation of the mitogen-activated protein kinase (MAPK) signaling pathway through increased phosphorylation of p38 and p53. Lastly, miR-155-5p inhibition caused a significant increase in the anti-inflammatory cytokine IL-10 in AF cells and the tissue inhibitor of metalloproteinases (TIMP)-4 in NP cells respectively. CONCLUSION Overall, these results show that miR-155-5p contributes to IVD degeneration by enhancing inflammation through pro-inflammatory cytokines and MAPK signaling, as well as by promoting the catabolic shift of AF cells during mechanical loading. The inhibition of miR-155-5p may constitute a potential therapeutic approach for IVD degeneration and low back pain.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Johannes Hasler
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Oliver Nic Hausmann
- Neuro- and Spine Center, Hirslanden Klinik St. Anna, Lucerne, Switzerland
- Neurosurgical Department, University of Berne, Berne, Switzerland
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, Washington, DC, USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany.
| |
Collapse
|
9
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
10
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
11
|
Ukeba D, Ishikawa Y, Yamada K, Ohnishi T, Tachi H, Tha KK, Iwasaki N, Sudo H. Bone Marrow Aspirate Concentrate Combined with Ultra-Purified Alginate Bioresorbable Gel Enhances Intervertebral Disc Repair in a Canine Model: A Preclinical Proof-of-Concept Study. Cells 2024; 13:987. [PMID: 38891119 PMCID: PMC11172114 DOI: 10.3390/cells13110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy. Prior to an in vivo study, the cell concentration abilities of three commercially available preparation kits for creating the BMAC were compared by measuring the number of bone marrow mesenchymal stem cells harvested from the bone marrow of rabbits. Subsequently, canine-derived BMAC was tested in a canine model using a kit which had the highest concentration rate. At 24 weeks after implantation, we evaluated the changes in the magnetic resonance imaging (MRI) signals as well as histological degeneration grade and immunohistochemical analysis results for type II and type I collagen-positive cells in the treated IVDs. In all quantitative evaluations, such as MRI and histological and immunohistochemical analyses of IVD degeneration, BMAC-UPAL implantation significantly suppressed the progression of IVD degeneration compared to discectomy and UPAL alone. This preclinical proof-of-concept study demonstrated the potential efficacy of BMAC-UPAL gel as a therapeutic strategy for implementation after discectomy, which was superior to UPAL and discectomy alone in terms of tissue repair and regenerative potential.
Collapse
Affiliation(s)
- Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Yoko Ishikawa
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Katsuhisa Yamada
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Hiroyuki Tachi
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Khin Khin Tha
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Hideki Sudo
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| |
Collapse
|
12
|
Heimann MK, Thompson K, Gunsch G, Tang SN, Klamer B, Corps K, Walter BA, Moore SA, Purmessur D. Characterization and modulation of the pro-inflammatory effects of immune cells in the canine intervertebral disk. JOR Spine 2024; 7:e1333. [PMID: 38660017 PMCID: PMC11039810 DOI: 10.1002/jsp2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Background Intervertebral disk (IVD) degeneration affects both humans and canines and is a major cause of low back pain (LBP). Mast cell (MC) and macrophage (MØ) infiltration has been identified in the pathogenesis of IVD degeneration (IVDD) in the human and rodent model but remains understudied in the canine. MC degranulation in the IVD leads to a pro-inflammatory cascade and activates protease activated receptor 2 (PAR2) on IVD cells. The objectives of the present study are to: (1) highlight the pathophysiological changes observed in the degenerate canine IVD, (2) further characterize the inflammatory effect of MCs co-cultured with canine nucleus pulposus (NP) cells, (3) evaluate the effect of construct stiffness on NP and MCs, and (4) identify potential therapeutics to mitigate pathologic changes in the IVD microenvironment. Methods Canine IVD tissue was isolated from healthy autopsy research dogs (beagle) and pet dogs undergoing laminectomy for IVD herniation. Morphology, protein content, and inflammatory markers were assessed. NP cells isolated from healthy autopsy (Mongrel hounds) tissue were co-cultured with canine MCs within agarose constructs and treated with cromolyn sodium (CS) and PAR2 antagonist (PAR2A). Gene expression, sulfated glycosaminoglycan content, and stiffness of constructs were assessed. Results CD 31+ blood vessels, mast cell tryptase, and macrophage CD 163+ were increased in the degenerate surgical canine tissue compared to healthy autopsy. Pro-inflammatory genes were upregulated when canine NP cells were co-cultured with MCs and the stiffer microenvironment enhanced these effects. Treatment with CS and PAR2 inhibitors mediated key pro-inflammatory markers in canine NP cells. Conclusion There is increased MC, MØs, and vascular ingrowth in the degenerate canine IVD tissue, similar to observations in the clinical population with IVDD and LBP. MCs co-cultured with canine NP cells drive inflammation, and CS and PAR2A are potential therapeutics that may mitigate the pathophysiology of IVDD in vitro.
Collapse
Affiliation(s)
- Mary K. Heimann
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Kelly Thompson
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Gilian Gunsch
- Center for Life Sciences Education, College of Arts and SciencesThe Ohio State UniversityOhioUSA
| | - Shirley N. Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Brett Klamer
- Center for Biostatistics, Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Kara Corps
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Benjamin A. Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Orthopedics, College of MedicineThe Ohio State UniversityOhioUSA
| | - Sarah A. Moore
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Orthopedics, College of MedicineThe Ohio State UniversityOhioUSA
| |
Collapse
|
13
|
Li W, Niu Y, Qiu Z, Zhou S, Zhong W, Xiong Z, Zhao D, Yang Y, Zhao H, Yu X. New evidence on the controversy over the correlation between vertebral osteoporosis and intervertebral disc degeneration: a systematic review of relevant animal studies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2354-2379. [PMID: 38642137 DOI: 10.1007/s00586-024-08256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE The effect of vertebral osteoporosis on disc degeneration remains controversial. The aim of this study was to conduct a systematic review and meta-analysis of relevant animal studies to shed more light on the effects and mechanisms of vertebral osteoporosis on disc degeneration and to promote the resolution of the controversy. METHODS The PubMed, Cochrane Library, and Embase databases were searched for studies that met the inclusion criteria. Basic information and data were extracted from the included studies and data were analyzed using STATA 15.1 software. This study was registered on INPLASY with the registration number INPLASY202370099 and https://doi.org/10.37766/inplasy2023.7.0099 . RESULTS A total of 13 studies were included in our study. Both animals, rats and mice, were covered. Meta-analysis results showed in disc height index (DHI) (P < 0.001), histological score (P < 0.001), number of osteoblasts in the endplate (P = 0.043), number of osteoclasts in the endplate (P < 0.001), type I collagen (P < 0.001), type II collagen (P < 0.001), aggrecan (P < 0.001), recombinant a disintegrin and metalloproteinase with thrombospondin-4 (ADAMTS-4) (P < 0.001), matrix metalloproteinase-1 (MMP-1) (P < 0.001), MMP-3 (P < 0.001), MMP-13 (P < 0.001), the difference between the osteoporosis group and the control group was statistically significant. In terms of disc volume, the difference between the osteoporosis group and the control group was not statistically significant (P = 0.459). CONCLUSION Our study shows that vertebral osteoporosis may exacerbate disc degeneration. Abnormal bone remodeling caused by vertebral osteoporosis disrupts the structural integrity of the endplate, leading to impaired nutrient supply to the disc, increased expression of catabolic factors, and decreased levels of type II collagen and aggrecan may be one of the potential mechanisms.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yiqun Niu
- China Medical Technology Press Co., Ltd, Beijing, 100089, China
| | - Ziye Qiu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shibo Zhou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wenqing Zhong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhencheng Xiong
- West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Dingyan Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
14
|
Zhang H, Song Y, Yang Y, Gao Z, Song Z, Wang W. LncRNA FGD5-AS1 promote extracellular matrix synthesis of nucleus pulposus cell via miR-486-5p/FOXO1. Minerva Med 2024; 115:408-411. [PMID: 37310708 DOI: 10.23736/s0026-4806.23.08690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Hui Zhang
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital, Lanzhou, China
| | - Yuxin Song
- Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Gansu Provincial Hospital, Lanzhou, China
| | - Zhao Gao
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Zhengdong Song
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Wenji Wang
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China -
| |
Collapse
|
15
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
16
|
Yıldırım Uslu E, Gülkesen A, Akgol G, Alkan G, Poyraz AK, İlhan N. Serum Endothelin-1 Level Can Reflect the Degree of Lumbar Degeneration: A Cross-Sectional Study. Cureus 2024; 16:e59966. [PMID: 38854285 PMCID: PMC11162144 DOI: 10.7759/cureus.59966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Endothelin-1 (ET-1) is an agent closely associated with inflammation and has recently been recognized as a significant factor in degenerative processes. This study aimed to investigate the correlation between serum ET-1 level and radiological and clinical manifestations of lumbar disc herniation (LDH) and intervertebral disc degeneration (IDD) pathologies. Methodology The study was conducted with 50 healthy controls and 50 LDH patients. The pain level of the patients was analyzed with the Visual Analog Scale (VAS), and their functionality was analyzed with the Oswestry Disability Index (ODI). The disc degeneration and disc herniation grades were determined using magnetic resonance imaging. Serum ET-1 levels of the participants were measured using the enzyme-linked immunosorbent assay method. Results ET-1 level was significantly higher in the patient group compared to the controls (p < 0.01). A positive correlation was determined between serum ET-1 level and Pfirrmann grade in the patient group (p < 0.01). No correlation was determined between the MacNab grade, VAS, and ODI scores and ET-1 (p = 0.397, p = 0.137, and p = 0.208, respectively). There was no significant difference between the serum ET-1 levels of the patients with or without neurological deficits (p = 0.312). Conclusions The correlation between the serum ET-1 levels and IDD grade suggested that the former could serve as a biomarker to determine the degree of degeneration in the future. However, further research is required to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Emine Yıldırım Uslu
- Physical Medicine and Rehabilitation, Elazığ Fethi Sekin City Hospital, Elazig, TUR
| | - Arif Gülkesen
- Physical Medicine and Rehabilitation, Firat University, Elazig, TUR
| | - Gurkan Akgol
- Physical Medicine and Rehabilitation, Firat University Hospital, Elazig, TUR
| | - Gökhan Alkan
- Physical Medicine and Rehabilitation, Firat University, Elazig, TUR
| | | | | |
Collapse
|
17
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Tao Y, Yu X, Li X, Xu Y, Wang H, Zhang L, Lin R, Wang Y, Fan P. M6A methylation-regulated autophagy may be a new therapeutic target for intervertebral disc degeneration. Cell Biol Int 2024; 48:389-403. [PMID: 38317355 DOI: 10.1002/cbin.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yuao Tao
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaoyu Yu
- Department of Gynaecology and Obstetrics, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolong Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuzhu Xu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hui Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Lele Zhang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yuntao Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
20
|
Mizuno S, Vadala G, Kang JD. Biological Therapeutic Modalities for Intervertebral Disc Diseases: An Orthoregeneration Network (ON) Foundation Review. Arthroscopy 2024; 40:1019-1030. [PMID: 37918699 DOI: 10.1016/j.arthro.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Orthoregeneration is defined as a solution for orthopaedic conditions that harnesses the benefits of biology to improve healing, reduce pain, improve function, and, optimally, provide an environment for tissue regeneration. Options include drugs, surgical intervention, scaffolds, biologics as a product of cells, and physical and electromagnetic stimuli. The goal of regenerative medicine is to enhance the healing of tissue after musculoskeletal injuries as both isolated treatment and adjunct to surgical management, using novel therapies to improve recovery and outcomes. Various orthopaedic biologics (orthobiologics) have been investigated for the treatment of pathology involving the spine, including lower back pain, with or without numbness and/or dysfunction in the lower extremities, disc herniation, spinal stenosis, and spondylolisthesis. Promising and established treatment modalities include repair of the annulus fibrosis, injection of expanded or nonexpanded autologous or allogenic cells that are chondrogenic or from a stem cell lineage used to promote matrix tissue regeneration of the intervertebral disc, including nucleus pulpous cells and mesenchymal stem cells isolated from bone marrow, umbilical cord blood, or adipose tissue; and injection of platelet-rich plasma, platelet-rich fibrin, or fibrin sealant. Early clinical studies show promise for pain reduction and functional recovery. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Gianluca Vadala
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - James D Kang
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A..
| |
Collapse
|
21
|
Guo D, Zeng M, Yu M, Shang J, Lin J, Liu L, Yang K, Cao Z. SSR1 and CKAP4 as potential biomarkers for intervertebral disc degeneration based on integrated bioinformatics analysis. JOR Spine 2024; 7:e1309. [PMID: 38222802 PMCID: PMC10782074 DOI: 10.1002/jsp2.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a significant cause of low back pain and poses a significant public health concern. Genetic factors play a crucial role in IDD, highlighting the need for a better understanding of the underlying mechanisms. Aim The aim of this study was to identify potential IDD-related biomarkers using a comprehensive bioinformatics approach and validate them in vitro. Materials and Methods In this study, we employed several analytical approaches to identify the key genes involved in IDD. We utilized weighted gene coexpression network analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the key genes. Additionally, immune infiltrating analysis and a single-cell sequencing dataset were utilized to further explore the characteristics of the key genes. Finally, we conducted in vitro experiments on human disc tissues to validate the significance of these key genes in IDD. Results we obtained gene expression profiles from the GEO database (GSE23130 and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we identified the blue module as significantly related to IDD. Among the DEGs, we identified 47 hub genes that overlapped with the genes in the blue module, based on criteria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1 were validated by GSE70362, demonstrating significant diagnostic value for IDD. Additionally, immune infiltrating analysis revealed that monocytes were significantly correlated with the two key genes. We also analyzed a single-cell sequencing dataset, GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing real time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on 30 human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in degenerated disc samples. Taken together, our findings suggest that CKAP4 and SSR1 have the potential to serve as disease biomarkers for IDD.
Collapse
Affiliation(s)
- Danqing Guo
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
- Guangzhou University of Chinese Medicine the First Affiliated HospitalGuangzhou中国
| | - Min Zeng
- Pathology DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Miao Yu
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jingjing Shang
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jinxing Lin
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Lichu Liu
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Kuangyang Yang
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Zhenglin Cao
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| |
Collapse
|
22
|
Riahinezhad H, Amsden BG. In situ forming, mechanically resilient hydrogels prepared from 4a-[PEG- b-PTMC-Ac] and thiolated chondroitin sulfate for nucleus pulposus cell delivery. J Mater Chem B 2024; 12:1257-1270. [PMID: 38167961 DOI: 10.1039/d3tb02574h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intervertebral disk degeneration (IVDD) is a common condition that causes severe back pain and affects patients' mobility and life quality considerably. IVDD originates within the central region of the disk called the nucleus pulposus (NP). Removing the damaged tissue and replacing it with NP cells (NPCs) delivered within an in situ forming hydrogel is a promising treatment approach. Herein we describe a hydrogel formulation based on 4-arm [poly(ethylene glycol)-b-poly(trimethylene carbonate)-acrylate] (4a[PEG-b-PTMC-Ac]) crosslinked with thiolated chondroitin sulfate via Michael-type reaction for this purpose. A library of hydrogels based on 15 kDa 4a-[PEG] with PTMC blocks of varying molecular weight were prepared and characterized. The instantaneous moduli of the hydrogels were adjustable from 24 to 150 kPa depending on the length of the PTMC block and the polymer volume fraction. The influence of each of these parameters was effectively explained using both scaling or mean field theories of polyelectrolyte hydrogels. The hydrogels were resistant to cyclic compressive loading and degraded gradually over 70 days in vitro. A hydrogel formulation with an instantaneous modulus at the high end of the range of values reported for human NP tissue was chosen to assess the ability of these hydrogels for delivering NPCs. The prepolymer solution was injectable and formed a hydrogel within 30 minutes at 37 °C. Bovine NPCs were encapsulated within this hydrogel with high viability and proliferated throughout a 28 day, hypoxic culture period. The encapsulated NPCs formed clusters and deposited collagen type II but no collagen type I within the hydrogels. Despite an initial gradual decrease, a steady-state modulus was reached at the end of the 28 day culture period that was within the range reported for healthy human NP tissue. This in situ forming hydrogel formulation is a promising approach and with further development could be a viable clinical treatment for IVDD.
Collapse
Affiliation(s)
- Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Wang Z, Chen X, Chen N, Yan H, Wu K, Li J, Ru Q, Deng R, Liu X, Kang R. Mechanical Factors Regulate Annulus Fibrosus (AF) Injury Repair and Remodeling: A Review. ACS Biomater Sci Eng 2024; 10:219-233. [PMID: 38149967 DOI: 10.1021/acsbiomaterials.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Nan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Hongjie Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ke Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, Henan Province 466001, P.R. China
| | - Qingyuan Ru
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| |
Collapse
|
24
|
Zhu P, Wu X, Ni L, Chen K, Dong Z, Du J, Kong F, Mao Y, Tao H, Chu M, Mao H, Yang H, Liu Q, Gan M, Geng D. Inhibition of PP2A ameliorates intervertebral disc degeneration by reducing annulus fibrosus cells apoptosis via p38/MAPK signal pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166888. [PMID: 37722489 DOI: 10.1016/j.bbadis.2023.166888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is considered one of the main reasons for low back pain (LBP). To date, the specific pathology of IVDD remains unclear. The annulus fibrosus (AF) is an important part of the intervertebral disc, and AF cell oxidative stress, apoptosis plays a vital role in disc degeneration. Protein phosphatase 2 A (PP2A), a serine/threonine phosphatase, has regulatory functions in various processes, including apoptosis and autophagy. However, thus far, the effect of PP2A on IVDD is not clear. METHODS AF cells derived from caudal intervertebral discs in SD rats were used to analyze the levels of oxidative stress, apoptosis and degeneration as well as PP2A expression. A PP2A agonist (FTY720), inhibitor (microcystin-LR) and siRNA (si-PPP2CA) were employed in IVDD induced by H2O2 to investigate the levels of apoptosis and degeneration. The p38/MAPK signal pathways were evaluated, and a p38 inhibitor (SB203580) and ERK inhibitor (U0126) were added for verification. Finally, FTY720 and microcystin-LR were administered to IVDD rats to assess the effects on levels of apoptosis and degeneration and the relief of IVDD. RESULTS The expression of PP2A was increased in rat AF cells after H2O2 intervention. The levels of apoptosis and degeneration were higher with upregulation of PP2A but were significantly reduced after inhibition of PP2A. The PP2A inhibitor relieved cell apoptosis and degeneration by downregulating the p38/MAPK pathway. In vivo, the knockdown of PP2A resulted in a more complete morphology of discs and less apoptotic and degenerative expression. CONCLUSIONS This study suggests that the downregulation of PP2 A could reduce AF cell apoptosis and degeneration via the p38/MAPK pathway. It also revealed that the inhibition of PP2 A is expected to be a therapeutic target for IVDD.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Li Ni
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, Jiangsu, China
| | - Zhongchen Dong
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jiacheng Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fanchen Kong
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yubo Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Haiqin Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Qinbai Liu
- Department of Orthopaedics, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an 223001, Jiangsu, China; Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| | - Minfeng Gan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
25
|
Zhang C, Zhong L, Lau YK, Wu M, Yao L, Schaer TP, Mauck RL, Malhotra NR, Qin L, Smith LJ. Single cell RNA sequencing reveals emergent notochord-derived cell subpopulations in the postnatal nucleus pulposus. FASEB J 2024; 38:e23363. [PMID: 38085183 PMCID: PMC10757564 DOI: 10.1096/fj.202301217r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain. Cell-based strategies that seek to treat disc degeneration by regenerating the central nucleus pulposus (NP) hold significant promise, but key challenges remain. One of these is the inability of therapeutic cells to effectively mimic the performance of native NP cells, which are unique amongst skeletal cell types in that they arise from the embryonic notochord. In this study, we use single cell RNA sequencing to demonstrate emergent heterogeneity amongst notochord-derived NP cells in the postnatal mouse disc. Specifically, we established the existence of progenitor and mature NP cells, corresponding to notochordal and chondrocyte-like cells, respectively. Mature NP cells exhibited significantly higher expression levels of extracellular matrix (ECM) genes including aggrecan, and collagens II and VI, along with elevated transforming growth factor-beta and phosphoinositide 3 kinase-protein kinase B signaling. Additionally, we identified Cd9 as a novel surface marker of mature NP cells, and demonstrated that these cells were localized to the NP periphery, increased in numbers with increasing postnatal age, and co-localized with emerging glycosaminoglycan-rich matrix. Finally, we used a goat model to show that Cd9+ NP cell numbers decrease with moderate severity disc degeneration, suggesting that these cells are associated with maintenance of the healthy NP ECM. Improved understanding of the developmental mechanisms underlying regulation of ECM deposition in the postnatal NP may inform improved regenerative strategies for disc degeneration and associated low back pain.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Meilun Wu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 W Street Rd, Kennett Square, PA, USA 19348
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA 19104
| | - Neil R. Malhotra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Lachlan J. Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA 19104
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
26
|
Lei M, Lin H, Shi D, Hong P, Song H, Herman B, Liao Z, Yang C. Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration. Cell Mol Biol Lett 2023; 28:104. [PMID: 38093179 PMCID: PMC10717711 DOI: 10.1186/s11658-023-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression. METHODS The contribution of HDAC9 to the progression of IVDD was assessed using HDAC9 knockout (HDAC9KO) mice and NP-targeted HDAC9-overexpressing mice by IVD injection of adenovirus-mediated HDAC9 under a Col2a1 promoter. Magnetic resonance imaging (MRI) and histological analysis were used to examine the degeneration of IVD. NP cells were isolated from mice to investigate the effects of HDAC9 on apoptosis and viability. mRNA-seq and coimmunoprecipitation/mass spectrometry (co-IP/MS) analysis were used to analyze the HDAC9-regulated factors in the primary cultured NP cells. RESULTS HDAC9 was statistically decreased in the NP tissues in aged mice. HDAC9KO mice spontaneously developed age-related IVDD compared with wild-type (HDAC9WT) mice. In addition, overexpression of HDAC9 in NP cells alleviated IVDD symptoms in a surgically-induced IVDD mouse model. In an in vitro assay, knockdown of HDAC9 inhibited cell viability and promoted cell apoptosis of NP cells, and HDAC9 overexpression had the opposite effects in NP cells isolated from HDAC9KO mice. Results of mRNA-seq and co-IP/MS analysis revealed the possible proteins and signaling pathways regulated by HDAC9 in NP cells. RUNX family transcription factor 3 (RUNX3) was screened out for further study, and RUNX3 was found to be deacetylated and stabilized by HDAC9. Knockdown of RUNX3 restored the effects of HDAC9 silencing on NP cells by inhibiting apoptosis and increasing viability. CONCLUSION Our results suggest that HDAC9 plays an important role in the development and progression of IVDD. It might be required to protect NP cells against the loss of cell viability and apoptosis by inhibiting RUNX3 acetylation and expression during IVDD. Together, our findings suggest that HDAC9 may be a potential therapeutic target in IVDD.
Collapse
Affiliation(s)
- Ming Lei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pan Hong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bomansaan Herman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
27
|
Jiang W, Glaeser JD, Kaneda G, Sheyn J, Wechsler JT, Stephan S, Salehi K, Chan JL, Tawackoli W, Avalos P, Johnson C, Castaneda C, Kanim LEA, Tanasansomboon T, Burda JE, Shelest O, Yameen H, Perry TG, Kropf M, Cuellar JM, Seliktar D, Bae HW, Stone LS, Sheyn D. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Sci Transl Med 2023; 15:eadg7020. [PMID: 38055799 DOI: 10.1126/scitranslmed.adg7020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob T Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen Stephan
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Johnson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chloe Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Linda E A Kanim
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Teerachat Tanasansomboon
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center of Excellence in Biomechanics and Innovative Spine Surgery, Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joshua E Burda
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haneen Yameen
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Tiffany G Perry
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Kropf
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason M Cuellar
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura S Stone
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
28
|
Okoro PD, Frayssinet A, De Oliveira S, Rouquier L, Miklosic G, D'Este M, Potier E, Hélary C. Combining biomimetic collagen/hyaluronan hydrogels with discogenic growth factors promotes mesenchymal stroma cell differentiation into Nucleus Pulposus like cells. Biomater Sci 2023; 11:7768-7783. [PMID: 37870786 DOI: 10.1039/d3bm01025b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Based on stem cell injection into degenerated Nucleus Pulposus (NP), novel treatments for intervertebral disc (IVD) regeneration were disappointing because of cell leakage or inappropriate cell differentiation. In this study, we hypothesized that mesenchymal stromal cells encapsulated within injectable hydrogels possessing adequate physico-chemical properties would differentiate into NP like cells. Composite hydrogels consisting of type I collagen and tyramine-substituted hyaluronic acid (THA) were prepared to mimic the NP physico-chemical properties. Human bone marrow derived mesenchymal stromal cells (BM-MSCs) were encapsulated within hydrogels and cultivated in proliferation medium (supplemented with 10% fetal bovine serum) or differentiation medium (supplemented with GDF5 and TGFβ1) over 28 days. Unlike pure collagen, collagen/THA composite hydrogels were stable over 28 days in culture. In proliferation medium, the cell viability within pure collagen hydrogels was high, whereas that in composite and pure THA hydrogels was lower due to the weaker cell adhesion. Nonetheless, BM-MSCs proliferated in all hydrogels. In composite hydrogels, cells exhibited a rounded morphology similar to NP cells. The differentiation medium did not impact the hydrogel stability and cell morphology but negatively impacted the cell viability in pure collagen hydrogels. A high THA content within hydrogels promoted the gene expression of NP markers such as collagen II, aggrecan, SOX9 and cytokeratin 18 at day 28. The differentiation medium potentialized this effect with an earlier and higher expression of these NP markers. Taken together, these results show that the physico-chemical properties of collagen/THA composite hydrogels and GDF5/TGFβ1 act in synergy to promote the differentiation of BM-MSCs into NP like cells.
Collapse
Affiliation(s)
- Prince David Okoro
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Antoine Frayssinet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Stéphanie De Oliveira
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Léa Rouquier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, F-75010 Paris, France
| | - Gregor Miklosic
- AO Research Institute Davos (ARI), Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Matteo D'Este
- AO Research Institute Davos (ARI), Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, F-75010 Paris, France
| | - Christophe Hélary
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| |
Collapse
|
29
|
Li X, Hou Q, Yuan W, Zhan X, Yuan H. Inhibition of miR-96-5p alleviates intervertebral disc degeneration by regulating the peroxisome proliferator-activated receptor γ/nuclear factor-kappaB pathway. J Orthop Surg Res 2023; 18:916. [PMID: 38041147 PMCID: PMC10691123 DOI: 10.1186/s13018-023-04412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD. METHODS In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1β (IL-1β). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling. RESULTS PPARγ expression reduced with concentration and time under IL-1β stimulation, while miR-96-5p expression showed the reverse trend (P < 0.05). Upregulation or/and activation of PPARγ inhibited IL-1β-induced the increase in inflammatory factor levels, apoptosis, degradation of the ECM, and the nuclear translocation of NF-κB (P < 0.05). MiR-96-5p was highly expressed but PPARγ was lowly expressed in IDD, while knockdown of PPARγ partially reversed remission of IDD induced by miR-96-5p downregulation (P < 0.05). MiR-96-5p promoted NF-κB entry into the nucleus but PPARγ inhibited this process. CONCLUSION Inhibition of miR-96-5p suppressed IDD progression by regulating the PPARγ/NF-κB pathway. MiR-96-5p may be a promising target for IDD treatment clinically.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Malaysia
| | - Qian Hou
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Wenqi Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Xuehua Zhan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Haifeng Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China.
| |
Collapse
|
30
|
Li L, Wei X, Li K, Gong H, Zhu L, Yang S, Wang S, Gu J, Chen M, Yin X, Zhan J, Feng M, Yu J, Sun W, Chen X. Traditional Chinese Medicine formula Bu-Shen-Huo-Xue-Fang (BSHXF) protects nucleus pulposus cells against the inflammatory and oxidative stress-induced degenerative changes. J Pharm Biomed Anal 2023; 236:115656. [PMID: 37688906 DOI: 10.1016/j.jpba.2023.115656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Degeneration of the intervertebral disc is primarily caused by the loss of nucleus pulposus cells (NPCs) and extracellular matrix (ECM) (IDD). Bu-Shen-Huo-Xue-Fang (BSHXF), a traditional Chinese medicine decoction, has been used to treat IDD in clinical; nevertheless, the active components and underlying molecular mechanisms remain unknown. BSHXF improved IL-1β and H2O2 stimulation-induced injuries on NPCs by promoting cell viability, increasing ECM deposition, inhibiting cell senescence, and decreasing the levels of inflammatory factors. The active ingredients in BSHXF were identified by LC-MS/MS analysis; three active ingredients from the principal drugs, Aucubin, Tanshinol, and Tanshinone II A promoted NPC viability; and Aucubin and Tanshinol promoted NPC viability more. Aucubin and Tanshinol, respectively, improved H2O2 stimulation-induced injuries on NPCs by promoting cell viability, increasing ECM deposition, inhibiting cell senescence, and decreasing the levels of inflammatory factors. The activator of NF-κB and Wnt signaling pathways attenuated Aucubin and Tanshinol's protective effects by promoting ECM degradation and NPC senescence. Aucubin, Tanshinol, and Tanshinone II A were identified as the most potent compounds in BSHXF protection against degenerative changes in NPCs. The NF-κB and Wnt signaling pathways might be involved in the protective effects of Aucubin and Tanshinol against H2O2-induced degenerative changes.
Collapse
Affiliation(s)
- Linghui Li
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Xu Wei
- Department of Academic Development, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Kaiming Li
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Hao Gong
- Department of Orthopaedics, Changping Hospital of Integrated Chinese and Western Medicine, No. 219 Huangping Street, Changping District, Beijing 102208, China
| | - Liguo Zhu
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China.
| | - Shaofeng Yang
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China; Department of Spine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China.
| | - Shangquan Wang
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Jinyu Gu
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Ming Chen
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Xunlu Yin
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Jiawen Zhan
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Minshan Feng
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Jie Yu
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Wu Sun
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Xin Chen
- Department of General Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China
| |
Collapse
|
31
|
Gao W, Bao J, Zhang Y, He D, Zhang L, Zhang J, Pan H, Wang D. Injectable kaempferol-loaded fibrin glue regulates the metabolic balance and inhibits inflammation in intervertebral disc degeneration. Sci Rep 2023; 13:20001. [PMID: 37968507 PMCID: PMC10651831 DOI: 10.1038/s41598-023-47375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
To construct an injectable fibrin glue system loaded with kaempferol (FG@F) to improve the bioavailability of kaempferol and observe its efficacy in the treatment of intervertebral disc degeneration (IVDD). Kaempferol-loaded fibrin glue was first synthesized in advance. Subsequently, the materials were characterized by various experimental methods. Then, nucleus pulposus cells (NPCs) were stimulated with lipopolysaccharide (LPS) to establish a degenerative cell model, and the corresponding intervention treatment was conducted to observe the effect in vitro. Finally, the tail disc of rats was punctured to establish a model of IVDD, and the therapeutic effect of the material in vivo was observed after intervertebral disc injection. The FG@F system has good injectability, sustained release and biocompatibility. This treatment reduced the inflammatory response associated with IVDD and regulated matrix synthesis and degradation. Animal experimental results showed that the FG@F system can effectively improve needle puncture-induced IVDD in rats. The FG@F system has better efficacy than kaempferol or FG alone due to its slow release and mechanical properties. The drug delivery and biotherapy platform based on this functional system might also serve as an alternative therapy for IVDD.
Collapse
Affiliation(s)
- Wenshuo Gao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, People's Republic of China
| | - Jianhang Bao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
- Department of Orthopaedics, Yiwu Central Hospital, Yiwu, 322000, Zhejiang, People's Republic of China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jun Zhang
- Department of General Surgery, Institute of Orthopaedics and Traumatology, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang, People's Republic of China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
33
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
34
|
Bielewicz J, Daniluk B, Kamieniak P. Metalloproteinase-2 in failed back surgery syndrome caused by epidural fibrosis: can it play a role in persistent pain? Front Hum Neurosci 2023; 17:1248943. [PMID: 37799188 PMCID: PMC10549923 DOI: 10.3389/fnhum.2023.1248943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose Failed Back Surgery Syndrome (FBSS) occurs in 10-40% of patients treated surgically due to disk herniation (DH). There are several factors that can cause a predisposition to FBSS, but the exact pathomechanism has not been elucidated. The aim of this study was to investigate Metalloproteinase-2 (MMP-2) and Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) activities in a homogeneous group of FBSS patients with epidural fibrosis in comparison to its activity in patients with surgically treated DH. Methods DH, FBSS, and control (CG) groups consisted of 30 subjects. The patients were assessed clinically by the Numerical Rating Scale (NRS), McGill Pain Questionnaire (SF -MPQ), Oswestry Disability Index (ODI), and Beck Depression Inventory (BDI). Serum concentrations of MMP-2 and TIMP-2 were measured by using the immunoenzymatic method. Results There was a significantly higher MMP-2 expression (medians: 4797.49 vs. 2656.65; p < 0.0001) and TIMP-2 concentration (medians: 166.40 vs. 109.60; p < 0.0001) in the DH compared to the CG. Significantly higher MMP-2 expression (4219.95 vs. 2656.65; p < 0.0001) and TIMP-2 concentration (medians: 150.17 vs. 109.60; p = 0.0003) were also found in the FBSS compared to the CG. The activity of MMP-2, measured as MMP-2/TIMP-2, did not significantly change between the DH, FBSS, and CG. MMP2 expression (p < 0.0001) and TIMP-2 concentration (p < 0.0001) were significantly higher in the DH than FBSS. Conclusion Results indicate the presence of a contribution of MMP-2 and TIMP-2 in DH and FBSS. Unchanged activity of MMP-2 can indicate an insufficiency in the MMP-2 repair system in both diseases. Lower MMP-2 expression and TIMP-2 concentration in the FBSS group can reflect the chronicity of the process.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Beata Daniluk
- Institute of Psychology, Marie Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
35
|
Vernengo A, Bumann H, Kluser N, Soubrier A, Šećerović A, Gewiess J, Jansen JU, Neidlinger-Wilke C, Wilke HJ, Grad S. Chemonucleolysis combined with dynamic loading for inducing degeneration in bovine caudal intervertebral discs. Front Bioeng Biotechnol 2023; 11:1178938. [PMID: 37711456 PMCID: PMC10499327 DOI: 10.3389/fbioe.2023.1178938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Chemonucleolysis has become an established method of producing whole organ culture models of intervertebral disc (IVD) degeneration. However, the field needs more side-by-side comparisons of the degenerative effects of the major enzymes used in chemonucleolysis towards gaining a greater understanding of how these organ culture models mimic the wide spectrum of characteristics observed in human degeneration. In the current work we induced chemonucleolysis in bovine coccygeal IVDs with 100 µL of papain (65 U/mL), chondroitinase ABC (chABC, 5 U/mL), or collagenase II (col'ase, 0.5 U/mL). Each enzyme was applied in a concentration projected to produce moderate levels of degeneration. After 7 days of culture with daily dynamic physiological loading (0.02-0.2 MPa, 0.2 Hz, 2 h), the cellular, biochemical and histological properties of the IVDs were evaluated in comparison to a PBS-injected control. Papain and collagenase, but not chABC, produced macroscopic voids in the tissues. Compared to day 0 intact IVDs, papain induced the greatest magnitude glycosaminoglycan (GAG) loss compared to chABC and col'ase. Papain also induced the greatest height loss (3%), compared to 0.7%, 1.2% and 0.4% for chABC, col'ase, and PBS, respectively. Cell viability in the region adjacent to papain and PBS-injection remained at nearly 100% over the 7-day culture period, whereas it was reduced to 60%-70% by chABC and col'ase. Generally, enzyme treatment tended to downregulate gene expression for major ECM markers, type I collagen (COL1), type II collagen (COL2), and aggrecan (ACAN) in the tissue adjacent to injection. However, chABC treatment induced an increase in COL2 gene expression, which was significant compared to the papain treated group. In general, papain and col'ase treatment tended to recapitulate aspects of advanced IVD degeneration, whereas chABC treatment captured aspects of early-stage degeneration. Chemonucleolysis of whole bovine IVDs is a useful tool providing researchers with a robust spectrum of degenerative changes and can be utilized for examination of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan Gewiess
- AO Research Institute Davos, Davos, Switzerland
| | - Jan Ulrich Jansen
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | | | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
36
|
Snuggs JW, Emanuel KS, Rustenburg C, Janani R, Partridge S, Sammon C, Smit TH, Le Maitre CL. Injectable biomaterial induces regeneration of the intervertebral disc in a caprine loaded disc culture model. Biomater Sci 2023; 11:4630-4643. [PMID: 37204288 PMCID: PMC10294806 DOI: 10.1039/d3bm00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Back pain is the leading cause of disability with half of cases attributed to intervertebral disc (IVD) degeneration, yet currently no therapies target this cause. We previously reported an ex vivo caprine loaded disc culture system (LDCS) that accurately represents the cellular phenotype and biomechanical environment of human IVD degeneration. Here, the efficacy of an injectable hydrogel system (LAPONITE® crosslinked pNIPAM-co-DMAc, (NPgel)) to halt or reverse the catabolic processes of IVD degeneration was investigated within the LDCS. Following enzymatic induction of degeneration using 1 mg mL-1 collagenase and 2 U mL-1 chondroitinase ABC within the LDCS for 7 days, IVDs were injected with NPgel alone or with encapsulated human bone marrow progenitor cells (BMPCs). Un-injected caprine discs served as degenerate controls. IVDs were cultured for a further 21 days within the LDCS. Tissues were then processed for histology and immunohistochemistry. No extrusion of NPgel was observed during culture. A significant decrease in histological grade of degeneration was seen in both IVDs injected with NPgel alone and NPgel seeded with BMPCs, compared to un-injected controls. Fissures within degenerate tissue were filled by NPgel and there was evidence of native cell migration into injected NPgel. The expression of healthy NP matrix markers (collagen type II and aggrecan) was increased, whereas the expression of catabolic proteins (MMP3, ADAMTS4, IL-1β and IL-8) was decreased in NPgel (±BMPCs) injected discs, compared to degenerate controls. This demonstrates that NPgel promotes new matrix production at the same time as halting the degenerative cascade within a physiologically relevant testing platform. This highlights the potential of NPgel as a future therapy for IVD degeneration.
Collapse
Affiliation(s)
- Joseph W Snuggs
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kaj S Emanuel
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Christine Rustenburg
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ronak Janani
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Simon Partridge
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Christopher Sammon
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Theo H Smit
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
37
|
Stover JD, Trone MA, Lawrence B, Bowles RD. Multiplex epigenome editing of ion channel expression in nociceptive neurons abolished degenerative IVD-conditioned media-induced mechanical sensitivity. JOR Spine 2023; 6:e1253. [PMID: 37361323 PMCID: PMC10285767 DOI: 10.1002/jsp2.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023] Open
Abstract
Background Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpainful in healthy patients. Previously, we demonstrated the ability of degenerative IVDs to sensitize neurons to mechanical stimuli; however, elucidation of degenerative IVDs discogenic pain mechanisms is required to develop therapeutic strategies that directly target these mechanisms. Aims In this study, we utilized CRISPR epigenome editing of nociceptive neurons to identify mechanisms of degenerative IVD-induced changes to mechanical nociception and demonstrated the ability of multiplex CRISPR epigenome editing of nociceptive neurons to modulate inflammation-induced mechanical nociception. Methods and Results Utilizing an in vitro model, we demonstrated degenerative IVD-produced IL-6-induced increases in nociceptive neuron activity in response to mechanical stimuli, mediated by TRPA1, ASIC3, and Piezo2 ion channel activity. Once these ion channels were identified as mediators of degenerative IVD-induced mechanical nociception, we developed singleplex and multiplex CRISPR epigenome editing vectors that modulate endogenous expression of TRPA1, ASIC3, and Piezo2 via targeted gene promoter histone methylation. When delivered to nociceptive neurons, the multiplex CRISPR epigenome editing vectors abolished degenerative IVD-induced mechanical nociception while preserving nonpathologic neuron activity. Conclusion This work demonstrates the potential of multiplex CRISPR epigenome editing as a highly targeted gene-based neuromodulation strategy for the treatment of discogenic pain, specifically; and, for the treatment of inflammatory chronic pain conditions, more broadly.
Collapse
Affiliation(s)
- Joshua D. Stover
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew A. Trone
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Brandon Lawrence
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| | - Robby D. Bowles
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
38
|
Zhang C, Zhong L, Lau YK, Wu M, Yao L, Schaer TP, Mauck RL, Malhotra NR, Qin L, Smith LJ. Single Cell RNA Sequencing Reveals Emergent Notochord-Derived Cell Subpopulations in the Postnatal Nucleus Pulposus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.21.541589. [PMID: 37292597 PMCID: PMC10245831 DOI: 10.1101/2023.05.21.541589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain. Cell-based strategies that seek to treat disc degeneration by regenerating the central nucleus pulposus hold significant promise, but key challenges remain. One of these is the inability of therapeutic cells to effectively mimic the performance of native nucleus pulposus cells, which are unique amongst skeletal cell types in that they arise from the embryonic notochord. In this study we use single cell RNA sequencing to demonstrate emergent heterogeneity amongst notochord-derived nucleus pulposus cells in the postnatal mouse disc. Specifically, we established the existence of early and late stage nucleus pulposus cells, corresponding to notochordal progenitor and mature cells, respectively. Late stage cells exhibited significantly higher expression levels of extracellular matrix genes including aggrecan, and collagens II and VI, along with elevated TGF-β and PI3K-Akt signaling. Additionally, we identified Cd9 as a novel surface marker of late stage nucleus pulposus cells, and demonstrated that these cells were localized to the nucleus pulposus periphery, increased in numbers with increasing postnatal age, and co-localized with emerging glycosaminoglycan-rich matrix. Finally, we used a goat model to show the Cd9+ nucleus pulposus cell numbers decrease with moderate severity disc degeneration, suggesting that these cells are associated with maintenance of the healthy nucleus pulposus extracellular matrix. Improved understanding of the developmental mechanisms underlying regulation of ECM deposition in the postnatal NP may inform improved regenerative strategies for disc degeneration and associated low back pain.
Collapse
|
39
|
Vadalà G, Di Giacomo G, Ambrosio L, Cicione C, Tilotta V, Russo F, Papalia R, Denaro V. Effect of Irisin on Human Nucleus Pulposus Cells: New Insights into the Biological Cross-talk Between Muscle and Intervertebral Disk. Spine (Phila Pa 1976) 2023; 48:468-475. [PMID: 36149858 DOI: 10.1097/brs.0000000000004488] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro study. OBJECTIVE To investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. SUMMARY OF BACKGROUND DATA Physical exercise (PE) favours weight loss and ameliorates function in patients with low back pain. Although there is no biological evidence that the intervertebral disk (IVD) can respond to PE, recent studies have shown that running is associated with increased IVD hydration and hypertrophy. Irisin, a myokine released upon muscle contraction, has demonstrated anabolic effects on different cell types, including chondrocytes. MATERIALS AND METHODS hNPCs were exposed to 5, 10, and 25 ng/mL irisin. Cell proliferation, glycosaminoglycan (GAG) content, metabolic activity, gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-3, aggrecan (ACAN), interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 were assessed. In addition, MTT assay and ADAMTS-5, COL2, TIMP-1, and IL-1β gene expression were evaluated following incubation with irisin for 24 hours and subsequent culture with 10 ng/mL IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with irisin). RESULTS Irisin increased hNPC proliferation, metabolic activity, and GAG content, as well as COL2, ACAN, TIMP-1 and TIMP-3 gene expression, while decreasing MMP-13 and IL-1β mRNA levels. Irisin pretreatment of hNPCs cultured in proinflammatory conditions resulted in a rescue of metabolic activity and a decrease of IL-1β levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to irisin led to an increment of metabolic activity, COL2 gene expression, and a reduction of IL-1β and ADAMTS-5 levels. CONCLUSIONS Irisin increases hNPC proliferation, GAG content, metabolic activity, and promotes anabolic gene expression while reducing catabolic markers. Irisin may be one of the mediators by which PE and muscle tissues modulate IVD metabolism, suggesting the existence of a biological cross-talk between the muscle and IVD.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabrizio Russo
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
40
|
Wang K, Yao D, Li Y, Li M, Zeng W, Liao Z, Chen E, Lu S, Su K, Che Z, Liang Y, Wang P, Huang L. TAK-715 alleviated IL-1β-induced apoptosis and ECM degradation in nucleus pulposus cells and attenuated intervertebral disc degeneration ex vivo and in vivo. Arthritis Res Ther 2023; 25:45. [PMID: 36945021 PMCID: PMC10029231 DOI: 10.1186/s13075-023-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is one of the most common disorders related to the spine. Inflammation, apoptosis and extracellular matrix (ECM) degradation contribute to disc degeneration in nucleus pulposus cells (NPCs). This study focused on the role and mechanism of the p38 inhibitor TAK-715 in intervertebral disc degeneration. METHODS NPCs were treated with IL-1β to mimic apoptosis, followed by the addition of TAK-715. It was determined that apoptosis, inflammatory mediators (COX-2), inflammatory cytokines (HMGB1), and ECM components (collagen II, MMP9, ADAMTS5, and MMP3) existed in NPCs. In addition, the p38MAPK signaling pathways were examined. The role of TAK-715 in vivo was determined by acupuncture-induced intervertebral disc degeneration. Following an intradiscal injection of TAK-715, MRI and a histopathological analysis were conducted to assess the degree of degeneration. RESULTS IL-1β-induced apoptosis was alleviated by TAK-715 in vitro, and antiapoptotic proteins were upregulated. Furthermore, TAK-715 blocked IL-1β-induced inflammatory mediator production (COX-2) and inflammatory cytokine production (HMGB1) and degraded the ECM (collagen II, MMP9, ADAMTS5, and MMP3). By inhibiting the phosphorylation of p38, TAK-715 exerted its effects. In a rat tail model, TAK-715 ameliorates puncture-induced disc degeneration based on MRI and histopathology evaluations. CONCLUSION TAK-715 attenuated intervertebral disc degeneration in vitro and in vivo, suggesting that it might be an effective treatment for IDD.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Dengbo Yao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuangyao Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Engming Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Shixin Lu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Kaihui Su
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zhen Che
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.
| | - Lin Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
- Department of Orthopedics, Nangchang First Hospital, Nanchang, China.
| |
Collapse
|
41
|
Tilotta V, Vadalà G, Ambrosio L, Cicione C, Di Giacomo G, Russo F, Papalia R, Denaro V. Mesenchymal stem cell-derived secretome enhances nucleus pulposus cell metabolism and modulates extracellular matrix gene expression in vitro. Front Bioeng Biotechnol 2023; 11:1152207. [PMID: 37008028 PMCID: PMC10060656 DOI: 10.3389/fbioe.2023.1152207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Intradiscal mesenchymal stromal cell (MSC) therapies for intervertebral disc degeneration (IDD) have been gaining increasing interest due to their capacity to ameliorate intervertebral disc metabolism and relieve low back pain (LBP). Recently, novel investigations have demonstrated that most of MSC anabolic effects are exerted by secreted growth factors, cytokines, and extracellular vesicles, collectively defined as their secretome. In this study, we aimed to evaluate the effect of bone-marrow-MSCs (BM-MSCs) and adipose-derived stromal cells (ADSCs) secretomes on human nucleus pulposus cells (hNPCs) in vitro.Methods: BM-MSCs and ADSCs were characterized according to surface marker expression by flow cytometry and multilineage differentiation by Alizarin red, Red Oil O and Alcian blue staining. After isolation, hNPCs were treated with either BM-MSC secretome, ADSC secretome, interleukin (IL)-1β followed by BM-MSC secretome or IL-1β followed by ADSC secretome. Cell metabolic activity (MTT assay), cell viability (LIVE/DEAD assay), cell content, glycosaminoglycan production (1,9-dimethylmethylene blue assay), extracellular matrix and catabolic marker gene expression (qPCR) were assessed.Results: 20% BM-MSC and ADSC secretomes (diluted to normal media) showed to exert the highest effect towards cell metabolism and were then used in further experiments. Both BM-MSC and ADSC secretomes improved hNPC viability, increased cell content and enhanced glycosaminoglycan production in basal conditions as well as after IL-1β pretreatment. BM-MSC secretome significantly increased ACAN and SOX9 gene expression, while reducing the levels of IL6, MMP13 and ADAMTS5 both in basal conditions and after in vitro inflammation with IL-1β. Interestingly, under IL-1β stimulation, ADSC secretome showed a catabolic effect with decreased extracellular matrix markers and increased levels of pro-inflammatory mediators.Discussion: Collectively, our results provide new insights on the biological effect of MSC-derived secretomes on hNPCs, with intriguing implications on the development of cell-free approaches to treat IDD.
Collapse
Affiliation(s)
- Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- *Correspondence: Gianluca Vadalà,
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
42
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Epigenetic modifications of inflammation in intervertebral disc degeneration. Ageing Res Rev 2023; 87:101902. [PMID: 36871778 DOI: 10.1016/j.arr.2023.101902] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of joint-related chronic disability in elderly individuals worldwide. It seriously impacts the quality of life and inflicts a substantial social and economic burden. The pathological mechanisms underlying IDD have not been fully revealed, leading to less satisfactory clinical treatment outcomes. More studies are urgently needed to reveal its precise pathological mechanisms. Numerous studies have revealed that inflammation is closely related to various pathological processes of IDD, including the continuous loss of extracellular matrix, cell apoptosis, and senescence, indicating the important role of inflammation in the pathological mechanism of IDD. Epigenetic modifications affect the functions and characteristics of genes mainly through DNA methylation, histone modification, non-coding RNA regulation, and other mechanisms, thus having a major effect on the survival state of the body. Recently, the role of epigenetic modifications in inflammation during IDD has been attracting research interest. In this review, we summarize the roles of different types of epigenetic modifications in inflammation during IDD in recent years, to improve our understanding of the etiology of IDD and to transform basic research strategy into a clinically effective treatment for joint-related chronic disability in elderly individuals.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huaqing Zhang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chongyu Jia
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Renjie Zhang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Cailiang Shen
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
43
|
Zhang T, Wang Y, Li R, Xin J, Zheng Z, Zhang X, Xiao C, Zhang S. ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration. Acta Biomater 2023; 158:475-492. [PMID: 36640954 DOI: 10.1016/j.actbio.2023.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a degenerative disease characterized by lower-back pain, causing disability globally. Antioxidant therapy is currently considered one of the most promising strategies for IVDD treatment, given the crucial role of reactive oxygen species (ROS) in IVDD pathogenesis. Herein, a ROS-responsive magnesium-containing microsphere (Mg@PLPE MS) was constructed for the antioxidative treatment of IVDD. The Mg@PLPE MS has a core-shell structure comprising poly(lactic-co-glycolic acid) (PLGA) and ROS-responsive polymer poly(PBT-co-EGDM) as the shell and a magnesium microparticle as the core. The poly(PBT-co-EGDM) can be destroyed by H2O2 through the H2O2-triggered hydrophobic-to-hydrophilic transition, subsequently promoting an Mg-water reaction to produce H2. Thus, Mg@PLPE MS provides a valuable platform for H2O2 elimination and controlled H2 release. The generated H2 scavenge for ROS by reacting with noxious •OH. Notably, the Mg@PLPE MS exerted significant antioxidative and anti-inflammatory effects in a disc degeneration rat model and alleviated extracellular matrix degradation and disc cells apoptosis, thereby underlining its efficacy in IVDD treatment. The Mg@PLPE MS also exhibited robust biocompatibility and negligible toxicity, presenting the promise for the antioxidative treatment of IVDD in vivo. STATEMENT OF SIGNIFICANCE: Antioxidant therapy is currently considered one of the most promising strategies for intervertebral disc degeneration (IVDD) treatment, given the crucial role of reactive oxygen species (ROS) in IVDD pathogenesis. Here, ROS-responsive magnesium-containing microspheres (Mg@PLPE MSs) were constructed to alleviate IVDD through controlled release of hydrogen gas. The Mg@PLPE MSs can effectively scavenge overproduced ROS by simultaneously reacting with H2O2 and •OH, thus creating a suitable microenvironment for inhibition of ECM degradation. As a result, Mg@PLPE MSs treated IVDD rats exhibit minimal nucleus pulposus decrease, less extracellular matrix degradation, minimal radial fissure of fibrous rings, and higher disc height index. Therefore, the as-prepared Mg@PLPE MSs may shed a new light on clinical treatment of IVDD.
Collapse
Affiliation(s)
- Tianhui Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ruhui Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
44
|
Guo S, Wang C, Xiao C, Gu Q, Long L, Wang X, Xu H, Li S. Role of the mechanosensitive piezo1 channel in intervertebral disc degeneration. Clin Physiol Funct Imaging 2023; 43:59-70. [PMID: 36400723 DOI: 10.1111/cpf.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a multifactorial skeletal disease involving mechanical, genetic, systemic, and biological factors, and it is characterized by apoptosis of the nucleus pulposus cells and breakdown of the extracellular matrix (ECM), which will impair the structure and function of the intervertebral disc (IVD), and cause low back pain. Recently, the piezo1 is recognized as a critical mechanically activated ion channel of IDD. Numerous studies have reported that the piezo1 ion channel was aberrantly activated in the degenerated disc tissues and deeply participated in the pathogenesis of IDD. Inactivating or interfering with the piezo1 channel could effectively prevent the progression of IDD under the experimental conditions. It may be a promising target for the prevention and treatment of the disabling disease. Therefore, we have to make a comprehensive investigation and understanding of the mechanisms and functions of the piezo1 in the biomechanics of the spine. This study mainly elucidates the role of the piezo1 channel in IDD, which may facilitate the development of therapeutic targets for this disease.
Collapse
Affiliation(s)
- Sheng Guo
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Changming Xiao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qinwen Gu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houping Xu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
45
|
Han P, Jiang F, Zhang L. The role of ADAMTS6 and ADAMTS17 polymorphisms in susceptibility to lumbar disc herniation in Chinese Han population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1106-1114. [PMID: 36810712 DOI: 10.1007/s00586-023-07586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE LDH caused by lumbar disc degeneration is associated with genetic factors. However, the role of ADAMTS6 and ADAMTS17 genes in LDH risk is still unknown. METHODS To investigate the interaction between ADAMTS6 and ADAMTS17 variants in the susceptibility of LDH, five SNPs were genotyped in 509 patients and 510 healthy individuals. The experiment used logistic regression to calculate odds ratio (OR) and 95% confidence interval (CI). Multi-factor dimensionality reduction (MDR) was chosen to evaluate impact of interaction of SNP-SNP on susceptibility to LDH. RESULTS ADAMTS17-rs4533267 is significantly associated with reducing risk of LDH (OR = 0.72, 95% CI = 0.57-0.90, p = 0.005). Stratified analysis indicates that ADAMTS17-rs4533267 is significantly associated with the reducing risk of LDH among participants aged ≤ 48 years old. In addition, we observed that ADAMTS6-rs2307121 was associated with increasing risk of LDH in females. MDR analysis shows that single-locus model composed by ADAMTS17-rs4533267 can be chosen as the best model for predicting susceptibility to LDH (CVC = 10/10, test accuracy = 0.543). CONCLUSION ADAMTS6-rs2307121 and ADAMTS17-rs4533267 are potentially associated with LDH susceptibility. In particular, ADAMTS17-rs4533267 has a strong association with reducing risk of LDH.
Collapse
Affiliation(s)
- Pengbo Han
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, 710000, Shaanxi, China
| | - Feng Jiang
- Orthopaedics, The Third Affiliated Hospital of Xi'an Medical College, Xi'an, 710000, Shaanxi, China
| | - Lin Zhang
- Orthopaedics, The Second Affiliated Hospital of Xi'an Medical College, 167 Fangdong Street, Textile City, Baqiao District, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
46
|
Kasamkattil J, Gryadunova A, Schmid R, Gay-Dujak MHP, Dasen B, Hilpert M, Pelttari K, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Front Bioeng Biotechnol 2023; 11:1119009. [PMID: 36865027 PMCID: PMC9971624 DOI: 10.3389/fbioe.2023.1119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raphael Schmid
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Max Hans Peter Gay-Dujak
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,Department of Biomedicine, Institute of Anatomy, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Morgane Hilpert
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,*Correspondence: Olga Krupkova,
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
47
|
Mechanobiology of the Human Intervertebral Disc: Systematic Review of the Literature and Future Perspectives. Int J Mol Sci 2023; 24:ijms24032728. [PMID: 36769050 PMCID: PMC9917554 DOI: 10.3390/ijms24032728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Low back pain is an extremely common condition with severe consequences. Among its potential specific causes, degenerative disc disease (DDD) is one of the most frequently observed. Mechanobiology is an emerging science studying the interplay between mechanical stimuli and the biological behavior of cells and tissues. The aim of the presented study is to review, with a systematic approach, the existing literature regarding the mechanobiology of the human intervertebral disc (IVD), define the main pathways involved in DDD and identify novel potential therapeutic targets. The review was carried out in accordance with the Preferential Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Studies were included if they described biological responses of human IVD cells under mechanical stimulation or alterations of mechanical properties of the IVD determined by different gene expression. Fifteen studies were included and showed promising results confirming the mechanobiology of the human IVD as a key element in DDD. The technical advances of the last decade have allowed us to increase our understanding of this topic, enabling us to identify possible therapeutic targets to treat and to prevent DDD. Further research and technological innovations will shed light on the interactions between the mechanics and biology of the human IVD.
Collapse
|
48
|
Liu Q, Tan Z, Xie C, Ling L, Hu H. Oxidative stress as a critical factor might involve in intervertebral disc degeneration via regulating NOXs/FOXOs. J Orthop Sci 2023; 28:105-111. [PMID: 34772597 DOI: 10.1016/j.jos.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Oxidative stress is involved in many musculoskeletal diseases, such as osteoarthritis. However, the effect of oxidative stress on intervertebral disc degeneration (IDD) is still unclear. This study was aimed to provide an evidence of oxidative stress involved in IDD, and propose a new insight into pathogenesis of IDD. METHODS Sixteen rats were randomly divided into sham and cervical muscle section (CMS) groups. The intervertebral disc degeneration scores (DDS) were assessed by histological staining at 8 weeks. Intracellular reactive oxygen species mainly comes from nicotinamide adenine dinucleotide phosphate oxidases (NOXs), while its clearance relies on antioxidant enzymes which regulated by forkhead transcription factor O (FOXOs). Thus, the oxidative stress was evaluated by the expression of NOXs and FOXOs. Meanwhile, the protein expression of Aggrecan, matrix metalloproteinase-13 (MMP-13), NOXs, FOXOs and antioxidant proteins (Manganese superoxide dismutase: MnSOD and Catalase) were tested in nucleus pulposus cells (NPCs) under tert-butyl hydroperoxide (TBHP) intervention. RESULTS CMS induced IDD by enhancing DDS in 8 weeks, and the expression of NOX2 and NOX4 were significantly increased and the expression of FOXO3 and FOXO4 were remarkably decreased in the CMS rats. With the stimulation of TBHP, the contents of NOX2 and NOX4 in NPCs increased significantly, and the antioxidant proteins of FOXO1, FOXO3, FOXO4, MnSOD and Catalase and the matrix proteins of Aggrecan decreased remarkably, while MMP-13 significantly increased after TBHP intervention. CONCLUSIONS The present study proposed that regulation of NOXs and FOXOs alters oxidative stress in intervertebral disc, which indicates that the intervention of oxidative stress would provide a new strategy to the treatment of IDD.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, China.
| | - Zhangbin Tan
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Chuhai Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Long Ling
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Hailan Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, China.
| |
Collapse
|
49
|
Liu Z, Zhu J, Liu H, Fu C. Natural products can modulate inflammation in intervertebral disc degeneration. Front Pharmacol 2023; 14:1150835. [PMID: 36874009 PMCID: PMC9978229 DOI: 10.3389/fphar.2023.1150835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Intervertebral discs (IVDs) play a crucial role in maintaining normal vertebral anatomy as well as mobile function. Intervertebral disc degeneration (IDD) is a common clinical symptom and is an important cause of low back pain (LBP). IDD is initially considered to be associated with aging and abnormal mechanical loads. However, over recent years, researchers have discovered that IDD is caused by a variety of mechanisms, including persistent inflammation, functional cell loss, accelerated extracellular matrix decomposition, the imbalance of functional components, and genetic metabolic disorders. Of these, inflammation is thought to interact with other mechanisms and is closely associated with the production of pain. Considering the key role of inflammation in IDD, the modulation of inflammation provides us with new options for mitigating the progression of degeneration and may even cause reversal. Many natural substances possess anti-inflammatory functions. Due to the wide availability of such substances, it is important that we screen and identify natural agents that are capable of regulating IVD inflammation. In fact, many studies have demonstrated the potential clinical application of natural substances for the regulation of inflammation in IDD; some of these have been proven to have excellent biosafety. In this review, we summarize the mechanisms and interactions that are responsible for inflammation in IDD and review the application of natural products for the modulation of degenerative disc inflammation.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Haiyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Li W, Zhao Y, Wang Y, He Z, Zhang L, Yuan B, Li C, Luo Z, Gao B, Yan M. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol 2023; 14:1090637. [PMID: 36817437 PMCID: PMC9929188 DOI: 10.3389/fimmu.2023.1090637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Linyuan Zhang
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an, Shaanxi, China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|