1
|
Zanin N, Viaris de Lesegno C, Podkalicka J, Meyer T, Gonzalez Troncoso P, Bun P, Danglot L, Chmiest D, Urbé S, Piehler J, Blouin CM, Lamaze C. STAM and Hrs interact sequentially with IFN-α Receptor to control spatiotemporal JAK-STAT endosomal activation. Nat Cell Biol 2023; 25:425-438. [PMID: 36797476 DOI: 10.1038/s41556-022-01085-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Activation of the JAK-STAT pathway by type I interferons (IFNs) requires clathrin-dependent endocytosis of the IFN-α and -β receptor (IFNAR), indicating a role for endosomal sorting in this process. The molecular machinery that brings the selective activation of IFN-α/β-induced JAK-STAT signalling on endosomes remains unknown. Here we show that the constitutive association of STAM with IFNAR1 and TYK2 kinase at the plasma membrane prevents TYK2 activation by type I IFNs. IFN-α-stimulated IFNAR endocytosis delivers the STAM-IFNAR complex to early endosomes where it interacts with Hrs, thereby relieving TYK2 inhibition by STAM and triggering signalling of IFNAR at the endosome. In contrast, when stimulated by IFN-β, IFNAR signalling occurs independently of Hrs as IFNAR is sorted to a distinct endosomal subdomain. Our results identify the molecular machinery that controls the spatiotemporal activation of IFNAR by IFN-α and establish the central role of endosomal sorting in the differential regulation of JAK-STAT signalling by IFN-α and IFN-β.
Collapse
Affiliation(s)
- Natacha Zanin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Namur Research Institute for Life Sciences (NARILIS), URBC, University of Namur, Namur, Belgium
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Joanna Podkalicka
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, Paris, France.,Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Thomas Meyer
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Pamela Gonzalez Troncoso
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Bun
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Lydia Danglot
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Daniela Chmiest
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Department of Biochemistry, CIIL Biomedical Research Center, University of Lausanne, Epalinges, Switzerland
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Cédric M Blouin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
2
|
Golden CK, Kazmirchuk TDD, McNally EK, El eissawi M, Gokbayrak ZD, Richard JD, Brett CL. A two-tiered system for selective receptor and transporter protein degradation. PLoS Genet 2022; 18:e1010446. [PMID: 36215320 PMCID: PMC9584418 DOI: 10.1371/journal.pgen.1010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Diverse physiology relies on receptor and transporter protein down–regulation and degradation mediated by ESCRTs. Loss–of–function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail–safe layer of defense when ESCRTs disregard their clients, representing a two–tiered system that ensures degradation of surface polytopic proteins. Receptor, transporter and channel proteins on the plasma membranes (or surface) of all cells mediate extensive physiology. This requires precise control of their numbers, and damaged copies must be removed to prevent cytotoxicity. Their downregulation and degradation is mediated by lysosomes after endocytosis and entry into the multi–vesicular body (MVB) pathway which depends on ESCRTs (Endosomal Sorting Complexes Required for Transport). Loss–of–function mutations in ESCRT genes are linked to cancers and neurological disease, but cells survive and some proteins continue to be degraded. Herein, we use baker’s yeast (Saccharomyces cerevisiae) as model to better understand how surface proteins are degraded in cells missing ESCRT genes. Using fluorescence microscopy matched with biochemical and genetic approaches, we find that the methionine transporter Mup1 and G-protein coupled receptor Ste3 continue to be degraded when two ESCRT genes are deleted. They are endocytosed but rerouted to membranes of vacuolar lysosomes after stimuli are applied to trigger their downregulation. Here they are sorted into intralumenal fragments and degraded by acid hydrolases within vacuolar lysosomes upon homotypic membrane fusion. We propose that this intralumenal fragment (ILF) pathway functions as a secondary mechanism to degrade surface proteins with the canonical MVB pathway is disrupted.
Collapse
Affiliation(s)
| | | | - Erin Kate McNally
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
3
|
Kazan JM, Desrochers G, Martin CE, Jeong H, Kharitidi D, Apaja PM, Roldan A, St. Denis N, Gingras AC, Lukacs GL, Pause A. Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. iScience 2021; 24:103274. [PMID: 34761192 PMCID: PMC8567383 DOI: 10.1016/j.isci.2021.103274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
Collapse
Affiliation(s)
- Jalal M. Kazan
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Desrochers
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pirjo M. Apaja
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel Roldan
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nicole St. Denis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gergely L. Lukacs
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
4
|
Deng T, He Z, Duan X, Gu D, Cai C, Wu W, Liu Y, Zeng G. STAM Prolongs Clear Cell Renal Cell Carcinoma Patients' Survival via Inhibiting Cell Growth and Invasion. Front Oncol 2021; 11:611081. [PMID: 33959493 PMCID: PMC8093442 DOI: 10.3389/fonc.2021.611081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Signal transducing adaptor molecule 1 (STAM1) was considered to mediate cell growth and be involved in multiple signaling pathways; however, no research on the role of STAM1 in any tumors has been published yet. Our study aimed to investigate the prognostic value of STAM1 for clear cell renal cell carcinoma (ccRCC) and its role in modulating cancer cell function. Methods: Data from The Cancer Genome Atlas (TCGA) in December 2019 were used to examine the role of STAM1 in indicating ccRCC patients' survival. A purchased tissue microarray (TM) and fresh ccRCC renal tissues were used for further validation. Then, STAM1 was overexpressed in human ccRCC cell lines for in vitro assays. Finally, bioinformatics was performed for STAM1 protein–protein interaction (PPI) network construction and functional analyses. Results: A total of 539 ccRCC and 72 control samples were included for the TCGA cohort, and 149 ccRCC and 29 control slices were included for the TM cohort. In the TCGA and TM cohorts, we found that STAM1 expression was lower in ccRCC compared with normal adjacent non-cancerous renal tissues (P < 0.0001 for both cohorts). STAM1 downregulation was also related to significantly shorter overall survival (OS) (P < 0.0001 for both cohorts). In the TCGA cohort, reduced STAM1 expression was also associated with aggressive features of the tumor. Under multivariate analyses, STAM1 was demonstrated to be an independent prognostic factor for ccRCC survival in both TCGA (HR = 0.52, 95% CI: 0.33–0.84, P = 0.007) and TM cohorts (HR = 0.12, 95% CI: 0.04–0.32, P < 0.001). Our in vitro experiments showed that STAM1 inhibited cell viability, invasion, and migration in ccRCC cell lines. In PPI network, 10 candidate genes categorized into five biological processes were found to be closely related to STAM1. Conclusion: STAM1 is a promising prognostic biomarker for predicting ccRCC survival outcomes. Preliminary pathogenesis is demonstrated by our in vitro experiments. Further pathological mechanisms of STAM1 in modulating ccRCC require comprehensive laboratory and clinical studies.
Collapse
Affiliation(s)
- Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zihao He
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chao Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenqi Wu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
6
|
The intralumenal fragment pathway mediates ESCRT-independent surface transporter down-regulation. Nat Commun 2018; 9:5358. [PMID: 30560896 PMCID: PMC6299085 DOI: 10.1038/s41467-018-07734-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 11/10/2022] Open
Abstract
Surface receptor and transporter protein down-regulation is assumed to be exclusively mediated by the canonical multivesicular body (MVB) pathway and ESCRTs (Endosomal Sorting Complexes Required for Transport). However, few surface proteins are known to require ESCRTs for down-regulation, and reports of ESCRT-independent degradation are emerging, suggesting that alternative pathways exist. Here, using Saccharomyces cerevisiae as a model, we show that the hexose transporter Hxt3 does not require ESCRTs for down-regulation conferring resistance to 2-deoxyglucose. This is consistent with GFP-tagged Hxt3 bypassing ESCRT-mediated entry into intralumenal vesicles at endosomes. Instead, Hxt3-GFP accumulates on vacuolar lysosome membranes and is sorted into an area that, upon fusion, is internalized as an intralumenal fragment (ILF) and degraded. Moreover, heat stress or cycloheximide trigger degradation of Hxt3-GFP and other surface transporter proteins (Itr1, Aqr1) by this ESCRT-independent process. How this ILF pathway compares to the MVB pathway and potentially contributes to physiology is discussed. Cell surface receptors are thought to be internalized via the multivesicular bodies (MVBs) in an ESCRT-dependent pathway. Here, the authors report that in yeast, a hexose transporter is internalized via an ESCRT-independent pathway into intralumenal fragments (ILF).
Collapse
|
7
|
Kaul Z, Chakrabarti O. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration. Traffic 2018; 19:485-495. [DOI: 10.1111/tra.12569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
- Homi Bhabha National Institute; Mumbai India
| |
Collapse
|
8
|
Dionisio-Vicuña MN, Gutiérrez-López TY, Adame-García SR, Vázquez-Prado J, Reyes-Cruz G. VPS28, an ESCRT-I protein, regulates mitotic spindle organization via Gβγ, EG5 and TPX2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1012-1022. [PMID: 29548937 DOI: 10.1016/j.bbamcr.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Misael Neri Dionisio-Vicuña
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Tania Yareli Gutiérrez-López
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Sendi Rafael Adame-García
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico.
| |
Collapse
|
9
|
Krasniak CS, Ahmad ST. The role of CHMP2B Intron5 in autophagy and frontotemporal dementia. Brain Res 2016; 1649:151-157. [PMID: 26972529 DOI: 10.1016/j.brainres.2016.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
Charged multivesicular body protein 2B (CHMP2B) - a component of the endosomal complex required for transport-III (ESCRT-III) - is responsible for the vital membrane deformation functions in autophagy and endolysosomal trafficking. A dominant mutation in CHMP2B (CHMP2BIntron5) is associated with a subset of heritable frontotemporal dementia - frontotemporal dementia linked to chromosome 3 (FTD-3). ESCRT-III recruits Vps4, an AAA-ATPase that abscises the membrane during various cellular processes including autophagy and intraluminal vesicle formation. CHMP2BIntron5 results in a C-terminus truncation removing an important Vps4 binding site as well as eliminating the normal autoinhibitory resting state of CHMP2B. CHMP2B is expressed in most cell types but seems to be especially vital for proper neuronal function. CHMP2BIntron5-mediated phenotypes include misregulation of transmembrane receptors, accumulation of multilamellar structures, abnormal lysosomal morphology, down regulation of a brain-specific micro RNA (miRNA-124), abnormal dendritic spine morphology, decrease in dendritic arborization, and cell death. Currently, transgenic-fly,-mouse, and -human cell lines are being used to better understand the diverse phenotypes and develop therapeutic approaches for the CHMP2BIntron5-induced FTD-3. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
| | - S Tariq Ahmad
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| |
Collapse
|
10
|
Watson JA, Bhattacharyya BJ, Vaden JH, Wilson JA, Icyuz M, Howard AD, Phillips E, DeSilva TM, Siegal GP, Bean AJ, King GD, Phillips SE, Miller RJ, Wilson SM. Motor and Sensory Deficits in the teetering Mice Result from Mutation of the ESCRT Component HGS. PLoS Genet 2015; 11:e1005290. [PMID: 26115514 PMCID: PMC4482608 DOI: 10.1371/journal.pgen.1005290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Neurons are particularly vulnerable to perturbations in endo-lysosomal transport, as several neurological disorders are caused by a primary deficit in this pathway. In this report, we used positional cloning to show that the spontaneously occurring neurological mutation teetering (tn) is a single nucleotide substitution in hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). The tn mice exhibit hypokenesis, muscle weakness, reduced muscle size and early perinatal lethality by 5-weeks of age. Although HGS has been suggested to be essential for the sorting of ubiquitinated membrane proteins to the lysosome, there were no alterations in receptor tyrosine kinase levels in the central nervous system, and only a modest decrease in tropomyosin receptor kinase B (TrkB) in the sciatic nerves of the tn mice. Instead, loss of HGS resulted in structural alterations at the neuromuscular junction (NMJ), including swellings and ultra-terminal sprouting at motor axon terminals and an increase in the number of endosomes and multivesicular bodies. These structural changes were accompanied by a reduction in spontaneous and evoked release of acetylcholine, indicating a deficit in neurotransmitter release at the NMJ. These deficits in synaptic transmission were associated with elevated levels of ubiquitinated proteins in the synaptosome fraction. In addition to the deficits in neuronal function, mutation of Hgs resulted in both hypermyelinated and dysmyelinated axons in the tn mice, which supports a growing body of evidence that ESCRTs are required for proper myelination of peripheral nerves. Our results indicate that HGS has multiple roles in the nervous system and demonstrate a previously unanticipated requirement for ESCRTs in the maintenance of synaptic transmission. Endocytic trafficking involves the internalization, endosomal sorting and lysosomal degradation of cell surface cargo. Many factors involved in endosomal sorting in mammalian cells have been identified, and mutations in these components are associated with a variety of neurological disorders. While the function of endosomal sorting components has been intensely studied in immortalized cell lines, it is not known what role these factors play in endosomal sorting in the nervous system. In this study, we show that the teetering (tn) gene encodes the hepatocytegrowth factor regulated tyrosine kinasesubstrate (Hgs), a core component of the endosomal sorting pathway. The tn mice exhibit several signs of motor neuron disease, including reduced muscle mass, muscle weakness and motor abnormalities. Although HGS is predicted to be required for the lysosomal degradation of receptor tyrosine kinases, there was no change in the levels of receptor tyrosine kinases in the spinal cords of the tn mice. Instead, we found that HGS is required for synaptic transmission at the neuromuscular junction and for the proper myelination of the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer A. Watson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Bula J. Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Jada H. Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Mert Icyuz
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alan D. Howard
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Edward Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Tara M. DeSilva
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gene P. Siegal
- Departments of Pathology, Surgery and Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew J. Bean
- Department of Neurobiology and Anatomy and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gwendalyn D. King
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
11
|
Legent K, Liu HH, Treisman JE. Drosophila Vps4 promotes Epidermal growth factor receptor signaling independently of its role in receptor degradation. Development 2015; 142:1480-91. [PMID: 25790850 DOI: 10.1242/dev.117960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
Endocytic trafficking of signaling receptors is an important mechanism for limiting signal duration. Components of the Endosomal Sorting Complexes Required for Transport (ESCRT), which target ubiquitylated receptors to intra-lumenal vesicles (ILVs) of multivesicular bodies, are thought to terminate signaling by the epidermal growth factor receptor (EGFR) and direct it for lysosomal degradation. In a genetic screen for mutations that affect Drosophila eye development, we identified an allele of Vacuolar protein sorting 4 (Vps4), which encodes an AAA ATPase that interacts with the ESCRT-III complex to drive the final step of ILV formation. Photoreceptors are largely absent from Vps4 mutant clones in the eye disc, and even when cell death is genetically prevented, the mutant R8 photoreceptors that develop fail to recruit surrounding cells to differentiate as R1-R7 photoreceptors. This recruitment requires EGFR signaling, suggesting that loss of Vps4 disrupts the EGFR pathway. In imaginal disc cells mutant for Vps4, EGFR and other receptors accumulate in endosomes and EGFR target genes are not expressed; epistasis experiments place the function of Vps4 at the level of the receptor. Surprisingly, Vps4 is required for EGFR signaling even in the absence of Shibire, the Dynamin that internalizes EGFR from the plasma membrane. In ovarian follicle cells, in contrast, Vps4 does not affect EGFR signaling, although it is still essential for receptor degradation. Taken together, these findings indicate that Vps4 can promote EGFR activity through an endocytosis-independent mechanism.
Collapse
Affiliation(s)
- Kevin Legent
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Hui Hua Liu
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
12
|
Verma R, Marchese A. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J Biol Chem 2015; 290:6810-24. [PMID: 25605718 DOI: 10.1074/jbc.m114.606699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.
Collapse
Affiliation(s)
- Rita Verma
- From the Biochemistry and Molecular Biology Program, and
| | - Adriano Marchese
- From the Biochemistry and Molecular Biology Program, and Department of Molecular Pharmacology and Therapeutics, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
13
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection. Commun Integr Biol 2014. [DOI: 10.4161/cib.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
14
|
How to take autophagy and endocytosis up a notch. BIOMED RESEARCH INTERNATIONAL 2014; 2014:960803. [PMID: 24860831 PMCID: PMC4016896 DOI: 10.1155/2014/960803] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/12/2014] [Indexed: 11/23/2022]
Abstract
The interconnection of the endocytic and autophagosomal trafficking routes has been recognized more than two decades ago with both pathways using a set of identical effector proteins and sharing the same ultimate lysosomal destination. More recent data sheds light onto how other pathways are intertwined into this network, and how degradation via the endosomal/autophagosomal system may affect signaling pathways in multicellular organisms. Here, we briefly review the common features of autophagy and endocytosis and discuss how other players enter this mix with particular respect to the Notch signaling pathway.
Collapse
|
15
|
Chiang CP, Li CH, Jou Y, Chen YC, Lin YC, Yang FY, Huang NC, Yen HE. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2385-400. [PMID: 23580756 PMCID: PMC3654428 DOI: 10.1093/jxb/ert097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1-SnRK1-CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed.
Collapse
Affiliation(s)
- Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hua Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yingtzy Jou
- Department of Life Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
| | - Yu-Chan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Chung Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Fang-Yu Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Nu-Chuan Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Jou Y, Chiang CP, Yen HE. Changes in cellular distribution regulate SKD1 ATPase activity in response to a sudden increase in environmental salinity in halophyte ice plant. PLANT SIGNALING & BEHAVIOR 2013; 8:e27433. [PMID: 24390077 PMCID: PMC4091238 DOI: 10.4161/psb.27433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Halophyte Mesembryanthemum crystallinum L. (ice plant) rapidly responds to sudden increases in salinity in its environment by activating specific salt-tolerant mechanisms. One major strategy is to regulate a series of ion transporters and proton pumps to maintain cellular Na(+)/K(+) homeostasis. Plant SKD1 (suppressor of K(+) transport growth defect 1) proteins accumulate in cells actively engaged in the secretory processes, and play a critical role in intracellular protein trafficking. Ice plant SKD1 redistributes from the cytosol to the plasma membrane hours after salt stressed. In combination with present knowledge of this protein, we suggest that stress facilitates SKD1 movement to the plasma membrane where ADP/ATP exchange occurs, and functions in the regulation of membrane components such as ion transporters to avoid ion toxicity.
Collapse
Affiliation(s)
- Yingtzy Jou
- Department of Biotechnology; National Pingtung University of Science and Technology; Neipu, Pingtung, Taiwan
| | - Chih-Pin Chiang
- Department of Life Sciences; National Chung Hsing University; Taichung, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences; National Chung Hsing University; Taichung, Taiwan
- Correspondence to: Hungchen Emilie Yen,
| |
Collapse
|
17
|
Abstract
Here, we present emerging ideas surrounding the interplay between the actin cytoskeleton and receptor transport and activation. The bulk of actin dynamics in cells is thought to contribute to architecture and mobility. Actin also contributes to trafficking, acting as a molecular scaffold, providing force to deform membranes, facilitating vesicle abscission or propelling a vesicle through the cytoplasm ( 1) (,) ( 2) and recent studies highlight important connections between the directed trafficking of receptors and the impact on cell migration and actin dynamics. Additionally, a number of newly described actin nucleation promoting factors, such as the vesicle associated protein WASH, reveal unexpected roles of actin in membrane traffic and suggest that the cell dedicates a significant proportion of its regulation of actin dynamics to controlling trafficking.
Collapse
Affiliation(s)
- Tobias Zech
- Beatson Institute for Cancer Research; Bearsden, UK
| | | | | |
Collapse
|
18
|
Pedersen NM, Raiborg C, Brech A, Skarpen E, Roxrud I, Platta HW, Liestøl K, Stenmark H. The PtdIns3P-binding protein Phafin 2 mediates epidermal growth factor receptor degradation by promoting endosome fusion. Traffic 2012; 13:1547-63. [PMID: 22816767 DOI: 10.1111/j.1600-0854.2012.01400.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain-containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid-phase marker dextran were retained in abnormally small endosomes in Phafin2-depleted cells. In yeast two-hybrid analysis we identified Phafin2 as a novel interactor of the endosomal-tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid-phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Schmees C, Villaseñor R, Zheng W, Ma H, Zerial M, Heldin CH, Hellberg C. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V. Mol Biol Cell 2012; 23:2571-82. [PMID: 22573884 PMCID: PMC3386220 DOI: 10.1091/mbc.e11-04-0317] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibroblast transformation by H-RasG12V induces internalization of PDGFRβ by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. It is proposed that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling through increased receptor macropinocytosis. Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis.
Collapse
Affiliation(s)
- C Schmees
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Metcalfe C, Bienz M. Inhibition of GSK3 by Wnt signalling--two contrasting models. J Cell Sci 2012; 124:3537-44. [PMID: 22083140 DOI: 10.1242/jcs.091991] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The key read-out of Wnt signalling is a change in the transcriptional profile of the cell, which is driven by β-catenin. β-catenin levels are normally kept low by a phosphorylation event that is mediated by glycogen synthase kinase 3 (GSK3, α- and β-isoforms), which targets β-catenin for ubiquitylation and proteasomal degradation. Wnt blocks this phosphorylation event, thereby allowing β-catenin to accumulate and to co-activate transcription in the nucleus. Exactly how Wnt inhibits GSK3 activity towards β-catenin is unclear and has been the focus of intensive research. Recent studies on the role of conserved PPPSPxS motifs in the cytoplasmic tail of low-density lipoprotein receptor-related protein (LRP, isoforms 5 and 6) culminated in a biochemical model: Wnt induces the phosphorylation of LRP6 PPPSPxS motifs, which consequently access the catalytic pocket of GSK3 as pseudo-substrates, thus directly blocking its activity against β-catenin. A distinct cell-biological model was proposed more recently: Wnt proteins induce the uptake of GSK3 into multivesicular bodies (MVBs), an event that sequesters the enzyme away from newly synthesised β-catenin substrate in the cytoplasm, thus blocking its phosphorylation. This new model is based on intriguing observations but also challenges a body of existing evidence, so will require further experimental consolidation. We shall consider whether the two models apply to different modes of Wnt signaling: acute versus chronic.
Collapse
Affiliation(s)
- Ciara Metcalfe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
21
|
Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal 2012; 5:ra21. [PMID: 22416276 DOI: 10.1126/scisignal.2002351] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ligand binding to the epidermal growth factor receptor (EGFR) on the cell surface activates the extracellular signal-regulated kinase (ERK) cascade. Activated, ligand-bound receptors are internalized, and this process may contribute to termination of signaling or enable signaling from intracellular sites. ESCRT (endosomal sorting complex required for transport) complexes may contribute to termination of signaling by sorting receptors into intraluminal vesicles of multivesicular endosomes from which the receptors continue into lysosomes for degradation. We showed that depletion of ESCRTs, which causes the retention of the EGFR in endosomes, increased the activation of the EGFR and its downstream kinases but had little effect on the overall profile and amplitude of the EGF-induced transcriptional response. In contrast, interfering with receptor endocytosis or ubiquitination to keep the EGFR at the cell surface stimulated increases in the abundance of many EGF-induced transcripts, similar to those induced by EGFR overexpression. We also found that the complete EGF transcriptional program was rapidly activated after ligand binding to the receptor. We conclude that the transcriptional response is elicited primarily by receptor molecules at the cell surface.
Collapse
Affiliation(s)
- Ben Brankatschk
- Department of Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection: Moving through complex and dynamic cell-membrane structures. Commun Integr Biol 2011; 4:398-408. [PMID: 21966556 DOI: 10.4161/cib.4.4.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/19/2023] Open
Abstract
Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist.
Collapse
Affiliation(s)
- Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Laura García-Expósito
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Isabel Puigdomènech
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - José-David Machado
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Julià Blanco
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| |
Collapse
|
23
|
Duan L, Raja SM, Chen G, Virmani S, Williams SH, Clubb RJ, Mukhopadhyay C, Rainey MA, Ying G, Dimri M, Chen J, Reddi AL, Naramura M, Band V, Band H. Negative regulation of EGFR-Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J Biol Chem 2011; 286:620-33. [PMID: 20940296 PMCID: PMC3013022 DOI: 10.1074/jbc.m110.188086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/04/2023] Open
Abstract
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.
Collapse
Affiliation(s)
- Lei Duan
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Srikumar M. Raja
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Gengsheng Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Sumeet Virmani
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | | | - Robert J. Clubb
- From the Eppley Institute for Cancer and Allied Diseases, and
| | | | - Mark A. Rainey
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Guoguang Ying
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Manjari Dimri
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Jing Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Alagarsamy L. Reddi
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Mayumi Naramura
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Vimla Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950 and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Hamid Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Pharmacology and Neuroscience, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| |
Collapse
|
24
|
Clark MR, Tanaka A, Powers SE, Veselits M. Receptors, subcellular compartments and the regulation of peripheral B cell responses: the illuminating state of anergy. Mol Immunol 2010; 48:1281-6. [PMID: 21144589 DOI: 10.1016/j.molimm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/13/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Collapse
Affiliation(s)
- Marcus R Clark
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is a group of multisubunit protein complexes conserved across phyla that are involved in a range of diverse cellular processes. ESCRT proteins regulate the biogenesis of MVBs (multivesicular bodies) and the sorting of ubiquitinated cargos on to ILVs (intraluminal vesicles) within these MVBs. These proteins are also recruited to sites of retroviral particle assembly, where they provide an activity that allows release of these retroviruses. More recently, these proteins have been shown to be recruited to the intracellular bridge linking daughter cells at the end of mitosis, where they act to ensure the separation of these cells through the process of cytokinesis. Although these cellular processes are diverse, they share a requirement for a topologically unique membrane-fission step for their completion. Current models suggest that the ESCRT machinery catalyses this membrane fission.
Collapse
|
26
|
Abstract
Autophagy, a conserved mechanism for lysosomal degradation of cytoplasmic components, has received much attention recently owing to its importance in tissue remodelling and innate immunity, and because it has been proposed that autophagy protects against cancer and neurodegenerative diseases. Although much of the molecular machinery that mediates autophagy has been identified, there are still aspects of this pathway that remain enigmatic. One open issue is the involvement of endosomal sorting complex required for transport (ESCRT) proteins, which were originally identified for their role in sorting ubiquitylated membrane proteins into multivesicular bodies. In this Opinion article, we discuss four possible models that could explain the observation that autophagosomes accumulate in ESCRT-depleted cells. We propose that the involvement of ESCRT proteins in the fusion of autophagosomes with the endolysosomal system is the most plausible model.
Collapse
Affiliation(s)
- Tor Erik Rusten
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
27
|
Abstract
Tissue patterning during development relies on cell communication by secreted proteins and receptors that engage in complex signaling crosstalk to induce distinct cell behaviors in a context-dependent fashion. Here I summarize recent insights into basic mechanisms that control the distribution and activities of transforming growth factor beta, Wnt, Hedgehog, and Notch proteins, by regulating trafficking decisions during secretion and endocytosis.
Collapse
Affiliation(s)
- Daniel B Constam
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH 1015 Lausanne, Switzerland USA.
| |
Collapse
|
28
|
Gruenberg J. Viruses and endosome membrane dynamics. Curr Opin Cell Biol 2009; 21:582-8. [PMID: 19443190 DOI: 10.1016/j.ceb.2009.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Cell surface molecules, ligands, and solutes can be endocytosed into animal cells via several pathways in addition to clathrin-mediated endocytosis, which all seem to lead to canonical endosomes. It seems that viruses can enter and infect cells through most of, if not all, endocytic routes, having evolved different, sometimes elaborate, strategies to (mis)use cellular machineries to their own benefit during infection. In this short review, I will discuss recent progress in understanding the pathways followed by animal viruses into cells, and how these studies are also providing novel insights into our understanding of some molecular mechanisms that control endocytic membrane transport.
Collapse
Affiliation(s)
- Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|