1
|
The Immunohistochemical Expression of MCM-3, -5, and -7 Proteins in the Uterine Fibroids. Curr Issues Mol Biol 2021; 43:802-817. [PMID: 34449552 PMCID: PMC8929156 DOI: 10.3390/cimb43020058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022] Open
Abstract
Uterine fibroids are the most common mesenchymal uterine neoplasms; their prevalence is estimated in 40%–60% of women under 35 and in 70%–80% of women over 50 years of age. The current research aims to focus on the etiopathogenesis of uterine fibroids, the factors that affect their growth, and markers with diagnostic and prognostic properties. The MCM (minichromosome maintenance) protein family consists of peptides whose primary function is participation in the molecular mechanism of creating replication forks while regulating DNA synthesis. The aim of this work was to determine the proliferative potential of uterine fibroid cells based on the expression of the Ki-67 antigen and the MCMs—i.e., MCM-3, MCM-5, and MCM-7. In addition, the expression of estrogen (ER) and progesterone (PgR) receptors was evaluated and correlated with the expression of the abovementioned observations. Ultimately, received results were analyzed in terms of clinical and pathological data. Materials and methods: In forty-four cases of uterine fibroids, immunohistochemical reactions were performed. A tissue microarray (TMA) technique was utilized and analyzed cases were assessed in triplicate. Immunohistochemistry was performed using antibodies against Ki-67 antigen, ER, PgR, MCM-3, MCM-5, and MCM-8 on an automated staining platform. Reactions were digitalized by a histologic scanner and quantified utilizing dedicated software for nuclear analysis. Assessment was based on quantification expression of the three histiospots, each representing one case in TMA. Results: In the study group (uterine fibroids), statistically significant stronger expression of all the investigated MCMs was observed, as compared to the control group. In addition, moderate and strong positive correlations were found between all tested proliferative markers. The expression of the MCM-7 protein also correlated positively with ER and PgR. With regard to clinical and pathological data, there was a negative correlation between the expression of MCMs and the number of both pregnancies and births. Significant reductions in MCM-5 and MCM-7 expression were observed in the group of women receiving oral hormonal contraceptives, while smoking women showed an increase in MCM-7, ER, and PgR. Conclusions: Uterine fibroid cells have greater proliferative potential, as evaluated by expression of the Ki-67 antigen and MCMs, than unaltered myometrial cells of the uterine corpus. The expression of MCM-7 was found to have strong or moderate correlations in all assessed relations. In the context of the clinical data, as well evident proliferative potential of MCMs, further studies are strongly recommended.
Collapse
|
2
|
Lo Sardo F, Forcato M, Sacconi A, Capaci V, Zanconato F, Di Agostino S, Del Sal G, Pandolfi PP, Strano S, Bicciato S, Blandino G. MCM7 and its hosted miR-25, 93 and 106b cluster elicit YAP/TAZ oncogenic activity in lung cancer. Carcinogenesis 2017; 38:64-75. [PMID: 27797825 PMCID: PMC6276925 DOI: 10.1093/carcin/bgw110] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/01/2016] [Accepted: 10/16/2016] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the first cause of cancer death worldwide and the Hippo pathway transcriptional coactivators YAP/TAZ have a pro-oncogenic role in this context. In order to understand the mechanisms through which YAP/TAZ elicit their oncogenic role in different systems, many studies are focused on YAP/TAZ target genes involved in the regulation of cell proliferation/survival and migration. However, there is scarce evidence on the role of YAP/TAZ in microRNA regulation while there is increasing evidence supporting the role of microRNAs in the main oncogenic processes. Here, we showed that YAP/TAZ were able to regulate several microRNAs in non-small cell lung cancer (NSCLC) cell lines. In detail, we focused on a cluster of three oncogenic microRNAs (miR-25, 93 and 106b) hosted in the MCM7 gene that were overexpressed in lung tumors compared to normal tissues. In addition, similar behavior was observed in breast cancer and head and neck tumor casuistries, where they showed a prognostic role. In NSCLC cells, YAP/TAZ induced the transcription of the MCM7 gene and its hosted miRs, thereby promoting cell proliferation through the post-transcriptional inhibition of the p21 cell cycle regulator. Accordingly, p21 was maintained at low levels in lung tumors compared to normal tissues. Conversely, its expression was restored in NSCLC cells upon YAP/TAZ interference or upon treatment with the statin cerivastatin. In summary, we provide evidence for a novel mechanism of modulation supporting the protumorigenic functions of the YAP/TAZ factors through the modulation of a bioncogenic locus consisting of one gene and three hosted microRNAs.
Collapse
Affiliation(s)
| | - Mattia Forcato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | | | - Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano 99, 34149, Trieste, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | | | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Scienze della Vita-Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Pier Paolo Pandolfi
- Division of Genetics Beth Israel Deaconess Medical Center, CLS Building, Room 401 330 Brookline Avenue Boston, MA 02215, USA and
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area Regina Elena National Cancer Institute, via Elio Chianesi 53 00144, Rome, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | | |
Collapse
|
3
|
Cambuli FM, Correa BR, Rezza A, Burns SC, Qiao M, Uren PJ, Kress E, Boussouar A, Galante PAF, Penalva LOF, Plateroti M. A Mouse Model of Targeted Musashi1 Expression in Whole Intestinal Epithelium Suggests Regulatory Roles in Cell Cycle and Stemness. Stem Cells 2015; 33:3621-34. [PMID: 26303183 DOI: 10.1002/stem.2202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium is very peculiar for its continuous cell renewal, fuelled by multipotent stem cells localized within the crypts of Lieberkühn. Several lines of evidence have established the evolutionary conserved RNA-binding protein Musashi1 as a marker of adult stem cells, including those of the intestinal epithelium, and revealed its roles in stem cell self-renewal and cell fate determination. Previous studies from our laboratories have shown that Musashi1 controls stem cell-like features in medulloblastoma, glioblastoma, and breast cancer cells, and has pro-proliferative and pro-tumorigenic properties in intestinal epithelial progenitor cells in vitro. To undertake a detailed study of Musashi1's function in the intestinal epithelium in vivo, we have generated a mouse model, referred to as v-Msi, overexpressing Musashi1 specifically in the entire intestinal epithelium. Compared with wild type litters, v-Msi1 mice exhibited increased intestinal crypt size accompanied by enhanced proliferation. Comparative transcriptomics by RNA-seq revealed Musashi1's association with gut stem cell signature, cell cycle, DNA replication, and drug metabolism. Finally, we identified and validated three novel mRNA targets that are stabilized by Musashi1, Ccnd1 (Cyclin D1), Cdk6, and Sox4. In conclusion, the targeted expression of Musashi1 in the intestinal epithelium in vivo increases the cell proliferation rate and strongly suggests its action on stem cells activity. This is due to the modulation of a complex network of gene functions and pathways including drug metabolism, cell cycle, and DNA synthesis and repair.
Collapse
Affiliation(s)
- F M Cambuli
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - B R Correa
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - A Rezza
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - S C Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - M Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - P J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - E Kress
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - A Boussouar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - P A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - L O F Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - M Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| |
Collapse
|
4
|
Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:942605. [PMID: 26146487 PMCID: PMC4471258 DOI: 10.1155/2015/942605] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
Abstract
Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but resolving this question will require alternative coping mechanisms to be proposed and tested experimentally. This review evaluates a combination of four enigmatic properties that distinguishes the hyperthermophilic archaea from all other organisms: DNA polymerase stalling at dU, apparent lack of conventional NER, lack of MutSL homologs, and apparent essentiality of homologous recombination proteins. Hypothetical damage-coping strategies that could explain this set of properties may provide new starting points for efforts to define how archaea differ from conventional models of DNA repair and replication fidelity.
Collapse
|
5
|
Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc Natl Acad Sci U S A 2015; 112:4411-6. [PMID: 25831546 DOI: 10.1073/pnas.1421365112] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.
Collapse
|
6
|
Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus. Sci Rep 2015; 5:9057. [PMID: 25762096 PMCID: PMC4356968 DOI: 10.1038/srep09057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/05/2015] [Indexed: 01/04/2023] Open
Abstract
The typical archaeal MCM exhibits helicase activity independently invitro. This study characterizes MCM from the euryarchaeon Picrophilus torridus. While PtMCM hydrolyzes ATP in DNA-independent manner, it displays very poor ability to unwind DNA independently, and then too only under acidic conditions. The protein exists stably in complex with PtGINS in whole cell lysates, interacting directly with PtGINS under neutral and acidic conditions. GINS strongly activates MCM helicase activity, but only at low pH. In consonance with this, PtGINS activates PtMCM-mediated ATP hydrolysis only at low pH, with the amount of ATP hydrolyzed during the helicase reaction increasing more than fifty-fold in the presence of GINS. While the stimulation of MCM-mediated helicase activity by GINS has been reported in MCMs from P.furiosus, T.kodakarensis, and very recently, T.acidophilum, to the best of our knowledge, this is the first report of an MCM helicase demonstrating DNA unwinding activity only at such acidic pH, across all archaea and eukaryotes. PtGINS may induce/stabilize a conducive conformation of PtMCM under acidic conditions, favouring PtMCM-mediated DNA unwinding coupled to ATP hydrolysis. Our findings underscore the existence of divergent modes of replication regulation among archaea and the importance of investigating replication events in more archaeal organisms.
Collapse
|
7
|
Lee PH, Meng X, Kapler GM. Developmental regulation of the Tetrahymena thermophila origin recognition complex. PLoS Genet 2015; 11:e1004875. [PMID: 25569357 PMCID: PMC4287346 DOI: 10.1371/journal.pgen.1004875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023] Open
Abstract
The Tetrahymena thermophila DNA replication machinery faces unique demands due to the compartmentalization of two functionally distinct nuclei within a single cytoplasm, and complex developmental program. Here we present evidence for programmed changes in ORC and MCM abundance that are not consistent with conventional models for DNA replication. As a starting point, we show that ORC dosage is critical during the vegetative cell cycle and development. A moderate reduction in Orc1p induces genome instability in the diploid micronucleus, aberrant division of the polyploid macronucleus, and failure to generate a robust intra-S phase checkpoint response. In contrast to yeast ORC2 mutants, replication initiation is unaffected; instead, replication forks elongation is perturbed, as Mcm6p levels decline in parallel with Orc1p. Experimentally induced down-regulation of ORC and MCMs also impairs endoreplication and gene amplification, consistent with essential roles during development. Unexpectedly Orc1p and Mcm6p levels fluctuate dramatically in developing wild type conjugants, increasing for early cycles of conventional micronuclear DNA replication and macronuclear anlagen replication (endoreplication phase I, rDNA gene amplification). This increase does not reflect the DNA replication load, as much less DNA is synthesized during this developmental window compared to vegetative S phase. Furthermore, although Orc1p levels transiently increase prior to endoreplication phase II, Orc1p and Mcm6p levels decline when the replication load increases and unconventional DNA replication intermediates are produced. We propose that replication initiation is re-programmed to meet different requirements or challenges during the successive stages of Tetrahymena development. The Origin Recognition Complex is required for site-specific replication initiation in eukaryotic chromosomes. Null mutations are lethal in yeast and metazoa, and hypomorphs induce genome instability, a hallmark of cancer. We exploited the unique biology of Tetrahymena to explore ORC's role in conventional and alternative replication programs. Modest experimental down-regulation of ORC1 induces genome instability in vegetative growing Tetrahymena, and diminishes the capacity to support developmentally regulated endoreplication and gene amplification, consistent with essential roles in all of these processes. ORC mutants fail to activate the ATR checkpoint response, and are compromised in their ability to elongate existing replication forks. Remarkably, ORC and MCM levels fluctuate in unexpected ways during wild type development. Most notably, programmed changes in ORC abundance do not reflect the impending DNA replication load. Relative to the vegetative cell cycle, ORC and MCM levels increase dramatically and are highest early in development, when the replication load is lowest. Conversely, ORC levels are lowest during genome-wide macronuclear endoreplication, when the replication load increases. Endocycling cells generate unconventional replication intermediates that distinguish them from vegetative ORC1 knockdown mutants. The collective data suggest that the dependence on ORC may be relaxed during late stages of macronuclear development.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
BECK MICHAËL, ROMBOUTS CHARLOTTE, MOREELS MARJAN, AERTS AN, QUINTENS ROEL, TABURY KEVIN, MICHAUX ARLETTE, JANSSEN ANN, NEEFS MIEKE, ERNST ERIC, DIERIKS BIRGER, LEE RYONFA, DE VOS WINNOKH, LAMBERT CHARLES, VAN OOSTVELDT PATRICK, BAATOUT SARAH. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation. Int J Mol Med 2014; 34:1124-32. [DOI: 10.3892/ijmm.2014.1893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/06/2014] [Indexed: 11/06/2022] Open
|
9
|
Han X, Aslanian A, Fu K, Tsuji T, Zhang Y. The interaction between checkpoint kinase 1 (Chk1) and the minichromosome maintenance (MCM) complex is required for DNA damage-induced Chk1 phosphorylation. J Biol Chem 2014; 289:24716-23. [PMID: 25049228 DOI: 10.1074/jbc.m114.575035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage.
Collapse
Affiliation(s)
- Xiangzi Han
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Aaron Aslanian
- the Molecular and Cellular Biology Laboratories, The Salk Institute, La Jolla, California 92037, and
| | - Kang Fu
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Youwei Zhang
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
10
|
Küttner V, Mack C, Gretzmeier C, Bruckner-Tuderman L, Dengjel J. Loss of collagen VII is associated with reduced transglutaminase 2 abundance and activity. J Invest Dermatol 2014; 134:2381-2389. [PMID: 24732400 DOI: 10.1038/jid.2014.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/11/2014] [Accepted: 03/26/2014] [Indexed: 12/16/2022]
Abstract
Absence of collagen VII leads to widespread cellular and tissue phenotypes. However, the underlying molecular mechanisms are not well understood. To gain insights into cellular responses to loss of collagen VII, we undertook a quantitative disease proteomics approach. By using recessive dystrophic epidermolysis bullosa (RDEB), a skin blistering disease caused by collagen VII deficiency, as a genetic model, collagen VII-dependent differences in cellular protein abundances and protein-protein interactions were analyzed. Absence of collagen VII led to alterations of intracellular protein compositions and to perturbations in cell adhesion, protein trafficking, and the turnover pathway autophagy. A potential linker of the different cellular phenotypes is transglutaminase 2 (TGM2), a multifunctional enzyme important for protein cross-linking. TGM2 was identified as a stable interaction partner of collagen VII. In RDEB, both abundance and activity of TGM2 were reduced, accounting not only for diminished adhesion and perturbed autophagy but also for reduced cross-linking of the extracellular matrix and for decreased epidermal-dermal integrity in RDEB.
Collapse
Affiliation(s)
- Victoria Küttner
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Claudia Mack
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Karmon AE, Cardozo ER, Rueda BR, Styer AK. MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention? Hum Reprod Update 2014; 20:670-87. [PMID: 24706045 DOI: 10.1093/humupd/dmu017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human leiomyomata (fibroids) are benign tumors of the uterus, represent the most common neoplasms of reproductive-aged women and have a prevalence of ∼70% in the general population. This disorder conveys a significant degree of morbidity and remains the leading indication for hysterectomy in the USA. Prior investigations of aberrant microRNA (miRNA) expression in various malignancies have provided invaluable insight into the role of this class of small non-coding RNAs in tumor growth. Evidence of irregular miRNA expression in uterine fibroids has garnered recent interest for diagnostic and therapeutic applications. Since miRNA gene targets modulate several processes implicated in the genesis of uterine fibroids, more focused investigation has the potential to elucidate the functional significance of miRNA in the genesis and pathology of the disease. METHODS Comprehensive electronic searches of peer reviewed published literature in PubMed (US National Library of Medicine, National Institute of Health; http://www.ncbi.nlm.nih.gov/pubmed/) were performed for content related to the biologic functions of miRNA, the roles of miRNA in human disease and studies investigating miRNA in the context of uterine leiomyomata. Herein, this article will review the current evidence supporting the use of miRNA expression profiling as an investigative tool to assess the pathobiology of uterine fibroids and will discuss potential future applications of miRNAs as biomarkers and therapeutic targets. RESULTS Mounting evidence supports a functional role for miRNA as either indirect or direct regulators of gene expression which impacts the pathobiology of uterine fibroids. Specifically, miRNAs let-7, 200a, 200c, 93, 106b and 21 have been implicated in cellular proliferation, apoptosis, extracellular matrix turnover, angiogenesis and inflammation. Preliminary data provide evidence to suggest that respective in vitro miRNA expression in leiomyomata and myometrium is regulated by sex steroids. CONCLUSIONS Collectively, the identification of aberrantly expressed miRNAs in uterine leiomyomata and accumulating data derived from mining of gene target prediction models and recent functional studies support the concept that miRNAs might impact the genesis and progression of disease. However, the specific biologic functions of differential miRNA expression have yet to be confirmed in vivo. Further functional studies and developing miRNA technology may provide the basis for future applications of miRNAs in clinical medicine as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anatte E Karmon
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eden R Cardozo
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron K Styer
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Watanabe E, Ohara R, Ishimi Y. Effect of an MCM4 mutation that causes tumours in mouse on human MCM4/6/7 complex formation. J Biochem 2012; 152:191-8. [PMID: 22668557 DOI: 10.1093/jb/mvs060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been reported that a point mutation of minichromosome maintenance (MCM)4 causes mammary carcinoma, and it deregulates DNA replication to produce abnormal chromosome structures. To understand the effect of this mutation at level of MCM2-7 interaction, we examined the effect of the same mutation of human MCM4 on the complex formation with MCM6 and MCM7 in insect cells. Human MCM4/6/7 complexes containing the mutated MCM4 were formed, but the hexameric complex formation was not evident in comparison with those containing wild-type MCM4. In binary expression of MCM4 and MCM6, decreased levels of MCM6 were recovered with the mutated MCM4, compared with wild-type MCM4. These results suggest that this mutation of MCM4 perturbs proper interaction with MCM6 to affect complex formation of MCM4/6/7 that is a core structure of MCM2-7 complex. Consistent with this notion, nuclear localization and MCM complex formation of forcedly expressed MCM4 in human cells are affected by this mutation. Thus, the defect of this mutant MCM4 in interacting with MCM6 may generate a decreased level of chromatin binding of MCM2-7 complex.
Collapse
Affiliation(s)
- Emi Watanabe
- College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 351-8511, Japan
| | | | | |
Collapse
|
13
|
Chuang TD, Luo X, Panda H, Chegini N. miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8. Mol Endocrinol 2012; 26:1028-42. [PMID: 22556343 DOI: 10.1210/me.2012-1075] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miR-93/106b and their host gene minichromosome maintenance complex component 7 (MCM7) reside at chr7q22, a region frequently rearranged in leiomyomas. We explored the expression of miR-93/106b in leiomyoma and paired myometrium (n = 63) from untreated and patients exposed to hormonal therapies (GnRH agonist, Depo-Provera, and oral contraceptives) from African-Americans and Caucasians and their regulatory functions in isolated paired (n = 15) leiomyoma and myometrial smooth muscle cells and the leiomyosarcoma cell line. At tissue level leiomyomas expressed significantly lower levels of miR-93 and elevated MCM7 as compared with myometrium with limited racial influence or hormonal exposure on their expression. Assessing the regulatory function of miR-93/106b through doxycycline-inducible lentiviral transduction in a microarray analysis, tissue factor (F3) and IL8 were identified as their possible targets. At the tissue level, leiomyomas expressed a significantly lower level of F3 and an elevated IL-8 level, which exhibited an inverse relationship with miR-93 but with limited racial or hormonal influences. The gain of function of miR-93/106b in leiomyoma smooth muscle cells, myometrial smooth muscle cells, and the leiomyosarcoma cell line dose dependently repressed F3 and IL8 through direct interactions with their respective 3'-untranslated region and indirectly through F3 repression inhibited IL8, CTGF, and PAI-1 expression, confirmed by using small interfering RNA silencing or factor Vlla (FVIIa) activation of F3, as well as reducing the rate of proliferation, while increasing caspase-3/7 activity. We concluded that differential expression of miR-93/106b and their direct and/or indirect regulatory functions on F3, IL8, CTGF, and PAI-1 expression, with key roles in inflammation and tissue turnover may be of significance in the outcome of leiomyoma growth and associated symptoms.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
14
|
Suhasini AN, Sommers JA, Yu S, Wu Y, Xu T, Kelman Z, Kaplan DL, Brosh RM. DNA repair and replication fork helicases are differentially affected by alkyl phosphotriester lesion. J Biol Chem 2012; 287:19188-98. [PMID: 22500020 DOI: 10.1074/jbc.m112.352757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions.
Collapse
Affiliation(s)
- Avvaru N Suhasini
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Minichromosome maintenance protein 7 as a potential prognostic factor for progression-free survival in high-grade serous carcinomas of the ovary. Mod Pathol 2011; 24:277-87. [PMID: 21076460 PMCID: PMC3964599 DOI: 10.1038/modpathol.2010.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minichromosome maintenance protein 7 (MCM7) is involved in replicative licensing and synthesis of DNA. It was previously identified as an overexpressed gene in high-grade serous carcinomas compared with serous borderline tumors of the ovary in cDNA microarray studies. In this study, we sought to validate MCM7 expression in 342 ovarian tumors on tissue microarrays. MCM7 expression was quantified as the MCM7 labeling index, and it was independently generated by two methods: a score provided by manual review of each sample by a pathologist observer and by an automated cellular imaging system. Analyses of MCM7 scores indicated a high degree of concordance and distribution between the observer- and machine-generated MCM7 labeling indexes. MCM7 expression was significantly higher in high-grade serous carcinomas than in serous borderline tumors or other histological subtypes of ovarian cancer. For both observer- and machine-derived scores, univariate analyses indicated the significant association of a high MCM7 labeling index with better progression-free survival in high-grade serous carcinomas. These results suggest the clinical importance of MCM7 expression in high-grade serous carcinomas of the ovary and the need for further evaluation of MCM7 as a potential prognostic factor in ovarian cancer.
Collapse
|
16
|
Brewster AS, Chen XS. Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex. Crit Rev Biochem Mol Biol 2010; 45:243-56. [PMID: 20441442 DOI: 10.3109/10409238.2010.484836] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The helicase function of the minichromosome maintenance protein (MCM) is essential for genomic DNA replication in archaea and eukaryotes. There has been rapid progress in studies of the structure and function of MCM proteins from different organisms, leading to better understanding of the MCM helicase mechanism. Because there are a number of excellent reviews on this topic, we will use this review to summarize some of the recent progress, with particular focus on the structural aspects of MCM and their implications for helicase function. Given the hexameric and double hexameric architecture observed by X-ray crystallography and electron microscopy of MCMs from archaeal and eukaryotic cells, we summarize and discuss possible unwinding modes by either a hexameric or a double hexameric helicase. Additionally, our recent crystal structure of a full length archaeal MCM has provided structural information on an intact, multi-domain MCM protein, which includes the salient features of four unusual beta-hairpins from each monomer, and the side channels of a hexamer/double hexamer. These new structural data enable a closer examination of the structural basis of the unwinding mechanisms by MCM.
Collapse
Affiliation(s)
- Aaron S Brewster
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
17
|
Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 2010; 285:23457-65. [PMID: 20501654 DOI: 10.1074/jbc.m110.136168] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a dimeric glycoprotein that plays a crucial role in microvascular complications of diabetes, including diabetic nephropathy. However, the precise regulatory mechanisms governing VEGF expression in the diabetic milieu are still poorly understood. Here, we provide evidence that microRNA-93 (miR-93) regulates VEGF expression in experimental models of diabetes both in vitro and in vivo. Comparative microRNA expression profile arrays identified miR-93 as a signature microRNA in hyperglycemic conditions. We identified VEGF-A as a putative target of miR-93 in the kidney with a perfect complementarity between miR-93 and the 3'-untranslated region of vegfa in several species. When cotransfected with a luciferase reporter construct containing the mouse vegfa 3'-untranslated region, expression of miR-93 markedly decreased the luciferase activity. We showed that forced expression of miR-93 in cells abrogated VEGF protein secretion. Conversely, anti-miR-93 inhibitors increased VEGF release. Transfection of miR-93 also prevented the effect of high glucose on VEGF downstream targets. Using transgenic mice containing VEGF-LacZ bicistronic transcripts, we found that inhibition of glomerular miR-93 by peptide-conjugated morpholino oligomers elicited increased expression of VEGF. Our findings also indicate that high glucose decreases miR-93 expression by down-regulating the promoter of the host MCM7 gene. Taken together, our findings provide new insights into the role of miR-93 in VEGF signaling pathway and offer a potentially novel target in preventing the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Jianyin Long
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
18
|
De Haro LP, Wray J, Williamson EA, Durant ST, Corwin L, Gentry AC, Osheroff N, Lee SH, Hromas R, Nickoloff JA. Metnase promotes restart and repair of stalled and collapsed replication forks. Nucleic Acids Res 2010; 38:5681-91. [PMID: 20457750 PMCID: PMC2943610 DOI: 10.1093/nar/gkq339] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been implicated in the replication stress response, and TopoIIα has been proposed to relax positive supercoils in front of replication forks. Here we show that Metnase promotes cell proliferation, but it does not alter cell cycle distributions, or replication fork progression. However, Metnase knockdown sensitizes cells to replication stress and confers a marked defect in restart of stalled replication forks. Metnase promotes resolution of phosphorylated histone H2AX, a marker of DNA double-strand breaks at collapsed forks, and it co-immunoprecipitates with PCNA and RAD9, a member of the PCNA-like RAD9–HUS1–RAD1 intra-S checkpoint complex. Metnase also promotes TopoIIα-mediated relaxation of positively supercoiled DNA. Metnase is not required for RAD51 focus formation after replication stress, but Metnase knockdown cells show increased RAD51 foci in the presence or absence of replication stress. These results establish Metnase as a key factor that promotes restart of stalled replication forks, and implicate Metnase in the repair of collapsed forks.
Collapse
Affiliation(s)
- Leyma P De Haro
- Department of Molecular Genetics and Microbiology, Division of Hematology-Oncology, Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
20
|
Tan BCM, Liu H, Lin CL, Lee SC. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation. J Biomed Sci 2010; 17:11. [PMID: 20156367 PMCID: PMC2848000 DOI: 10.1186/1423-0127-17-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.
Collapse
Affiliation(s)
- Bertrand Chin-Ming Tan
- Department of Life Science, College of Medicine, Chang Gung Univeristy, Taoyuan, Taiwan.
| | | | | | | |
Collapse
|
21
|
Hayashi T, Shibata N, Okumura R, Kudome T, Nishimura O, Tarui H, Agata K. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting” function for stem cell research. Dev Growth Differ 2010; 52:131-44. [DOI: 10.1111/j.1440-169x.2009.01157.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Abstract
The Cdc (cell division cycle) 45 protein has a central role in the regulation of the initiation and elongation stages of eukaryotic chromosomal DNA replication. In addition, it is the main target for a Chk1 (checkpoint kinase 1)-dependent Cdc25/CDK2 (cyclin-dependent kinase 2)-independent DNA damage checkpoint signal transduction pathway following low doses of BPDE (benzo[a]pyrene dihydrodiol epoxide) treatment, which causes DNA damage similar to UV-induced adducts. Cdc45 interacts physically and functionally with the putative eukaryotic replicative DNA helicase, the MCM (mini-chromosome maintenance) complex, and forms a helicase active ‘supercomplex’, the CMG [Cdc45–MCM2–7–GINS (go-ichi-ni-san)] complex. These known protein–protein interactions, as well as unknown interactions and post-translational modifications, may be important for the regulation of Cdc45 and the initiation of DNA replication following DNA damage. Future studies will help to elucidate the molecular basis of this newly identified S-phase checkpoint pathway which has Cdc45 as a target.
Collapse
|
23
|
Sakakibara N, Kelman LM, Kelman Z. Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 2009; 72:286-96. [DOI: 10.1111/j.1365-2958.2009.06663.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Irmisch A, Ampatzidou E, Mizuno K, O'Connell MJ, Murray JM. Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J 2009; 28:144-55. [PMID: 19158664 DOI: 10.1038/emboj.2008.273] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/02/2008] [Indexed: 01/01/2023] Open
Abstract
The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis-segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination-dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome-wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage-induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination-competent conformation primed for replication restart.
Collapse
Affiliation(s)
- Anja Irmisch
- Genome Damage and Stability Centre, University of Sussex, Brighton, E. Sussex, UK
| | | | | | | | | |
Collapse
|
25
|
Lambert JP, Mitchell L, Rudner A, Baetz K, Figeys D. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics 2008; 8:870-82. [PMID: 19106085 DOI: 10.1074/mcp.m800447-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein-protein interaction mapping has progressed rapidly in recent years, enabling the completion of several high throughput studies. However, knowledge of physical interactions is limited for numerous classes of proteins, such as chromatin-bound proteins, because of their poor solubility when bound to DNA. To address this problem, we have developed a novel method, termed modified chromatin immunopurification (mChIP), that allows for the efficient purification of protein-DNA macromolecules, enabling subsequent protein identification by mass spectrometry. mChIP consists of a single affinity purification step whereby chromatin-bound protein networks are isolated from mildly sonicated and gently clarified cellular extracts using magnetic beads coated with antibodies. We applied the mChIP method in Saccharomyces cerevisiae cells expressing endogenously tandem affinity purification (TAP)-tagged histone H2A or the histone variant Htz1p and successfully co-purified numerous chromatin-bound protein networks as well as DNA. We further challenged the mChIP procedure by purifying three chromatin-bound bait proteins that have proven difficult to purify by traditional methods: Lge1p, Mcm5p, and Yta7p. The protein interaction networks of these three baits dramatically expanded our knowledge of their chromatin environments and illustrate that the innovative mChIP procedure enables an improved characterization of chromatin-associated proteins.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
26
|
Cho JH, Kim HB, Kim HS, Choi SB. Identification and characterization of a rice MCM2 homologue required for DNA replication. BMB Rep 2008; 41:581-6. [PMID: 18755073 DOI: 10.5483/bmbrep.2008.41.8.581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pre-replication complex (pre-RC), including the core hexameric MCM2-7 complex, ensures that the eukaryotic genome is replicated only once per cell division cycle. In this study, we identified a rice minichromosome maintenance (MCM) homologue (OsMCM2) that functionally complemented fission yeast MCM2 (CDC19) mutants. We found OsMCM2 transcript expression in roots, leaves, and seeds, although expression levels differed slightly among the organs. Likewise, the OsMCM2 protein was ubiquitously expressed, but it was downregulated when nutritients were limiting, indicating that MCM2 expression (and therefore cell cycle progression) requires adequate nutrition. Yeast two-hybrid and GST pull-down assays demonstrated that OsMCM2 interacted with the COP9 signalosome 5 (CSN5). Taken as a whole, our results indicated that OsMCM2 functions as a subunit of the rice MCM complex and interacts with CSN5 during developmental regulation.
Collapse
Affiliation(s)
- Jae Han Cho
- Department of Biological Sciences, Myongji University, Yongin, Korea
| | | | | | | |
Collapse
|
27
|
Gagné JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM, Poirier GG. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 2008; 36:6959-76. [PMID: 18981049 PMCID: PMC2602769 DOI: 10.1093/nar/gkn771] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
AAAs (ATPases associated with various cellular activities) form a large group of P-loop NTPases, themselves the most abundant class of protein in all organisms. Because of their importance, since 1995, there has been a biennial meeting focusing on AAAs. The Seventh International Meeting on AAA Proteins was held on 9–13 September 2007 in Cirencester, U.K. and brought together various prominent and promising researchers in the field. The talks that are discussed herein and the corresponding papers that follow this introduction give a good overview of the current areas of research into these proteins.
Collapse
|