1
|
Chen L, Chen A, Zhang XD, Saenz Robles MT, Han HS, Xiao Y, Xiao G, Pipas JM, Weitz DA. Targeted whole-genome recovery of single viral species in a complex environmental sample. Proc Natl Acad Sci U S A 2024; 121:e2404727121. [PMID: 39052829 PMCID: PMC11295033 DOI: 10.1073/pnas.2404727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A unique gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. We demonstrate this method's efficacy by spiking two known viral genomes, Simian virus 40 (SV40, 5,243 bp) and Human Adenovirus 5 (HAd5, 35,938 bp), into a sewage sample with a final abundance in the droplets of around 0.1% and 0.015%, respectively. We achieve 100% recovery of the complete sequence of the spiked-in SV40 genome with uniform coverage distribution. For the larger HAd5 genome, we cover approximately 99.4% of its sequence. Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables single-genome whole-genome amplification and targeting characterizations of rare viral species and will facilitate our ability to access the mutational profile in single-virus genomes and contribute to an improved understanding of viral ecology.
Collapse
Affiliation(s)
- Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Anqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Xinge Diana Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | | | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Xie K, Lin B, Sun X, Zhu P, Liu C, Liu G, Cao X, Pan J, Qiu S, Yuan X, Liang M, Jiang J, Yuan L. Identification and classification of the genomes of novel microviruses in poultry slaughterhouse. Front Microbiol 2024; 15:1393153. [PMID: 38756731 PMCID: PMC11096546 DOI: 10.3389/fmicb.2024.1393153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Microviridae is a family of phages with circular ssDNA genomes and they are widely found in various environments and organisms. In this study, virome techniques were employed to explore potential members of Microviridae in a poultry slaughterhouse, leading to the identification of 98 novel and complete microvirus genomes. Using a similarity clustering network classification approach, these viruses were found to belong to at least 6 new subfamilies within Microviridae and 3 higher-level taxonomic units. Genome size, GC content and genome structure of these new taxa showed evident regularities, validating the rationality of our classification method. Our method can divide microviruses into about 45 additional detailed clusters, which may serve as a new standard for classifying Microviridae members. Furthermore, by addressing the scarcity of host information for microviruses, the current study significantly broadened their host range and discovered over 20 possible new hosts, including important pathogenic bacteria such as Helicobacter pylori and Vibrio cholerae, as well as different taxa demonstrated different host specificities. The findings of this study effectively expand the diversity of the Microviridae family, providing new insights for their classification and identification. Additionally, it offers a novel perspective for monitoring and controlling pathogenic microorganisms in poultry slaughterhouse environments.
Collapse
Affiliation(s)
- Keming Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Benfu Lin
- Huadu District Animal Health Supervision Institution, Guangzhou, Guangdong, China
| | - Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Peng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Jingqi Pan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Suiping Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoqi Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengshi Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingzhe Jiang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Xu C, Shao J. High-throughput omics technologies in inflammatory bowel disease. Clin Chim Acta 2024; 555:117828. [PMID: 38355001 DOI: 10.1016/j.cca.2024.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing intestinal disease. Elucidation of the pathogenic mechanisms of IBD requires high-throughput technologies (HTTs) to effectively obtain and analyze large amounts of data. Recently, HTTs have been widely used in IBD, including genomics, transcriptomics, proteomics, microbiomics, metabolomics and single-cell sequencing. When combined with endoscopy, the application of these technologies can provide an in-depth understanding on the alterations of intestinal microbe diversity and abundance, the abnormalities of signaling pathway-mediated immune responses and functionality, and the evaluation of therapeutic effects, improving the accuracy of early diagnosis and treatment of IBD. This review comprehensively summarizes the development and advancement of HTTs, and also highlights the challenges and future directions of these technologies in IBD research. Although HTTs have made striking breakthrough in IBD, more standardized methods and large-scale dataset processing are still needed to achieve the goal of personalized medicine.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
4
|
Dadzie FA, Beaudry MS, Deyanov A, Slanis H, Duong MQ, Turner R, Khan A, Arias CA, Kissinger JC, Glenn TC, de Paula Baptista R. "Evaluating the Benefits and Limits of Multiple Displacement Amplification with Whole-Genome Oxford Nanopore Sequencing". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579537. [PMID: 38405857 PMCID: PMC10888933 DOI: 10.1101/2024.02.09.579537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Multiple Displacement Amplification (MDA) outperforms conventional PCR in long fragment and whole genome amplification which makes it attractive to couple with long-read sequencing of samples with limited quantities of DNA to obtain improved genome assemblies. Here, we explore the efficacy and limits of MDA for genome sequence assembly using Oxford Nanopore Technologies (ONT) rapid library preparations and minION sequencing. We successfully generated almost complete genome sequences for all organisms examined, including Cryptosporidium meleagridis, Staphylococcus aureus, Enterococcus faecium, and Escherichia coli, with the ability to generate high-quality data from samples starting with only 0.025 ng of total DNA. Controlled sheared DNA samples exhibited a distinct pattern of size-increase after MDA, which may be associated with the amplification of long, low-abundance fragments present in the assay, as well as generating concatemeric sequences during amplification. To address concatemers, we developed a computational pipeline (CADECT: Concatemer Detection Tool) to identify and remove putative concatemeric sequences. This study highlights the efficacy of MDA in generating high-quality genome assemblies from limited amounts of input DNA. Also, the CADECT pipeline effectively mitigated the impact of concatemeric sequences, enabling the assembly of contiguous sequences even in cases where the input genomic DNA was degraded. These results have significant implications for the study of organisms that are challenging to culture in vitro, such as Cryptosporidium, and for expediting critical results in clinical settings with limited quantities of available genomic DNA.
Collapse
Affiliation(s)
- Fiifi A Dadzie
- Department of Genetics, University of Georgia, Athens, GA USA 30602
| | - Megan S Beaudry
- Department of Environmental Health Science, University of Georgia, Athens, GA USA 30602
| | - Alex Deyanov
- Center for Infectious Disease, Houston Methodist Research Institute, Houston, TX USA 77030
| | - Haley Slanis
- Center for Infectious Disease, Houston Methodist Research Institute, Houston, TX USA 77030
| | - Minh Q Duong
- Center for Infectious Disease, Houston Methodist Research Institute, Houston, TX USA 77030
| | - Randi Turner
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA USA
- USA Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Service, Animal Parasitic Disease Laboratory, Beltsville, MD USA
| | - Asis Khan
- USA Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Service, Animal Parasitic Disease Laboratory, Beltsville, MD USA
| | - Cesar A Arias
- Center for Infectious Disease, Houston Methodist Research Institute, Houston, TX USA 77030
- Division of Infectious Diseases and Department of Medicine, Houston Methodist Hospital, Houston, TX USA 77030
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jessica C Kissinger
- Department of Genetics, University of Georgia, Athens, GA USA 30602
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA USA
- Institute of Bioinformatics, University of Georgia, Athens, GA USA 30602
| | - Travis C Glenn
- Department of Genetics, University of Georgia, Athens, GA USA 30602
- Department of Environmental Health Science, University of Georgia, Athens, GA USA 30602
- Institute of Bioinformatics, University of Georgia, Athens, GA USA 30602
| | - Rodrigo de Paula Baptista
- Center for Infectious Disease, Houston Methodist Research Institute, Houston, TX USA 77030
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA USA
- Division of Infectious Diseases and Department of Medicine, Houston Methodist Hospital, Houston, TX USA 77030
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Institute of Bioinformatics, University of Georgia, Athens, GA USA 30602
| |
Collapse
|
5
|
Ospino MC, Engel K, Ruiz-Navas S, Binns WJ, Doxey AC, Neufeld JD. Evaluation of multiple displacement amplification for metagenomic analysis of low biomass samples. ISME COMMUNICATIONS 2024; 4:ycae024. [PMID: 38500705 PMCID: PMC10945365 DOI: 10.1093/ismeco/ycae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Combining multiple displacement amplification (MDA) with metagenomics enables the analysis of samples with extremely low DNA concentrations, making them suitable for high-throughput sequencing. Although amplification bias and nonspecific amplification have been reported from MDA-amplified samples, the impact of MDA on metagenomic datasets is not well understood. We compared three MDA methods (i.e. bulk MDA, emulsion MDA, and primase MDA) for metagenomic analysis of two DNA template concentrations (approx. 1 and 100 pg) derived from a microbial community standard "mock community" and two low biomass environmental samples (i.e. borehole fluid and groundwater). We assessed the impact of MDA on metagenome-based community composition, assembly quality, functional profiles, and binning. We found amplification bias against high GC content genomes but relatively low nonspecific amplification such as chimeras, artifacts, or contamination for all MDA methods. We observed MDA-associated representational bias for microbial community profiles, especially for low-input DNA and with the primase MDA method. Nevertheless, similar taxa were represented in MDA-amplified libraries to those of unamplified samples. The MDA libraries were highly fragmented, but similar functional profiles to the unamplified libraries were obtained for bulk MDA and emulsion MDA at higher DNA input and across these MDA libraries for the groundwater sample. Medium to low-quality bins were possible for the high input bulk MDA metagenomes for the most simple microbial communities, borehole fluid, and mock community. Although MDA-based amplification should be avoided, it can still reveal meaningful taxonomic and functional information from samples with extremely low DNA concentration where direct metagenomics is otherwise impossible.
Collapse
Affiliation(s)
| | - Katja Engel
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Santiago Ruiz-Navas
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - W Jeffrey Binns
- Safety and Technical Research, Nuclear Waste Management Organization of Canada, Toronto, Ontario M4T 2S3, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Chen L, Chen A, Zhang XD, Robles MST, Han HS, Xiao Y, Xiao G, Pipas JM, Weitz DA. High-sensitivity whole-genome recovery of single viral species in environmental samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566948. [PMID: 38014300 PMCID: PMC10680796 DOI: 10.1101/2023.11.13.566948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. This work presents a method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A novel gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. Validation experiments using a sewage sample spiked with two known viruses demonstrate the method's efficacy. We achieve 100% recovery of the spiked-in SV40 (Simian virus 40, 5243bp) genome sequence with uniform coverage distribution, and approximately 99.4% for the larger HAd5 genome (Human Adenovirus 5, 35938bp). Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables targeted characterizations of rare viral species and whole-genome amplification of single genomes for accessing the mutational profile in single virus genomes, contributing to an improved understanding of viral ecology.
Collapse
Affiliation(s)
- Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Anqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinge Diana Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Maria Saenz T Robles
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Sollier E, Kuipers J, Takahashi K, Beerenwinkel N, Jahn K. COMPASS: joint copy number and mutation phylogeny reconstruction from amplicon single-cell sequencing data. Nat Commun 2023; 14:4921. [PMID: 37582954 PMCID: PMC10427627 DOI: 10.1038/s41467-023-40378-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Reconstructing the history of somatic DNA alterations can help understand the evolution of a tumor and predict its resistance to treatment. Single-cell DNA sequencing (scDNAseq) can be used to investigate clonal heterogeneity and to inform phylogeny reconstruction. However, most existing phylogenetic methods for scDNAseq data are designed either for single nucleotide variants (SNVs) or for large copy number alterations (CNAs), or are not applicable to targeted sequencing. Here, we develop COMPASS, a computational method for inferring the joint phylogeny of SNVs and CNAs from targeted scDNAseq data. We evaluate COMPASS on simulated data and apply it to several datasets including a cohort of 123 patients with acute myeloid leukemia. COMPASS detected clonal CNAs that could be orthogonally validated with bulk data, in addition to subclonal ones that require single-cell resolution, some of which point toward convergent evolution.
Collapse
Affiliation(s)
- Etienne Sollier
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Katharina Jahn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Luo T, Li L, Wang S, Cheng N. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Int J Mol Sci 2023; 24:12247. [PMID: 37569623 PMCID: PMC10418336 DOI: 10.3390/ijms241512247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Genetically modified (GM) maize is one of the earliest GM crops to have achieved large-scale commercial cultivation globally, and it is of great significance to excel in the development and implementation of safety policy regarding GM, and in its technical oversight. This article describes the general situation regarding genetically modified maize, including its varieties, applications, relevant laws and regulations, and so on. From a technical point of view, we summarize and critically analyze the existing methods for detecting nucleic acid levels in genetically modified maize. The nucleic acid extraction technology used for maize is explained, and the introduction of traditional detection techniques, which cover variable-temperature and isothermal amplification detection technology and gene chip technology, applications in maize are described. Moreover, new technologies are proposed, with special attention paid to nucleic acid detection methods using sensors. Finally, we review the current limitations and challenges of GM maize nucleic acid testing and share our vision for the future direction of this field.
Collapse
Affiliation(s)
- Tongyun Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Lujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Shirui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Nan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Megremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, Finotto S, Jartti T, Tapinos A, Vuorinen T, Andreakos E, Robertson DL, Papadopoulos NG. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep 2023; 13:8319. [PMID: 37221274 PMCID: PMC10205716 DOI: 10.1038/s41598-023-34730-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.
Collapse
Affiliation(s)
- Spyridon Megremis
- University of Manchester, Manchester, UK.
- University of Leicester, Leicester, UK.
| | | | | | | | | | | | - Susetta Finotto
- Friedrich Alexander University Erlangen-Nurnberg, Erlangen, Germany
| | - Tuomas Jartti
- University of Turku, Turku, Finland
- University of Oulu, Oulu, Finland
| | | | | | | | | | - Nikolaos G Papadopoulos
- University of Manchester, Manchester, UK.
- National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Hunt JMT, Samson CA, Rand AD, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet 2023; 142:705-720. [PMID: 37093294 PMCID: PMC10182114 DOI: 10.1007/s00439-023-02561-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) gene-editing system (CRISPR-Cas) is a valuable tool for fundamental and applied research applications. Significant improvements in editing efficacy have advanced genome editing strategies into phase 3 human clinical trials. However, recent studies suggest that our understanding of editing outcomes has lagged behind the developments made in generating the edits themselves. While many researchers have analyzed on- and off-target events through the lens of small insertions or deletions at predicted sites, screens for larger structural variants (SVs) and chromosomal abnormalities are not routinely performed. Full and comprehensive validation of on- and off-target effects is required to ensure reproducibility and to accurately assess the safety of future editing applications. Here we review SVs associated with CRISPR-editing in cells of human origin and highlight the methods used to detect and avoid them.
Collapse
Affiliation(s)
| | | | - Alex du Rand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics. Int J Mol Sci 2023; 24:ijms24054270. [PMID: 36901710 PMCID: PMC10002425 DOI: 10.3390/ijms24054270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial single-cell genomics (SCG) provides access to the genomes of rare and uncultured microorganisms and is a complementary method to metagenomics. Due to the femtogram-levels of DNA in a single microbial cell, sequencing the genome requires whole genome amplification (WGA) as a preliminary step. However, the most common WGA method, multiple displacement amplification (MDA), is known to be costly and biased against specific genomic regions, preventing high-throughput applications and resulting in uneven genome coverage. Thus, obtaining high-quality genomes from many taxa, especially minority members of microbial communities, becomes difficult. Here, we present a volume reduction approach that significantly reduces costs while improving genome coverage and uniformity of DNA amplification products in standard 384-well plates. Our results demonstrate that further volume reduction in specialized and complex setups (e.g., microfluidic chips) is likely unnecessary to obtain higher-quality microbial genomes. This volume reduction method makes SCG more feasible for future studies, thus helping to broaden our knowledge on the diversity and function of understudied and uncharacterized microorganisms in the environment.
Collapse
|
12
|
Cheng C, Fei Z, Xiao P. Methods to improve the accuracy of next-generation sequencing. Front Bioeng Biotechnol 2023; 11:982111. [PMID: 36741756 PMCID: PMC9895957 DOI: 10.3389/fbioe.2023.982111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Next-generation sequencing (NGS) is present in all fields of life science, which has greatly promoted the development of basic research while being gradually applied in clinical diagnosis. However, the cost and throughput advantages of next-generation sequencing are offset by large tradeoffs with respect to read length and accuracy. Specifically, its high error rate makes it extremely difficult to detect SNPs or low-abundance mutations, limiting its clinical applications, such as pharmacogenomics studies primarily based on SNP and early clinical diagnosis primarily based on low abundance mutations. Currently, Sanger sequencing is still considered to be the gold standard due to its high accuracy, so the results of next-generation sequencing require verification by Sanger sequencing in clinical practice. In order to maintain high quality next-generation sequencing data, a variety of improvements at the levels of template preparation, sequencing strategy and data processing have been developed. This study summarized the general procedures of next-generation sequencing platforms, highlighting the improvements involved in eliminating errors at each step. Furthermore, the challenges and future development of next-generation sequencing in clinical application was discussed.
Collapse
|
13
|
Amemiya K, Hirotsu Y, Mochizuki H, Higuchi R, Nakagomi T, Goto T, Oyama T, Kondo T, Omata M. Deep targeted sequencing of cytological tumor cells using whole genome amplification. Cancer Cytopathol 2023; 131:58-68. [PMID: 36219530 DOI: 10.1002/cncy.22653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Genomic profiling in lung cancer is essential for precision medicine. Cytological specimens provide an alternative to formalin-fixed paraffin-embedded (FFPE) samples for comprehensive genomic analysis. However, this approach remains challenging when a limited number of tumor cells are available. We applied whole genome amplification (WGA) to cytology specimens to overcome this limitation. METHODS Using a lung cancer panel targeting 58 genes, we performed next-generation sequencing of whole genome-amplified DNA extracted from cytological specimens containing 10-20 tumor cells (cyto-WGA) and DNA from corresponding FFPE tumor tissue. We compared sequencing data from cyto-WGA and FFPE samples to examine the detection accuracy of copy number variations and oncogenic and drug-matched variants. RESULTS The DNA quality and quantity from cyto-WGA were higher than those from FFPE samples (p < .0005 and p < .05, respectively). Sequencing metrics of cyto-WGA and FFPE tissues showed no difference in the number of mapped reads and mean coverage depth, but there were significant differences in the on-target rate (p < .05) and uniformity (p < .0005). Copy number variations in cyto-WGA samples (n = 211) were higher than in FFPE samples (n = 9) (p < .0001). Fourty nine oncogenic variants were detected in cyto-WGA and 39 in FFPE. Of these variants, 34 (63%) were present in both samples. In addition, all 16 drug-matched variants were detected in FFPE and cyto-WGA samples with 100% concordance. CONCLUSION Cyto-WGA can be a feasible and alternative method to detect oncogenic and drug-matched variants.
Collapse
Affiliation(s)
- Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan.,Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, Kofu, Yamanashi, Japan.,Department of Pathology, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Rumi Higuchi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Toshio Oyama
- Pathology Division, Laboratory Department, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Pathology, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Kofu, Yamanashi, Japan.,The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Ding L, Li X, Zhu H, Luo H. Single-Cell Sequencing in Rheumatic Diseases: New Insights from the Perspective of the Cell Type. Aging Dis 2022; 13:1633-1651. [PMID: 36465169 PMCID: PMC9662270 DOI: 10.14336/ad.2022.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/02/2023] Open
Abstract
Rheumatic diseases are a group of highly heterogeneous autoimmune and inflammatory disorders involving multiple systems. Dysfunction of immune and non-immune cells participates in the complex pathogenesis of rheumatic diseases. Therefore, studies on the abnormal activation of cell subtypes provided a specific basis for understanding the pathogenesis of rheumatic diseases, which promoted the accuracy of disease diagnosis and the effectiveness of various treatments. However, there was still a far way to achieve individualized precision medicine as the result of heterogeneity among cell subtypes. To obtain the biological information of cell subtypes, single-cell sequencing, a cutting-edge technology, is used for analyzing their genomes, transcriptomes, epigenetics, and proteomics. Novel results identified multiple cell subtypes in tissues of patients with rheumatic diseases by single-cell sequencing. Consequently, we provide an overview of recent applications of single-cell sequencing in rheumatic disease and cross-tissue to understand the cell subtypes and functions.
Collapse
Affiliation(s)
- Liqing Ding
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiaojing Li
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Honglin Zhu
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Hui Luo
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
15
|
Zhang X, Chen J, Jiang P, Xu H, Zhang Q, Zhang H, Han X, Chen Z. A Phi29-based unbiased exponential amplification and genotyping approach improves pathogen detection in tick samples. Front Vet Sci 2022; 9:1025911. [DOI: 10.3389/fvets.2022.1025911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Ticks are vectors for many infectious diseases, such as spotted fever group (SFG) rickettsioses and borreliosis, and are valuable in the study of pathogen ecology. Ticks have several growth stages that vary considerably in size; therefore, in most cases, DNA extracted from ticks is insufficient for subsequent studies, particularly for multiple pathogen screening and genotyping. Unbiased amplification of DNA from tick samples before analysis is a major requirement for subsequent ecological surveys and other studies. Phi29 DNA polymerase, an enzyme that exhibits strand displacement activity, can exponentially amplify DNA randomly, generating large quantities of DNA. In the present study, we developed a Phi29-based unbiased exponential amplification (PEA) assay to obtain sufficient tick DNA for genetic analysis. By using tick-borne pathogen detection and genotyping as a model, we tested and evaluated the feasibility of the assay. DNA was extracted from single ticks and subjected to PEA. The results showed that tick DNA could be amplified up to 105 fold. The amplified products were successfully used for pathogen screening and genotyping. Rickettsia was successfully detected and genotyped in samples with amplified DNA from single ticks. Furthermore, we identified a new genotype of Rickettsia from ticks collected from Dandong city, Liaoning province, Northeast China. This PEA assay is universal and can be extended to other applications where the quantity of DNA is greatly limited.
Collapse
|
16
|
Kuipers J, Singer J, Beerenwinkel N. Single-cell mutation calling and phylogenetic tree reconstruction with loss and recurrence. Bioinformatics 2022; 38:4713-4719. [PMID: 36000873 PMCID: PMC9563700 DOI: 10.1093/bioinformatics/btac577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Motivation Tumours evolve as heterogeneous populations of cells, which may be distinguished by different genomic aberrations. The resulting intra-tumour heterogeneity plays an important role in cancer patient relapse and treatment failure, so that obtaining a clear understanding of each patient’s tumour composition and evolutionary history is key for personalized therapies. Single-cell sequencing (SCS) now provides the possibility to resolve tumour heterogeneity at the highest resolution of individual tumour cells, but brings with it challenges related to the particular noise profiles of the sequencing protocols as well as the complexity of the underlying evolutionary process. Results By modelling the noise processes and allowing mutations to be lost or to reoccur during tumour evolution, we present a method to jointly call mutations in each cell, reconstruct the phylogenetic relationship between cells, and determine the locations of mutational losses and recurrences. Our Bayesian approach allows us to accurately call mutations as well as to quantify our certainty in such predictions. We show the advantages of allowing mutational loss or recurrence with simulated data and present its application to tumour SCS data. Availability and implementation SCIΦN is available at https://github.com/cbg-ethz/SCIPhIN. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jochen Singer
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
17
|
Wang G, Li S, Yan Q, Guo R, Zhang Y, Chen F, Tian X, Lv Q, Jin H, Ma X, Ma Y. Optimization and evaluation of viral metagenomic amplification and sequencing procedures toward a genome-level resolution of the human fecal DNA virome. J Adv Res 2022:S2090-1232(22)00192-8. [PMID: 35995413 DOI: 10.1016/j.jare.2022.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Viruses in the human gut have been linked to health and disease. Deciphering the gut virome is dependent on metagenomic sequencing of the virus-like particles (VLPs) purified from the fecal specimens. A major limitation of conventional viral metagenomic sequencing is the low recoverability of viral genomes from the metagenomic dataset. OBJECTIVES To develop an optimal method for viral amplification and metagenomic sequencing for maximizing the recovery of viral genomes. METHODS We performed parallel virus enrichment and DNA extraction to generate ∼ 30 viral DNA samples from each of 5 fresh fecal specimens and conducted the experiments including 1) optimizing the cycle number for high-fidelity enzyme-based PCR amplification, 2) evaluating the reproducibility of the optimally whole viral metagenomic experimental process, 3) evaluating the reliability of multiple displacement amplification (MDA), 4) testing the capability of long-read sequencing for improving viral metagenomic assembly, and 5) comparing the differences between viral metagenomic and bulk metagenomic approaches. RESULTS Our results revealed that the optimal cycle number for PCR amplification is 15. We verified the reliability of MDA and the effectiveness of long-read sequencing. Based on our optimized results, we generated 151 high-quality viruses using the dataset combined from short-read and long-read sequencing. Genomic analysis of these viruses found that most (60.3%) of them were previously unknown and showed a remarkable diversity of viral functions, especially the existence of 206 viral auxiliary metabolic genes. Finally, we uncovered significant differences in the efficiency and coverage of viral identification between viral metagenomic and bulk metagenomic approaches. CONCLUSIONS Our study demonstrates the potential of optimized experiment and sequencing strategies in uncovering viral genomes from fecal specimens, which will facilitate future research about the genome-level characterization of complex viral communities.
Collapse
Affiliation(s)
- Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan 430076, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan 430076, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Fang Chen
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan 430076, China
| | - Hao Jin
- Puensum Genetech Institute, Wuhan 430076, China
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
18
|
Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, Chen H, Li S. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm (Beijing) 2022; 3:e116. [PMID: 35281794 PMCID: PMC8906466 DOI: 10.1002/mco2.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Whole genome amplification (WGA) is a technology for non-selective amplification of the whole genome sequence, first appearing in 1992. Its primary purpose is to amplify and reflect the whole genome of trace tissues and single cells without sequence bias and to provide sufficient DNA template for subsequent multigene and multilocus analysis, along with comprehensive genome research. WGA provides a method to obtain a large amount of genetic information from a small amount of DNA and provides a valuable tool for preserving limited samples in molecular biology. WGA technology is especially suitable for forensic identification and genetic disease research, along with new technologies such as next-generation sequencing (NGS). In addition, WGA is also widely used in single-cell sequencing. Due to the small amount of DNA in a single cell, it is often unable to meet the amount of samples needed for sequencing, so WGA is generally used to achieve the amplification of trace samples. This paper reviews WGA methods based on different principles, summarizes both amplification principle and amplification quality, and discusses the application prospects and challenges of WGA technology in molecular diagnosis and medicine.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yapeng Liu
- School of Early‐Childhood Education, Nanjing Xiaozhuang UniversityNanjingChina
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Xiangming Zheng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| |
Collapse
|
19
|
Xu X, Song R, Hu K, Li Y, Jin H, Chen B, Song W, Zhang Y, Xu J, Sun Y. Multidisciplinary management for Peutz-Jeghers syndrome and prevention of vertical transmission to offspring using preimplantation genetic testing. Orphanet J Rare Dis 2022; 17:64. [PMID: 35189935 PMCID: PMC8862355 DOI: 10.1186/s13023-022-02221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Peutz Jeghers syndrome (PJS) is an autosomal dominant genetic disorder caused by STK11 mutation with a predisposition to gastrointestinal polyposis and cancer. PJS patients suffer poor quality of life and are highly concerned about whether deleterious mutations transmit to their offspring. Therefore, this study aimed to propose feasible clinical management and provide effective preimplantation genetic testing for monogenic defect (PGT-M) strategies to protect offspring from inheriting the disease. METHODS A hospital-based clinical retrospective analysis reviewing the clinical characteristics and fertility aspects was first conducted on 51 PJS patients at the First Affiliated Hospital of Zhengzhou University between January 2016 and March 2021. Among the 51 patients, the PGT-M strategy was further carried out in 4 couples, which started with a biopsy of the trophectoderm cells of embryos and whole genome amplification using multiple displacement amplification. Thereafter, single nucleotide polymorphism linkage analyses based on karyomapping were performed with copy number variations of the embryos identified simultaneously. Finally, prenatal diagnosis was used to verify the validity of the PGT-M results. RESULTS A comprehensive management flowchart adopted by the multidisciplinary team model was formulated mainly focusing on clinical genetic and gastrointestinal aspects. Under the guidelines of this management, 32 embryos from 4 PJS pedigrees were diagnosed and 2 couples successfully conceived healthy babies free of the STK11 pathogenic mutation. CONCLUSIONS Our comprehensive management could help affected families avoid having children with PJS through preimplantation genetic testing and provide meaningful guidance for multidisciplinary clinical practice on PJS.
Collapse
Affiliation(s)
- Xiqiao Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifeng Song
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyue Hu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Li
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haixia Jin
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Chen
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenyan Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yile Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Lawrence D, Campbell DE, Schriefer LA, Rodgers R, Walker FC, Turkin M, Droit L, Parkes M, Handley SA, Baldridge MT. Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes 2022; 14:2029673. [PMID: 35130125 PMCID: PMC8824198 DOI: 10.1080/19490976.2022.2029673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
As our understanding of the importance of the human microbiota in health and disease grows, so does our need to carefully resolve and delineate its genomic content. 16S rRNA gene-based analyses yield important insights into taxonomic composition, and metagenomics-based approaches reveal the functional potential of microbial communities. However, these methods generally fail to directly link genetic features, including bacterial genes and mobile genetic elements, to each other and to their source bacterial genomes. Further, they are inadequate to capture the microdiversity present within a genus, species, or strain of bacteria within these complex communities. Here, we present a method utilizing fluorescence-activated cell sorting for isolation of single bacterial cells, amplifying their genomes, screening them by 16S rRNA gene analysis, and selecting cells for genomic sequencing. We apply this method to both a cultured laboratory strain of Escherichia coli and human stool samples. Our analyses reveal the capacity of this method to provide nearly complete coverage of bacterial genomes when applied to isolates and partial genomes of bacterial species recovered from complex communities. Additionally, this method permits exploration and comparison of conserved and variable genomic features between individual cells. We generate assemblies of novel genomes within the Ruminococcaceae family and the Holdemanella genus by combining several 16S rRNA gene-matched single cells, and report novel prophages and conjugative transposons for both Bifidobacterium and Ruminococcaceae. Thus, we demonstrate an approach for flow cytometric separation and sequencing of single bacterial cells from the human microbiota, which yields a variety of critical insights into both the functional potential of individual microbes and the variation among those microbes. This method definitively links a variety of conserved and mobile genomic features, and can be extended to further resolve diverse elements present in the human microbiota.
Collapse
Affiliation(s)
- Dylan Lawrence
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest C. Walker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa Turkin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke’s Hospital and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Xu J, Liao K, Yang X, Wu C, Wu W, Han S. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors. Mol Cancer 2021; 20:104. [PMID: 34412644 PMCID: PMC8375060 DOI: 10.1186/s12943-021-01392-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.,Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xi Yang
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China
| | - Chengfeng Wu
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, 313000, Huzhou, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.
| |
Collapse
|
22
|
Chen L, Sun J, Jin P, Hoffmann AA, Bing X, Zhao D, Xue X, Hong X. Population genomic data in spider mites point to a role for local adaptation in shaping range shifts. Evol Appl 2020; 13:2821-2835. [PMID: 33294025 PMCID: PMC7691463 DOI: 10.1111/eva.13086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 01/25/2023] Open
Abstract
Local adaptation is particularly likely in invertebrate pests that typically have short generation times and large population sizes, but there are few studies on pest species investigating local adaptation and separating this process from contemporaneous and historical gene flow. Here, we use a population genomic approach to investigate evolutionary processes in the two most dominant spider mites in China, Tetranychus truncatus Ehara and Tetranychus pueraricola Ehara et Gotoh, which have wide distributions, short generation times, and large population sizes. We generated genome resequencing of 246 spider mites mostly from China, as well as Japan and Canada at a combined total depth of 3,133×. Based on demographic reconstruction, we found that both mite species likely originated from refugia in southwestern China and then spread to other regions, with the dominant T. truncatus spreading ~3,000 years later than T. pueraricola. Estimated changes in population sizes of the pests matched known periods of glaciation and reinforce the recent expansion of the dominant spider mites. T. truncatus showed a greater extent of local adaptation with more genes (76 vs. 17) associated with precipitation, including candidates involved in regulation of homeostasis of water and ions, signal transduction, and motor skills. In both species, many genes (135 in T. truncatus and 95 in T. pueraricola) also showed signatures of selection related to elevation, including G-protein-coupled receptors, cytochrome P450s, and ABC-transporters. Our results point to historical expansion processes and climatic adaptation in these pests which could have contributed to their growing importance, particularly in the case of T. truncatus.
Collapse
Affiliation(s)
- Lei Chen
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Jing‐Tao Sun
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Peng‐Yu Jin
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Ary A. Hoffmann
- Bio21 InstituteSchool of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Xiao‐Li Bing
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Dian‐Shu Zhao
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Xiao‐Feng Xue
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Xiao‐Yue Hong
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
23
|
Microbial single-cell omics: the crux of the matter. Appl Microbiol Biotechnol 2020; 104:8209-8220. [PMID: 32845367 PMCID: PMC7471194 DOI: 10.1007/s00253-020-10844-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
Abstract Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies. Key points • Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways. • Disadvantages of metagenome-assembled genomes are overcome by single-cell omics. • Functional analysis of single cells explores the heterogeneity of gene expression. • Technical challenges still limit this field, thus prompting new method developments.
Collapse
|
24
|
Dam HT, Vollmers J, Sobol MS, Cabezas A, Kaster AK. Targeted Cell Sorting Combined With Single Cell Genomics Captures Low Abundant Microbial Dark Matter With Higher Sensitivity Than Metagenomics. Front Microbiol 2020; 11:1377. [PMID: 32793124 PMCID: PMC7387413 DOI: 10.3389/fmicb.2020.01377] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Rare members of environmental microbial communities are often overlooked and unexplored, primarily due to the lack of techniques capable of acquiring their genomes. Chloroflexi belong to one of the most understudied phyla, even though many of its members are ubiquitous in the environment and some play important roles in biochemical cycles or biotechnological applications. We here used a targeted cell-sorting approach, which enables the selection of specific taxa by fluorescent labeling and is compatible with subsequent single-cell genomics, to enrich for rare Chloroflexi species from a wastewater-treatment plant and obtain their genomes. The combined workflow was able to retrieve a substantially higher number of novel Chloroflexi draft genomes with much greater phylogenetical diversity when compared to a metagenomics approach from the same sample. The method offers an opportunity to access genetic information from rare biosphere members which would have otherwise stayed hidden as microbial dark matter and can therefore serve as an essential complement to cultivation-based, metagenomics, and microbial community-focused research approaches.
Collapse
Affiliation(s)
- Hang T Dam
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Leibniz Institute DSMZ, Brunswick, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Leibniz Institute DSMZ, Brunswick, Germany
| | - Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Angela Cabezas
- Instituto Tecnológico Regional Centro Sur, Universidad Tecnológica, Durazno, Uruguay
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
25
|
Virus and Potential Host Microbes from Viral-Enriched Metagenomic Characterization in the High-Altitude Wetland, Salar de Huasco, Chile. Microorganisms 2020; 8:microorganisms8071077. [PMID: 32698305 PMCID: PMC7409041 DOI: 10.3390/microorganisms8071077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Salar de Huasco is a wetland in the Andes mountains, located 3800 m above sea level at the Chilean Altiplano. Here we present a study aimed at characterizing the viral fraction and the microbial communities through metagenomic analysis. Two ponds (H0 and H3) were examined in November 2015. Water samples were processed using tangential flow filtration to obtain metagenomes from which the DNA fraction of the sample was amplified and sequenced (HiSeq system, Illumina). The ponds were characterized by freshwater and the viral-like particles to picoplankton ratio was 12.1 and 2.3 for H0 and H3, respectively. A great number of unassigned viral sequences were found in H0 (55.8%) and H3 (32.8%), followed by the family Fuselloviridae 20.8% (H0) and other less relatively abundant groups such as Microviridae (H0, 11.7% and H3, 3.3%) and Inoviridae (H3, 2.7%). The dominant viral sequences in both metagenomes belong to the order Caudovirales, with Siphoviridae being the most important family, especially in H3 (32.7%). The most important bacteria phyla were Proteobacteria, Bacteroidetes and Firmicutes in both sites, followed by Cyanobacteria (H0). Genes encoding lysogenic and lytic enzymes (i.e., recombinases and integrases) were found in H0 and H3, indicating a potential for active viral replication at the time of sampling; this was supported by the presence of viral metabolic auxiliary genes at both sites (e.g., cysteine hydrolase). In total, our study indicates a great novelty of viral groups, differences in taxonomic diversity and replication pathways between sites, which contribute to a better understanding of how viruses balance the cycling of energy and matter in this extreme environment.
Collapse
|
26
|
Loiko MR, Varela APM, Tochetto C, Lopes BC, Scheffer CM, Morel AP, Vidaletti MR, Lima DA, Cerva C, Mayer FQ, Roehe PM. Novel Gyrovirus genomes recovered from free-living pigeons in Southern Brazil. Virology 2020; 548:132-135. [PMID: 32838934 DOI: 10.1016/j.virol.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023]
Abstract
Wild birds carry a number of infectious agents, some of which may have pathogenic potential for the host and others species, including humans. Domestic pigeons (Columba livia) are important targets of study since these increasingly cohabit urban spaces, being possible spillover sources of pathogens to humans. In the present study, two genomes (PiGyV_Tq/RS/Br and PiGyV_RG/RS/Br), representative of Gyrovirus genus, family Anelloviridae, were detected in sera of free-living pigeons collected in Southern Brazil. The genomes exhibit less than 50% identity to previously described members of Gyrovirus genus, suggesting that they constitute a new viral species circulating in pigeons, to which the name "pigeon gyrovirus (PiGyV)" is proposed. The current study characterizes these two PiGyV genomes which, to date, are the first gyrovirus species identified in domestic pigeons.
Collapse
Affiliation(s)
- M R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil; Feevale - Universidade Feevale, RS-239, 2755, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - A P M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - B C Lopes
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C M Scheffer
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - A P Morel
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil; Falcoaria e Consultoria Ambiental - HAYABUSA, São Francisco de Paula, RS, Brazil
| | - M R Vidaletti
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - D A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - F Q Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil.
| | - P M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Shi D, Xu J, Niu W, Liu Y, Shi H, Yao G, Shi S, Li G, Song W, Jin H, Sun Y. Live births following preimplantation genetic testing for dynamic mutation diseases by karyomapping: a report of three cases. J Assist Reprod Genet 2020; 37:539-548. [PMID: 32124191 DOI: 10.1007/s10815-020-01718-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The preimplantation genetic testing for monogenic defects (PGT-M) is a beneficial strategy for the patients suffering from a Mendelian disease, which could protect their offspring from inheriting the disease. The purpose of this study is to report the effectiveness of PGT-M based on karyomapping for three cases of dynamic mutation diseases with trinucleotide repeat expansion. METHODS PGT-M was carried out on three couples, whose family members were diagnosed with Huntington's disease or spinocerebellar ataxias 2 or 12. The whole genome amplification was obtained using the multiple displacement amplification (MDA) method. Then, karyomapping was performed to detect the allele that is carrying the trinucleotide repeat expansion using single nucleotide polymorphism (SNP) linkage analyses, and the copy number variations (CNVs) of the embryos were also identified. Prenatal diagnosis was performed to validate the accuracy of PGT-M. RESULTS PGT-M was successfully performed on the three couples, and they accepted the transfers of euploid blastocysts without the relevant pathogenic allele. The clinical pregnancies were acquired and the prenatal diagnosis of the three families confirmed the effectiveness of karyomapping. The three born babies were healthy and free of the pathogenic alleles HTT, ATXN2, or PPP2R2B corresponding to Huntington's disease, spinocerebellar ataxias 2 or 12, respectively. CONCLUSION This study shows that karyomapping is a highly powerful and efficient approach for dynamic mutation detection in preimplantation embryos. In this work, we first report the birth of healthy babies that are free of the pathogenic gene for dynamic mutation diseases in patients receiving PGT-M by karyomapping.
Collapse
Affiliation(s)
- Dayuan Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senlin Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
28
|
Zhang F, Ding Y, Zhu C, Zhou X, Orr MC, Scheu S, Luan Y. Phylogenomics from low‐coverage whole‐genome sequencing. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Zhang
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural University Nanjing P. R. China
- Key Laboratory of the Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of Sciences Beijing P. R. China
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of Göttingen Göttingen Germany
| | - Yinhuan Ding
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural University Nanjing P. R. China
| | - Chao‐Dong Zhu
- Key Laboratory of the Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of Sciences Beijing P. R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences Beijing P. R. China
| | - Xin Zhou
- Department of EntomologyChina Agricultural University Beijing P. R. China
| | - Michael C. Orr
- Key Laboratory of the Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of Sciences Beijing P. R. China
| | - Stefan Scheu
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of Göttingen Göttingen Germany
| | - Yun‐Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied TechnologyInstitute of Insect Science and TechnologySchool of Life SciencesSouth China Normal University Guangzhou P. R. China
| |
Collapse
|
29
|
Nowicka-Krawczyk P, Mühlsteinová R, Hauer T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci Rep 2019; 9:694. [PMID: 30679537 PMCID: PMC6345927 DOI: 10.1038/s41598-018-36831-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/27/2018] [Indexed: 12/05/2022] Open
Abstract
The genus Arthrospira has a long history of being used as a food source in different parts of the world. Its mass cultivation for production of food supplements and additives has contributed to a more detailed study of several species of this genus. In contrast, the type species of the genus (A. jenneri), has scarcely been studied. This work adopts a polyphasic approach to thoroughly investigate environmental samples of A. jenneri, whose persistent bloom was noticed in an urban reservoir in Poland, Central Europe. The obtained results were compared with strains designated as A. platensis, A. maxima, and A. fusiformis from several culture collections and other Arthrospira records from GenBank. The comparison has shown that A. jenneri differs from popular species that are massively utilized commercially with regard to its cell morphology, ultrastructure and ecology, as well as its 16S rRNA gene sequence. Based on our findings, we propose the establishment of a new genus, Limnospira, which currently encompasses three species including the massively produced L. (A.) fusiformis and L. (A.) maxima with the type species Limnospira fusiformis.
Collapse
Affiliation(s)
- Paulina Nowicka-Krawczyk
- University of Łódź, Faculty of Biology and Environmental Protection, Laboratory of Algology and Mycology, Poland, Banacha 12/16 Str, 90-237, Łódź, Poland
| | - Radka Mühlsteinová
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Tomáš Hauer
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
30
|
Höpke J, Brewer G, Dodsworth S, Ortiz E, Albach D. DNA extraction from old herbarium material of Veronica subgen. Pseudolysimachium (Plantaginaceae). UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj75.06.564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Single-cell mutation identification via phylogenetic inference. Nat Commun 2018; 9:5144. [PMID: 30514897 PMCID: PMC6279798 DOI: 10.1038/s41467-018-07627-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Reconstructing the evolution of tumors is a key aspect towards the identification of appropriate cancer therapies. The task is challenging because tumors evolve as heterogeneous cell populations. Single-cell sequencing holds the promise of resolving the heterogeneity of tumors; however, it has its own challenges including elevated error rates, allelic drop-out, and uneven coverage. Here, we develop a new approach to mutation detection in individual tumor cells by leveraging the evolutionary relationship among cells. Our method, called SCIΦ, jointly calls mutations in individual cells and estimates the tumor phylogeny among these cells. Employing a Markov Chain Monte Carlo scheme enables us to reliably call mutations in each single cell even in experiments with high drop-out rates and missing data. We show that SCIΦ outperforms existing methods on simulated data and applied it to different real-world datasets, namely a whole exome breast cancer as well as a panel acute lymphoblastic leukemia dataset. Cross-cell heterogeneity of genotypes can be revealed by analyzing single-cell sequencing data. Here the authors develop a tool for single-cell variant calling via phylogenetic inference, and use it to analyze cancer genomics datasets.
Collapse
|
32
|
Cruaud A, Groussier G, Genson G, Sauné L, Polaszek A, Rasplus JY. Pushing the limits of whole genome amplification: successful sequencing of RADseq library from a single microhymenopteran (Chalcidoidea, Trichogramma). PeerJ 2018; 6:e5640. [PMID: 30356952 PMCID: PMC6195110 DOI: 10.7717/peerj.5640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
A major obstacle to high-throughput genotyping of microhymenoptera is their small size. As species are difficult to discriminate, and because complexes may exist, the sequencing of a pool of specimens is hazardous. Thus, one should be able to sequence pangenomic markers (e.g., RADtags) from a single specimen. To date, whole genome amplification (WGA) prior to library construction is still a necessity as at most 10 ng of DNA can be obtained from single specimens (sometimes less). However, this amount of DNA is not compatible with manufacturer's requirements for commercial kits. Here we test the accuracy of the GenomiPhi kit V2 on Trichogramma wasps by comparing RAD libraries obtained from the WGA of single specimens (F0 and F1 generation, about1 ng input DNA for the WGA (0.17-2.9 ng)) and a biological amplification of genomic material (the pool of the progeny of the F1 generation). Globally, we found that 99% of the examined loci (up to 48,189 for one of the crosses, 109 bp each) were compatible with the mode of reproduction of the studied model (haplodiploidy) and Mendelian inheritance of alleles. The remaining 1% (0.01% of the analysed nucleotides) could represent WGA bias or other experimental/analytical bias. This study shows that the multiple displacement amplification method on which the GenomiPhi kit relies, could also be of great help for the high-throughput genotyping of microhymenoptera used for biological control, or other organisms from which only a very small amount of DNA can be extracted, such as human disease vectors (e.g., sandflies, fleas, ticks etc.).
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Géraldine Groussier
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Guenaëlle Genson
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Andrew Polaszek
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
33
|
Mincarelli L, Lister A, Lipscombe J, Macaulay IC. Defining Cell Identity with Single-Cell Omics. Proteomics 2018; 18:e1700312. [PMID: 29644800 PMCID: PMC6175476 DOI: 10.1002/pmic.201700312] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/23/2018] [Indexed: 01/17/2023]
Abstract
Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.
Collapse
Affiliation(s)
- Laura Mincarelli
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Ashleigh Lister
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - James Lipscombe
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Iain C. Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| |
Collapse
|
34
|
Loiko MR, Junqueira DM, Varela APM, Tochetto C, Scheffer CM, Lima DA, Morel AP, Cerva C, Paim WP, Mayer FQ, Roehe PM. Columbid circoviruses detected in free ranging pigeons from Southern Brazil: insights on PiCV evolution. Arch Virol 2018; 163:3083-3090. [PMID: 30105520 DOI: 10.1007/s00705-018-3990-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
Pigeon circovirus (PiCV) is taxonomically classified as a member of the Circovirus genus, family Circoviridae. The virus contains a single stranded DNA genome of approximately 2 kb, with minor length variations among different isolates. The occurrence of PiCV infections in pigeons (Columba livia) has been documented worldwide over the past 20 years; however, in Brazil there were still no reports on PiCV detection. This study identifies seven PiCV genomes recovered from domestic pigeons of South Brazil through high-throughput sequencing and shows a high frequency of PiCV infection, through quantitative real-time PCR. Phylogenetic classification was performed by maximum likelihood analysis of the full genomes, ORF V1 (Rep) and ORF C1 (Cap). The results show that either full genome or Cap based analysis allowed PiCV classification into five major clades (groups A to E), where Brazilian sequences were classified as A, C or D. Recombination analyses were carried out with Simplot and RDP4 and the results show that both Rep and Cap ORFs contain several recombination hotspots, pointing to an important role for such events in PiCV evolution.
Collapse
Affiliation(s)
- M R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - D M Junqueira
- Centro Universitário Ritter dos Reis-UniRitter, Laureate International Universities, Porto Alegre, Rio Grande do Sul, Brazil
| | - A P M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - C Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - C M Scheffer
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - D A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - A P Morel
- Falcoaria e Consultoria Ambiental-HAYABUSA, São Francisco de Paula, RS, Brazil
| | - C Cerva
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - W P Paim
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil.
| | - P M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
35
|
Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, López-Bueno A. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. MICROBIOME 2018; 6:119. [PMID: 29954453 PMCID: PMC6022446 DOI: 10.1186/s40168-018-0507-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Viruses are key players regulating microbial ecosystems. Exploration of viral assemblages is now possible thanks to the development of metagenomics, the most powerful tool available for studying viral ecology and discovering new viruses. Unfortunately, several sources of bias lead to the misrepresentation of certain viruses within metagenomics workflows, hindering the shift from merely descriptive studies towards quantitative comparisons of communities. Therefore, benchmark studies on virus enrichment and random amplification protocols are required to better understand the sources of bias. RESULTS We assessed the bias introduced by viral enrichment on mock assemblages composed of seven DNA viruses, and the bias from random amplification methods on human saliva DNA viromes, using qPCR and deep sequencing, respectively. While iodixanol cushions and 0.45 μm filtration preserved the original composition of nuclease-protected viral genomes, low-force centrifugation and 0.22 μm filtration removed large viruses. Comparison of unamplified and randomly amplified saliva viromes revealed that multiple displacement amplification (MDA) induced stochastic bias from picograms of DNA template. However, the type of bias shifted to systematic using 1 ng, with only a marginal influence by amplification time. Systematic bias consisted of over-amplification of small circular genomes, and under-amplification of those with extreme GC content, a negative bias that was shared with the PCR-based sequence-independent, single-primer amplification (SISPA) method. MDA based on random priming provided by a DNA primase activity slightly outperformed those based on random hexamers and SISPA, which may reflect differences in ability to handle sequences with extreme GC content. SISPA viromes showed uneven coverage profiles, with high coverage peaks in regions with low linguistic sequence complexity. Despite misrepresentation of certain viruses after random amplification, ordination plots based on dissimilarities among contig profiles showed perfect overlapping of related amplified and unamplified saliva viromes and strong separation from unrelated saliva viromes. This result suggests that random amplification bias has a minor impact on beta diversity studies. CONCLUSIONS Benchmark analyses of mock and natural communities of viruses improve understanding and mitigate bias in metagenomics surveys. Bias induced by random amplification methods has only a minor impact on beta diversity studies of human saliva viromes.
Collapse
Affiliation(s)
- Marcos Parras-Moltó
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Ana Rodríguez-Galet
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Patricia Suárez-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain.
| |
Collapse
|
36
|
Marie R, Pødenphant M, Koprowska K, Bærlocher L, Vulders RCM, Wilding J, Ashley N, McGowan SJ, van Strijp D, van Hemert F, Olesen T, Agersnap N, Bilenberg B, Sabatel C, Schira J, Kristensen A, Bodmer W, van der Zaag PJ, Mir KU. Sequencing of human genomes extracted from single cancer cells isolated in a valveless microfluidic device. LAB ON A CHIP 2018; 18:1891-1902. [PMID: 29873383 DOI: 10.1039/c8lc00169c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sequencing the genomes of individual cells enables the direct determination of genetic heterogeneity amongst cells within a population. We have developed an injection-moulded valveless microfluidic device in which single cells from colorectal cancer derived cell lines (LS174T, LS180 and RKO) and fresh colorectal tumors have been individually trapped, their genomes extracted and prepared for sequencing using multiple displacement amplification (MDA). Ninety nine percent of the DNA sequences obtained mapped to a reference human genome, indicating that there was effectively no contamination of these samples from non-human sources. In addition, most of the reads are correctly paired, with a low percentage of singletons (0.17 ± 0.06%) and we obtain genome coverages approaching 90%. To achieve this high quality, our device design and process shows that amplification can be conducted in microliter volumes as long as the lysis is in sub-nanoliter volumes. Our data thus demonstrates that high quality whole genome sequencing of single cells can be achieved using a relatively simple, inexpensive and scalable device. Detection of genetic heterogeneity at the single cell level, as we have demonstrated for freshly obtained single cancer cells, could soon become available as a clinical tool to precisely match treatment with the properties of a patient's own tumor.
Collapse
Affiliation(s)
- Rodolphe Marie
- Department for Micro and Nanotechnology, Technical University of Denmark, Ørsteds Plads Building 345C, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The Emergency Medical Service Microbiome. Appl Environ Microbiol 2018; 84:AEM.02098-17. [PMID: 29222105 DOI: 10.1128/aem.02098-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
Emergency medical services (EMS) personnel are an integral component of the health care framework and function to transport patients from various locations to and between care facilities. In addition to physical injury, EMS personnel are expected to be at high risk to acquire and transmit health care-associated infections (HAIs) in the workplace. However, currently, little is known about EMS biosafety risk factors and the epidemiological contribution of EMS to pathogen transmission within and outside the health care sector. Health care facility microbiomes contain diverse bacterial, fungal, and viral pathogens that cause over 1.7 million HAIs each year in the United States alone. While hospital microbiomes have been relatively well studied, there is scant information about EMS infrastructure and equipment microbiomes or the role(s) they play in HAI transmission between health care facilities. We review recent literature investigating the microbiome of ambulances and other EMS service facilities which consistently identify antibiotic-resistant pathogens causing HAIs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and Klebsiella pneumoniae Our review provides evidence that EMS microbiomes are dynamic and important pathogen reservoirs, and it underscores the need for more widespread and in-depth microbiome studies to elucidate patterns of pathogen transmission. We discuss emerging DNA sequencing technologies and other methods that can be applied to characterize and mitigate EMS biosafety risks in the future. Understanding the complex interplay between EMS and hospital microbiomes will provide key insights into pathogen transmission mechanisms and identify strategies to minimize HAIs and community infection.
Collapse
|
38
|
Tian HC, Benitez JJ, Craighead HG. Single cell on-chip whole genome amplification via micropillar arrays for reduced amplification bias. PLoS One 2018; 13:e0191520. [PMID: 29432426 PMCID: PMC5809021 DOI: 10.1371/journal.pone.0191520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/05/2018] [Indexed: 01/11/2023] Open
Abstract
Single cell whole genome amplification is susceptible to amplification biases that impact the accuracy of single cell sequencing data. To address this, we have developed a microfluidic device for the isolation and purification of genomic DNA from individual cells. The device uses a micropillar array to physically capture single cells and its chromosomal DNA upon extraction. The extracted DNA is immobilized within the micropillar array in a way that allows isothermal amplification. In this system, whole genome amplification of the single cell is carried out under a continual fluid flow within the microfluidic channel. We have demonstrated the process for amplification of individual human cancer cell genomes from the HeLa cell line. By sampling select gene loci along the human genome and performing whole exome sequencing, we demonstrate improved genome coverage and reduced amplification bias compared to amplification of single cells deposited in wells by fluorescence activated cell sorting.
Collapse
Affiliation(s)
- Harvey C. Tian
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States of America
| | - Jaime J. Benitez
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States of America
| | - Harold G. Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li J, Lu N, Shi X, Qiao Y, Chen L, Duan M, Hou Y, Ge Q, Tao Y, Tu J, Lu Z. 1D-Reactor Decentralized MDA for Uniform and Accurate Whole Genome Amplification. Anal Chem 2017; 89:10147-10152. [DOI: 10.1021/acs.analchem.7b02183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Junji Li
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Na Lu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xulian Shi
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank,
BGI-Shenzhen, Shenzhen 518120, China
| | - Yi Qiao
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liang Chen
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mengqin Duan
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank,
BGI-Shenzhen, Shenzhen 518120, China
| | - Qinyu Ge
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuhan Tao
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
40
|
Manso CF, Bibby DF, Mbisa JL. Efficient and unbiased metagenomic recovery of RNA virus genomes from human plasma samples. Sci Rep 2017. [PMID: 28646219 PMCID: PMC5482852 DOI: 10.1038/s41598-017-02239-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA viruses cause significant human pathology and are responsible for the majority of emerging zoonoses. Mainstream diagnostic assays are challenged by their intrinsic diversity, leading to false negatives and incomplete characterisation. New sequencing techniques are expanding our ability to agnostically interrogate nucleic acids within diverse sample types, but in the clinical setting are limited by overwhelming host material and ultra-low target frequency. Through selective host RNA depletion and compensatory protocol adjustments for ultra-low RNA inputs, we are able to detect three major blood-borne RNA viruses – HIV, HCV and HEV. We recovered complete genomes and up to 43% of the genome from samples with viral loads of 104 and 103 IU/ml respectively. Additionally, we demonstrated the utility of this method in detecting and characterising members of diverse RNA virus families within a human plasma background, some present at very low levels. By applying this method to a patient sample series, we have simultaneously determined the full genome of both a novel subtype of HCV genotype 6, and a co-infecting human pegivirus. This method builds upon earlier RNA metagenomic techniques and can play an important role in the surveillance and diagnostics of blood-borne viruses.
Collapse
Affiliation(s)
- Carmen F Manso
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| | - David F Bibby
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom.
| | - Jean L Mbisa
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| |
Collapse
|
41
|
Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, Vijg J. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat Methods 2017; 14:491-493. [PMID: 28319112 PMCID: PMC5408311 DOI: 10.1038/nmeth.4227] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/22/2017] [Indexed: 01/22/2023]
Abstract
Mutation analysis in single-cell genomes is prone to artifacts associated with cell lysis and whole-genome amplification. Here we addressed these issues by developing single-cell multiple displacement amplification (SCMDA) and a general-purpose single-cell-variant caller, SCcaller (https://github.com/biosinodx/SCcaller/). By comparing SCMDA-amplified single cells with unamplified clones from the same population, we validated the procedure as a firm foundation for standardized somatic-mutation analysis in single-cell genomics.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| | - Lei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| | - Brandon Milholland
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| | - Alexander Y. Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A
| |
Collapse
|
42
|
Bækvad-Hansen M, Bybjerg-Grauholm J, Poulsen JB, Hansen CS, Hougaard DM, Hollegaard MV. Evaluation of whole genome amplified DNA to decrease material expenditure and increase quality. Mol Genet Metab Rep 2017; 11:36-45. [PMID: 28487825 PMCID: PMC5408502 DOI: 10.1016/j.ymgmr.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/02/2017] [Accepted: 04/02/2017] [Indexed: 02/04/2023] Open
Abstract
Aim The overall aim of this study is to evaluate whole genome amplification of DNA extracted from dried blood spot samples. We wish to explore ways of optimizing the amplification process, while decreasing the amount of input material and inherently the cost. Our primary focus of optimization is on the amount of input material, the amplification reaction volume, the number of replicates and amplification time and temperature. Increasing the quality of the amplified DNA and the subsequent results of array genotyping is a secondary aim of this project. Methods This study is based on DNA extracted from dried blood spot samples. The extracted DNA was subsequently whole genome amplified using the REPLIg kit and genotyped on the PsychArray BeadChip (assessing > 570,000 SNPs genome wide). We used Genome Studio to evaluate the quality of the genotype data by call rates and log R ratios. Results The whole genome amplification process is robust and does not vary between replicates. Altering amplification time, temperature or number of replicates did not affect our results. We found that spot size i.e. amount of input material could be reduced without compromising the quality of the array genotyping data. We also showed that whole genome amplification reaction volumes can be reduced by a factor of 4, without compromising the DNA quality. Discussion Whole genome amplified DNA samples from dried blood spots is well suited for array genotyping and produces robust and reliable genotype data. However, the amplification process introduces additional noise to the data, making detection of structural variants such as copy number variants difficult. With this study, we explore ways of optimizing the amplification protocol in order to reduce noise and increase data quality. We found, that the amplification process was very robust, and that changes in amplification time or temperature did not alter the genotyping calls or quality of the array data. Adding additional replicates of each sample also lead to insignificant changes in the array data. Thus, the amount of noise introduced by the amplification process was consistent regardless of changes made to the amplification protocol. We also explored ways of decreasing material expenditure by reducing the spot size or the amplification reaction volume. The reduction did not affect the quality of the genotyping data.
Collapse
Affiliation(s)
- Marie Bækvad-Hansen
- Corresponding author at: Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark.Danish Center for Neonatal ScreeningDepartment of Congenital DiseasesStatens Serum InstitutArtillerivej 5Copenhagen SDK-2300Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Vollmers J, Frentrup M, Rast P, Jogler C, Kaster AK. Untangling Genomes of Novel Planctomycetal and Verrucomicrobial Species from Monterey Bay Kelp Forest Metagenomes by Refined Binning. Front Microbiol 2017; 8:472. [PMID: 28424662 PMCID: PMC5372823 DOI: 10.3389/fmicb.2017.00472] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The kelp forest of the Pacific temperate rocky marine coastline of Monterey Bay in California is a dominant habitat for large brown macro-algae in the order of Laminariales. It is probably one of the most species-rich, structurally complex and productive ecosystems in temperate waters and well-studied in terms of trophic ecology. However, still little is known about the microorganisms thriving in this habitat. A growing body of evidence suggests that bacteria associated with macro-algae represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological purposes. Those microorganisms are most likely attracted by algae through secretion of specific carbohydrates and proteins that trigger them to attach to the algal surface and to form biofilms. The algae might then employ those bacteria as biofouling control, using their antimicrobial secondary metabolites to defeat other bacteria or eukaryotes. We here analyzed biofilm samples from the brown macro-algae Macrocystis pyrifera sampled in November 2014 in the kelp forest of Monterey Bay by a metagenomic shotgun and amplicon sequencing approach, focusing on Planctomycetes and Verrucomicrobia from the PVC superphylum. Although not very abundant, we were able to find novel Planctomycetal and Verrucomicrobial species by an innovative binning approach. All identified species harbor secondary metabolite related gene clusters, contributing to our hypothesis that through inter-species interaction, microorganisms might have a substantial effect on kelp forest wellbeing and/or disease-development.
Collapse
Affiliation(s)
- John Vollmers
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Patrick Rast
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Christian Jogler
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany.,Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegen, Netherlands
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
44
|
Rastrojo A, Alcamí A. Aquatic viral metagenomics: Lights and shadows. Virus Res 2016; 239:87-96. [PMID: 27889617 DOI: 10.1016/j.virusres.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
Viruses are the most abundant biological entities on Earth, exceeding bacteria in most of the ecosystems. Specially in oceans, viruses are thought to be the major planktonic predators shaping microorganism communities and controlling ocean biological capacity. Plankton lysis by viruses plays an important role in ocean nutrient and energy cycles. Viral metagenomics has emerged as a powerful tool to uncover viral diversity in aquatic ecosystems through the use of Next Generation Sequencing. However, many of the commonly used viral sample preparation steps have several important biases that must be considered to avoid a misinterpretation of the results. In addition to biases caused by the purification of virus particles, viral DNA/RNA amplification and the preparation of genomic libraries could also introduce biases, and a detailed knowledge about such protocols is required. In this review, the main steps in the viral metagenomic workflow are described paying special attention to the potential biases introduced by each one.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
45
|
Uria AR, Zilda DS. Metagenomics-Guided Mining of Commercially Useful Biocatalysts from Marine Microorganisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:1-26. [PMID: 27452163 DOI: 10.1016/bs.afnr.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Marine microorganisms are a rich reservoir of highly diverse and unique biocatalysts that offer potential applications in food, pharmaceutical, fuel, and cosmetic industries. The fact that only less than 1% of microbes in any marine habitats can be cultured under standard laboratory conditions has hampered access to their extraordinary biocatalytic potential. Metagenomics has recently emerged as a powerful and well-established tool to investigate the vast majority of hidden uncultured microbial diversity for the discovery of novel industrially relevant enzymes from different types of environmental samples, such as seawater, marine sediment, and symbiotic microbial consortia. We discuss here in this review about approaches and methods in metagenomics that have been used and can potentially be used to mine commercially useful biocatalysts from uncultured marine microbes.
Collapse
Affiliation(s)
- A R Uria
- Research and Development Center for Marine and Fisheries Product Processing and Biotechnology, Central Jakarta, Indonesia.
| | - D S Zilda
- Research and Development Center for Marine and Fisheries Product Processing and Biotechnology, Central Jakarta, Indonesia
| |
Collapse
|
46
|
Zhang Y, Ji P, Wang J, Zhao F. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res 2016; 44:e99. [PMID: 26984526 PMCID: PMC4889936 DOI: 10.1093/nar/gkw165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classifications. Here we propose a novel approach, RiboFR-Seq (Ribosomal RNA gene flanking region sequencing), for capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. Through extensive testing on clonal bacterial strain, salivary microbiome and bacterial epibionts of marine kelp, we demonstrated that RiboFR-Seq could detect the vast majority of bacteria not only in well-studied microbiomes but also in novel communities with limited reference genomes. Combined with classical amplicon sequencing and shotgun metagenome sequencing, RiboFR-Seq can link the annotations of 16S rRNA and metagenomic contigs to make a consensus classification. By recognizing almost all 16S rRNA copies, the RiboFR-seq approach can effectively reduce the taxonomic abundance bias resulted from 16S rRNA copy number variation. We believe that RiboFR-Seq, which provides an integrated view of 16S rRNA profiles and metagenomes, will help us better understand diverse microbial communities.
Collapse
Affiliation(s)
- Yanming Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifeng Ji
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
47
|
Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples. PLoS One 2016; 11:e0153699. [PMID: 27144304 PMCID: PMC4856258 DOI: 10.1371/journal.pone.0153699] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/03/2016] [Indexed: 12/17/2022] Open
Abstract
Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.
Collapse
|
48
|
Alkema W, Boekhorst J, Wels M, van Hijum SAFT. Microbial bioinformatics for food safety and production. Brief Bioinform 2015; 17:283-92. [PMID: 26082168 PMCID: PMC4793891 DOI: 10.1093/bib/bbv034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
Collapse
|
49
|
Kocjan BJ, Bzhalava D, Forslund O, Dillner J, Poljak M. Molecular methods for identification and characterization of novel papillomaviruses. Clin Microbiol Infect 2015; 21:808-16. [PMID: 26003284 DOI: 10.1016/j.cmi.2015.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
Papillomaviruses (PV) are a remarkably heterogeneous family of small DNA viruses that infect a wide variety of vertebrate species and are aetiologically linked with the development of various neoplastic changes of the skin and mucosal epithelia. Based on nucleotide similarity, PVs are hierarchically classified into genera, species and types. Novel human PV (HPV) types are given a unique number only after the whole genome has been cloned and deposited with the International HPV Reference Center. As of 9 March 2015, 200 different HPV types, belonging to 49 species, had been recognized by the International HPV Reference Center. In addition, 131 animal PV types identified from 66 different animal species exist. Recent advances in molecular techniques have resulted in an explosive increase in the identification of novel HPV types and novel subgenomic HPV sequences in the last few years. Among PV genera, the γ-PV genus has been growing most rapidly in recent years with 80 completely sequenced HPV types, followed by α-PV and β-PV genera that have 65 and 51 recognized HPV types, respectively. We reviewed in detail the contemporary molecular methods most often used for identification and characterization of novel PV types, including PCR, rolling circle amplification and next-generation sequencing. Furthermore, we present a short overview of 12 and 10 novel HPV types recently identified in Sweden and Slovenia, respectively. Finally, an update on the International Human Papillomavirus Reference Center is provided.
Collapse
Affiliation(s)
- B J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - D Bzhalava
- International Human Papillomavirus Reference Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - O Forslund
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - J Dillner
- International Human Papillomavirus Reference Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
50
|
Behzad H, Gojobori T, Mineta K. Challenges and opportunities of airborne metagenomics. Genome Biol Evol 2015; 7:1216-26. [PMID: 25953766 PMCID: PMC4453059 DOI: 10.1093/gbe/evv064] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 01/09/2023] Open
Abstract
Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.
Collapse
Affiliation(s)
- Hayedeh Behzad
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|