1
|
Genetic background influences survival of infections with Salmonella enterica serovar Typhimurium in the Collaborative Cross. PLoS Genet 2022; 18:e1010075. [PMID: 35417454 PMCID: PMC9067680 DOI: 10.1371/journal.pgen.1010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.
Collapse
|
2
|
Theprungsirikul J, Skopelja-Gardner S, Rigby WF. Killing three birds with one BPI: Bactericidal, opsonic, and anti-inflammatory functions. J Transl Autoimmun 2021; 4:100105. [PMID: 34142075 PMCID: PMC8187252 DOI: 10.1016/j.jtauto.2021.100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023] Open
Abstract
Bactericidal/permeability-increasing protein (BPI) is an anti-microbial protein predominantly expressed in azurophilic granules of neutrophils. BPI has been shown to mediate cytocidal and opsonic activity against Gram-negative bacteria, while also blunting inflammatory activity of lipopolysaccharide (LPS). Despite awareness of these functions in vitro, the magnitude of the contribution of BPI to innate immunity remains unclear, and the nature of the functional role of BPI in vivo has been submitted to limited investigation. Understanding this role takes on particular interest with the recognition that autoimmunity to BPI is tightly linked to a specific infectious trigger like Pseudomonas aeruginosa in chronic lung infection. This has led to the notion that anti-BPI autoantibodies compromise the activity of BPI in innate immunity against P. aeruginosa, which is primarily mediated by neutrophils. In this review, we explore the three main mechanisms in bactericidal, opsonic, and anti-inflammatory of BPI. We address the etiology and the effects of BPI autoreactivity on BPI function. We explore BPI polymorphism and its link to multiple diseases. We summarize BPI therapeutic potential in both animal models and human studies, as well as offer therapeutic approaches to designing a sustainable and promising BPI molecule.
Collapse
Affiliation(s)
- Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Sladjana Skopelja-Gardner
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F.C. Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
3
|
Innocentini LMAR, Silva AA, Carvalho MA, Coletta RD, Corrêa MEP, Bingle L, Bingle CD, Vargas PA, Lopes MA. Salivary BPIFA proteins are altered in patients undergoing hematopoietic cell transplantation. Oral Dis 2021; 28:1279-1288. [PMID: 33682222 DOI: 10.1111/odi.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of BPIFA proteins in the saliva and salivary glands of hematopoietic cell transplant (HCT) patients. MATERIAL AND METHODS This longitudinal study included patients who had undergone autologous HCT (auto-HCT) and allogeneic HCT (allo-HCT), and unstimulated saliva was collected at three time points, with a fourth collection at oral chronic graft-versus-host disease (cGVHD) onset. BPIFA expression was analysed by Western blotting in saliva and immunostaining in the minor salivary glands of cGVHD patients. RESULTS Auto-HCT patients showed increased levels of BPIFA1 (p = .021) and BPIFA2 at D+7 (p = .040), whereas allo-HCT group demonstrated decreased expression of BPIFA2 at D+8 (p = .002) and at D+80 (p = .001) and a significant association between BPIFA2 low levels and hyposalivation was observed (p = .02). BPIFA2 was significantly lower in the cGVHD patients when compared to baseline (p = .04). CONCLUSIONS The results of this study show distinct pattern of expression of BPIF proteins in both auto-HCT and allo-HCT recipients with decreased levels of BPIFA2 during hyposalivation and cGVHD. Further studies are necessary to elucidate these proteins mechanisms and their clinical implications in these groups of patients.
Collapse
Affiliation(s)
- Lara Maria Alencar Ramos Innocentini
- Dentistry and Stomatology Division, Ophthalmology, Otolaryngology and Head and Neck Surgery Department, Clinical Hospital of Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreia Aparecida Silva
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Marco Antonio Carvalho
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Lynne Bingle
- Department of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
4
|
Kang D, Jung IB, Lee SY, Park SJ, Kwon SJ, Park DH, Son JW. Particulate matter less than 10 μm (PM 10) activates cancer related genes in lung epithelial cells. Inhal Toxicol 2020; 32:487-493. [PMID: 33283556 DOI: 10.1080/08958378.2020.1850936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Particulate matter (PM) has various systemic effects. We researched the effects of PM on lung epithelial cells with next generation sequencing (NGS) and validated this with quantitative real-time polymerase chain reaction (qRT-PCR). Methods: We cultured the group exposed to PM10 (Particulate matter less than 10 μm)-like fine dust (ERM® CZ120 fine dust) at a concentration of 50 μg/mL and the untreated group for seven days in one normal lung epithelial cell line (BEAS-2B) and four lung cancer epithelial cell lines (NCI-H358, HCC-827, A549, NCI-H292). Then, we extracted the RNA from the sample and performed NGS. As a result of NGS, various gene expressions were upregulated or downregulated. Among them, we selected the gene whose mean fold change was more than doubled and changed in the same direction in all five cell lines. Based on these genes, we selected the top 10 genes, either upregulated or downregulated, to validate with the qRT-PCR. Results: There were the four genes that matched the NGS and qRT-PCR results, all of which were upregulated genes. The four genes are CYP1A1, CYP1B1, LINC01816, and BPIFA2. All four genes that matched the two results were upregulated genes and none of the downregulated genes matched. Conclusion: CYP1A1 and CYP1B1 are known to cause lung cancer by metabolizing polycyclic aromatic hydrocarbons, and long noncoding RNA is also known to play an important role in lung cancer. Considering this, we thought PM10 might be associated with lung cancer by activating CYP1A1, CYP1B1, and LINC01816.
Collapse
Affiliation(s)
- Daeun Kang
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Beom Jung
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Se Jin Park
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Sun Jung Kwon
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Dong Ho Park
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Ji Woong Son
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Burbelo PD, Ferré EMN, Chaturvedi A, Chiorini JA, Alevizos I, Lionakis MS, Warner BM. Profiling Autoantibodies against Salivary Proteins in Sicca Conditions. J Dent Res 2019; 98:772-778. [PMID: 31095438 DOI: 10.1177/0022034519850564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salivary gland dysfunction occurs in several autoimmune and immune-related conditions, including Sjögren syndrome (SS); immune checkpoint inhibitor-induced sicca (ICIS) that develops in some cancer patients and is characterized by severe, sudden-onset dry mouth; and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Although subjects with these conditions present with oral dryness and often exhibit inflammatory infiltration of the salivary gland, little is known about the B-cell humoral responses directed against salivary gland protein targets. In this study, autoantibodies were evaluated against Ro52, Ro60, and La, as well as against a panel of 22 proteins derived from the salivary proteome. The tested cohort included healthy volunteers and subjects with SS, ICIS, and APECED without and with sicca. As expected, a high percentage of autoantibody seropositivity was detected against Ro52, Ro60, and La in SS, but only a few ICIS patients were seropositive for these autoantigens. A few APECED subjects also harbored autoantibodies to Ro52 and La, but only Ro60 autoantibodies were weakly associated with a small subset of APECED patients with sicca. Additional testing of the salivary panel failed to detect seropositive autoantibodies against any of the salivary-enriched proteins in the SS and ICIS subjects. However, APECED subjects selectively demonstrated seropositivity against BPI fold containing family A member 1 (BPIFA1), BPI fold containing family A member 2 (BPIFA2)/parotid salivary protein (PSP), and lactoperoxidase, 3 salivary-enriched proteins. Moreover, high levels of serum autoantibodies against BPIFA1 and BPIFA2/PSP occurred in 30% and 67% of the APECED patients with sicca symptoms, respectively, and were associated with an earlier age onset of oral dryness (P = 0.001). These findings highlight the complexity of humoral responses in different sicca diseases and provide new insights and biomarkers for APECED-associated sicca (ClinicalTrials.gov: NCT00001196; NCT00001390; NCT01425892; NCT01386437).
Collapse
Affiliation(s)
- P D Burbelo
- 1 Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - E M N Ferré
- 2 Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A Chaturvedi
- 1 Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J A Chiorini
- 3 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I Alevizos
- 4 Sjogren's Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M S Lionakis
- 2 Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B M Warner
- 3 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,4 Sjogren's Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Bactericidal/Permeability-Increasing Fold-Containing Family B Member 4 May Be Associated with NSAID-Induced Enteropathy. Dig Dis Sci 2019; 64:401-408. [PMID: 30377885 PMCID: PMC6514250 DOI: 10.1007/s10620-018-5349-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/19/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND There is considerable individual variability in nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. AIM To identify the SNP that is most significantly involved with NSAID-induced enteropathy. METHODS One hundred fifty human subjects who were known to have a certain degree of loxoprofen- or celecoxib-induced small-intestinal damage from a previous study were enrolled. The subjects were divided into groups based on treatments and also on the increased number of small intestinal mucosal breaks. The candidate SNP was selected by an initial analysis of GWAS among the groups in various combinations. After the initial analysis, the gene including the specified SNP was analyzed in detail using GWAS and genotype imputation. RESULTS After analysis, 70 subjects receiving the loxoprofen treatment and 69 subjects receiving celecoxib treatment were determined to be eligible for the analysis. The minimum p value in GWAS was detected in the analysis of 16 cases with an increase of five or more mucosal breaks and 123 controls with zero to four mucosal breaks. In the GWAS, five SNPs in the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) gene showed the lowest p value (p = 2.69 × 10-7 with an odds ratio of 40.9). Of the five SNPs, four were nonsynonymous SNPs (rs2070325: V268I, rs2889732: T320N, rs11699009: F527L, rs11696307: T533I, and rs11696310: intronic). Furthermore, 23 SNPs in BPIFB4 detected by genotype imputation based on the GWAS data also showed suggestive associations (p < 1 × 10-6). CONCLUSION The results indicate that SNPs in BPIFB4 were associated with NSAID-induced small intestinal mucosal injury (UMIN: 000007936).
Collapse
|
7
|
Britto CJ, Niu N, Khanal S, Huleihel L, Herazo-Maya JD, Thompson A, Sauler M, Slade MD, Sharma L, Dela Cruz CS, Kaminski N, Cohn LE. BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L321-L333. [PMID: 30461288 DOI: 10.1152/ajplung.00056.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naiqian Niu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Luai Huleihel
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Alison Thompson
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Martin D Slade
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut.,Yale University School of Public Health, Department of Environmental Health Sciences , New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Lauren E Cohn
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
8
|
The Role of BPIFA1 in Upper Airway Microbial Infections and Correlated Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2021890. [PMID: 30255091 PMCID: PMC6140130 DOI: 10.1155/2018/2021890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/04/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The mucosa is part of the first line of immune defense against pathogen exposure in humans and prevents viral and bacterial infection of the soft palate, lungs, uvula, and nasal cavity that comprise the ear-nose-throat (ENT) region. Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is a secretory protein found in human upper aerodigestive tract mucosa. This innate material is secreted in mucosal fluid or found in submucosal tissue in the human soft palate, lung, uvula, and nasal cavity. BPIFA1 is a critical component of the innate immune response that prevents upper airway diseases. This review will provide a brief introduction of the roles of BPIFA1 in the upper airway (with a focus on the nasal cavity, sinus, and middle ear), specifically its history, identification, distribution in various human tissues, function, and diagnostic value in various upper airway infectious diseases.
Collapse
|
9
|
Mundhenk L, Erickson NA, Klymiuk N, Gruber AD. Interspecies diversity of chloride channel regulators, calcium-activated 3 genes. PLoS One 2018; 13:e0191512. [PMID: 29346439 PMCID: PMC5773202 DOI: 10.1371/journal.pone.0191512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the chloride channel regulators, calcium-activated (CLCA) family, have been implicated in diverse biomedical conditions, including chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, the activation of macrophages, and the growth and metastatic spread of tumor cells. Several observations, however, could not be repeated across species boundaries and increasing evidence suggests that select CLCA genes are particularly prone to dynamic species-specific evolvements. Here, we systematically characterized structural and expressional differences of the CLCA3 gene across mammalian species, revealing a spectrum of gene duplications, e.g., in mice and cows, and of gene silencing via diverse chromosomal modifications in pigs and many primates, including humans. In contrast, expression of a canonical CLCA3 protein from a single functional gene seems to be evolutionarily retained in carnivores, rabbits, guinea pigs, and horses. As an accepted asthma model, we chose the cat to establish the tissue and cellular expression pattern of the CLCA3 protein which was primarily found in mucin-producing cells of the respiratory tract and in stratified epithelia of the esophagus. Our results suggest that, among developmental differences in other CLCA genes, the CLCA3 gene possesses a particularly high dynamic evolutionary diversity with pivotal consequences for humans and other primates that seem to lack a CLCA3 protein. Our data also help to explain previous contradictory results on CLCA3 obtained from different species and warrant caution in extrapolating data from animal models in conditions where CLCA3 may be involved.
Collapse
Affiliation(s)
- Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nancy A. Erickson
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität, Oberschleissheim, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection. Mucosal Immunol 2018; 11:71-81. [PMID: 28513596 DOI: 10.1038/mi.2017.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 02/04/2023]
Abstract
The airway epithelium secretes proteins that function in innate defense against infection. Bactericidal/permeability-increasing fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism, we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro three-dimensional mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes, and supported higher levels of viral replication. Our results identify a critical role of BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells.
Collapse
|
11
|
Identification of trans Protein QTL for Secreted Airway Mucins in Mice and a Causal Role for Bpifb1. Genetics 2017; 207:801-812. [PMID: 28851744 DOI: 10.1534/genetics.117.300211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Mucus hyper-secretion is a hallmark feature of asthma and other muco-obstructive airway diseases. The mucin proteins MUC5AC and MUC5B are the major glycoprotein components of mucus and have critical roles in airway defense. Despite the biomedical importance of these two proteins, the loci that regulate them in the context of natural genetic variation have not been studied. To identify genes that underlie variation in airway mucin levels, we performed genetic analyses in founder strains and incipient lines of the Collaborative Cross (CC) in a house dust mite mouse model of asthma. CC founder strains exhibited significant differences in MUC5AC and MUC5B, providing evidence of heritability. Analysis of gene and protein expression of Muc5ac and Muc5b in incipient CC lines (n = 154) suggested that post-transcriptional events were important regulators of mucin protein content in the airways. Quantitative trait locus (QTL) mapping identified distinct, trans protein QTL for MUC5AC (chromosome 13) and MUC5B (chromosome 2). These two QTL explained 18 and 20% of phenotypic variance, respectively. Examination of the MUC5B QTL allele effects and subsequent phylogenetic analysis allowed us to narrow the MUC5B QTL and identify Bpifb1 as a candidate gene. Bpifb1 mRNA and protein expression were upregulated in parallel to MUC5B after allergen challenge, and Bpifb1 knockout mice exhibited higher MUC5B expression. Thus, BPIFB1 is a novel regulator of MUC5B.
Collapse
|
12
|
Wong LH, Levine TP. Tubular lipid binding proteins (TULIPs) growing everywhere. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1439-1449. [PMID: 28554774 PMCID: PMC5507252 DOI: 10.1016/j.bbamcr.2017.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/27/2022]
Abstract
Tubular lipid binding proteins (TULIPs) have become a focus of interest in the cell biology of lipid signalling, lipid traffic and membrane contact sites. Each tubular domain has an internal pocket with a hydrophobic lining that can bind a hydrophobic molecule such as a lipid. This allows TULIP proteins to carry lipids through the aqueous phase. TULIP domains were first found in a large family of extracellular proteins related to the bacterial permeability-inducing protein (BPI) and cholesterol ester transfer protein (CETP). Since then, the same fold and lipid transfer capacity have been found in SMP domains (so-called for their occurrence in synaptotagmin, mitochondrial and lipid binding proteins), which localise to intracellular membrane contact sites. Here the methods for identifying known TULIPs are described, and used to find previously unreported TULIPs, one in the silk polymer and another in prokaryotes illustrated by the E. coli protein YceB. The bacterial TULIP alters views on the likely evolution of the domain, suggesting its presence in the last universal common ancestor. The major function of TULIPs is to handle lipids, but we still do not know how they work in detail, or how many more remain to be discovered. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Proteins with the tubular lipid binding fold exist in a wider variety than is usually appreciated. TULIPs are found in prokaryotes, altering views on their evolution. It is not yet known whether TULIPs transfer lipids as tunnels or as shuttles. Tests have not yet been done to say if TULIPs with SMP domains (for example E-syts and ERMES components) tether contact sites. It is likely that more TULIPs remain to be discovered.
Collapse
Affiliation(s)
- Louise H Wong
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Tim P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
13
|
Hall SC, Hassis ME, Williams KE, Albertolle ME, Prakobphol A, Dykstra AB, Laurance M, Ona K, Niles RK, Prasad N, Gormley M, Shiboski C, Criswell LA, Witkowska HE, Fisher SJ. Alterations in the Salivary Proteome and N-Glycome of Sjögren’s Syndrome Patients. J Proteome Res 2017; 16:1693-1705. [DOI: 10.1021/acs.jproteome.6b01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Steven C. Hall
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Maria E. Hassis
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine E. Williams
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew E. Albertolle
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Akraporn Prakobphol
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Andrew B. Dykstra
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Megan Laurance
- Library
and Center for Knowledge Management, University of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine Ona
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Richard K. Niles
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Namrata Prasad
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew Gormley
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Caroline Shiboski
- Department
of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Lindsey A. Criswell
- Department
of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Russel/Engleman
Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, United States
| | - H. Ewa Witkowska
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Susan J. Fisher
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore
Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
14
|
Alves DBM, Bingle L, Bingle CD, Lourenço SV, Silva AA, Pereira DL, Vargas PA. BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands. Braz Oral Res 2017; 31:e6. [PMID: 28099576 DOI: 10.1590/1807-3107bor-2017.vol31.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.
Collapse
Affiliation(s)
- Daniel Berretta Moreira Alves
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Lynne Bingle
- University of Sheffield, School of Clinical Dentistry, Academic Unit of Oral and Maxillofacial Pathology, Sheffield, UK
| | - Colin David Bingle
- University of Sheffield, Medical School, Royal Hallamshire Hospital, Academic Unit of Respiratory Medicine, Sheffield, UK
| | - Silvia Vanessa Lourenço
- Universidade de São Paulo - USP, School of Dentistry, Department of General Pathology, São Paulo-SP, Brazil
| | - Andréia Aparecida Silva
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Débora Lima Pereira
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Pablo Agustin Vargas
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| |
Collapse
|
15
|
Ljunggren SA, Helmfrid I, Norinder U, Fredriksson M, Wingren G, Karlsson H, Lindahl M. Alterations in high-density lipoprotein proteome and function associated with persistent organic pollutants. ENVIRONMENT INTERNATIONAL 2017; 98:204-211. [PMID: 27865523 DOI: 10.1016/j.envint.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/16/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
There is a growing body of evidence that persistent organic pollutants (POPs) may increase the risk for cardiovascular disease (CVD), but the mechanisms remain unclear. High-density lipoprotein (HDL) acts protective against CVD by different processes, and we have earlier found that HDL from subjects with CVD contains higher levels of POPs than healthy controls. In the present study, we have expanded analyses on the same individuals living in a contaminated community and investigated the relationship between the HDL POP levels and protein composition/function. HDL from 17 subjects was isolated by ultracentrifugation. HDL protein composition, using nanoliquid chromatography tandem mass spectrometry, and antioxidant activity were analyzed. The associations of 16 POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides, with HDL proteins/functions were investigated by partial least square and multiple linear regression analysis. Proteomic analyses identified 118 HDL proteins, of which ten were significantly (p<0.05) and positively associated with the combined level of POPs or with highly chlorinated PCB congeners. Among these, cholesteryl ester transfer protein and phospholipid transfer protein, as well as the inflammatory marker serum amyloid A, were found. The serum paraoxonase/arylesterase 1 activity was inversely associated with POPs. Pathway analysis demonstrated that up-regulated proteins were associated with biological processes involving lipoprotein metabolism, while down-regulated proteins were associated with processes such as negative regulation of proteinases, acute phase response, platelet degranulation, and complement activation. These results indicate an association between POP levels, especially highly chlorinated PCBs, and HDL protein alterations that may result in a less functional particle. Further studies are needed to determine causality and the importance of other environmental factors. Nevertheless, this study provides a first insight into a possible link between exposure to POPs and risk of CVD.
Collapse
Affiliation(s)
- Stefan A Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ingela Helmfrid
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden.
| | - Mats Fredriksson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Gun Wingren
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Mats Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
16
|
Mulay A, Akram KM, Williams D, Armes H, Russell C, Hood D, Armstrong S, Stewart JP, Brown SDM, Bingle L, Bingle CD. An in vitro model of murine middle ear epithelium. Dis Model Mech 2016; 9:1405-1417. [PMID: 27660200 PMCID: PMC5117233 DOI: 10.1242/dmm.026658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 01/01/2023] Open
Abstract
Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air–liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host–pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. Summary: Development and systematic characterisation of an in vitro otopathogenic infection model of the murine middle ear epithelium as a tool to better understand the complex pathophysiology of Otitis media.
Collapse
Affiliation(s)
- Apoorva Mulay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | - Khondoker M Akram
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | | | - Hannah Armes
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK.,Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Catherine Russell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | - Derek Hood
- MRC Mammalian Genetics Unit, Harwell OX11 0RD, UK
| | - Stuart Armstrong
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| |
Collapse
|
17
|
Pinkenburg O, Meyer T, Bannert N, Norley S, Bolte K, Czudai-Matwich V, Herold S, Gessner A, Schnare M. The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus. PLoS One 2016; 11:e0156929. [PMID: 27273104 PMCID: PMC4894568 DOI: 10.1371/journal.pone.0156929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/20/2016] [Indexed: 01/17/2023] Open
Abstract
In addition to their well-known antibacterial activity some antimicrobial peptides and proteins (AMPs) display also antiviral effects. A 27 aa peptide from the N-terminal part of human bactericidal/permeability-increasing protein (BPI) previously shown to harbour antibacterial activity inhibits the infectivity of multiple Influenza A virus strains (H1N1, H3N2 and H5N1) the causing agent of the Influenza pneumonia. In contrast, the homologous murine BPI-peptide did not show activity against Influenza A virus. In addition human BPI-peptide inhibits the activation of immune cells mediated by Influenza A virus. By changing the human BPI-peptide to the sequence of the mouse homologous peptide the antiviral activity was completely abolished. Furthermore, the human BPI-peptide also inhibited the pathogenicity of the Vesicular Stomatitis Virus but failed to interfere with HIV and measles virus. Electron microscopy indicate that the human BPI-peptide interferes with the virus envelope and at high concentrations was able to destroy the particles completely.
Collapse
Affiliation(s)
- Olaf Pinkenburg
- Institute for Immunology, Philipps-University of Marburg, Marburg, Germany
| | - Torben Meyer
- Institute for Immunology, Philipps-University of Marburg, Marburg, Germany
| | - Norbert Bannert
- Department for HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Steven Norley
- Department for HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Kathrin Bolte
- Laboratory for Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | | | - Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center and German Center for Lung Research, Giessen, Germany
| | - André Gessner
- Institute for Clinical Microbiology and Hygiene, University Regensburg, Regensburg, Germany
| | - Markus Schnare
- Institute for Immunology, Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
18
|
BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication. J Virol 2016; 90:5098-107. [PMID: 26962226 DOI: 10.1128/jvi.00170-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression correlates with pronounced defects in the secretory pathway and greatly reduces the replication of CVB, PV, and EV71. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter enterovirus replication.
Collapse
|
19
|
Lamontagne J, Mell JC, Bouchard MJ. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression. PLoS Pathog 2016; 12:e1005438. [PMID: 26891448 PMCID: PMC4758756 DOI: 10.1371/journal.ppat.1005438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.
Collapse
Affiliation(s)
- Jason Lamontagne
- Graduate Program in Microbiology and Immunology, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
20
|
The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:913-923. [PMID: 26825693 DOI: 10.1016/j.bbalip.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on lipids endogenous to the cell, and the BPI-like proteins (including the Takeout-like proteins of arthropods), which act on exogenous lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
21
|
Britto CJ, Cohn L. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease. Am J Respir Cell Mol Biol 2015; 52:525-34. [PMID: 25265466 DOI: 10.1165/rcmb.2014-0297rt] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
22
|
Leeming GH, Kipar A, Hughes DJ, Bingle L, Bennett E, Moyo NA, Tripp RA, Bigley AL, Bingle CD, Sample JT, Stewart JP. Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract. J Transl Med 2015; 95:610-24. [PMID: 25531566 PMCID: PMC4450743 DOI: 10.1038/labinvest.2014.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.
Collapse
Affiliation(s)
- Gail H Leeming
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Elaine Bennett
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Nathifa A Moyo
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alison L Bigley
- Investigative and Translational Pathology, AstraZeneca, R&D Innovative Medicines, Global Safety Assessment, Macclesfield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Jeffery T Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Infection Biology, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK. E-mail:
| |
Collapse
|
23
|
Zheng X, Cheng M, Fu B, Fan X, Wang Q, Yu X, Sun R, Tian Z, Wei H. Targeting LUNX inhibits non-small cell lung cancer growth and metastasis. Cancer Res 2015; 75:1080-90. [PMID: 25600649 DOI: 10.1158/0008-5472.can-14-1831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There remains a great need for effective therapies for lung cancer, the majority of which are non-small cell lung cancers (NSCLC). Here, we report the identification of a novel candidate therapeutic target, LUNX, as a molecule overexpressed in primary NSCLC and lymph node metastases that is associated with reduced postoperative survival. Functional studies demonstrated that LUNX overexpression promoted lung cancer cell migration and proliferation by interactions with the chaperone protein 14-3-3. Conversely, LUNX silencing disrupted primary tumor growth, local invasion, and metastatic colonization. The finding that LUNX was expressed on cell membranes prompted us to generate and characterize LUNX antibodies as a candidate therapeutic. Anti-LUNX could downregulate LUNX and reduce lung cancer cell proliferation and migration in vitro. Administered in vivo to mice bearing lung cancer xenografts, anti-LUNX could slow tumor growth and metastasis and improve mouse survival. Together, our work provides a preclinical proof of concept for LUNX as a novel candidate target for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Xiaohu Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Cheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Anhui Province Hospital Affiliated Anhui Medical University, Hefei, Anhui, China
| | - Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolei Fan
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Wang
- Anhui Chest Hospital, Hefei, Anhui, China
| | - Xiaoqing Yu
- The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
24
|
BPIFB3 regulates autophagy and coxsackievirus B replication through a noncanonical pathway independent of the core initiation machinery. mBio 2014; 5:e02147. [PMID: 25491355 PMCID: PMC4324245 DOI: 10.1128/mbio.02147-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses require autophagy to facilitate the formation of autophagosome (AP)-like double-membrane vesicles that provide the scaffolding for RNA replication. Here, we identify bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) as a gene whose silencing greatly enhances coxsackievirus B (CVB) replication and induces dramatic alterations in the morphology of CVB-induced replication organelles. We show that BPIFB3 is associated with the endoplasmic reticulum (ER), and its silencing by RNA interference enhances basal levels of autophagy and promotes increased autophagy during CVB replication. Conversely, overexpression of BPIFB3 inhibits CVB replication, dramatically alters the morphology of LC3B-positive vesicles, and suppresses autophagy in response to rapamaycin. In addition, we found that, whereas silencing of core autophagy components associated with the initiation of APs in control cells suppressed CVB replication, silencing of these same components had no effect on CVB-induced autophagy or viral replication in cells transfected with BPIFB3 small interfering RNA. Based on these results, taken together, this study reports on a previously uncharacterized regulator of enterovirus infection that controls replication through a noncanonical pathway independent from the core autophagy initiation machinery. Coxsackievirus B (CVB) infections are commonly associated with dilated cardiomyopathy, a condition that accounts for nearly half of all heart transplants annually. During infection, CVB co-opts a cellular pathway, termed autophagy, to provide the membranes necessary for its replication. Autophagy is an evolutionarily conserved process by which cells ingest damaged organelles as a means of maintaining cell homeostasis. Here, we report on a novel regulator of autophagy, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3), whose expression functions to restrict CVB replication by suppressing key steps in the authophagic process. We show that loss of BPIFB3 expression greatly enhances CVB replication while having no effect on replication of poliovirus, a closely related virus. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter CVB replication.
Collapse
|
25
|
Ning F, Wang C, Berry KZ, Kandasamy P, Liu H, Murphy RC, Voelker DR, Nho CW, Pan CH, Dai S, Niu L, Chu HW, Zhang G. Structural characterization of the pulmonary innate immune protein SPLUNC1 and identification of lipid ligands. FASEB J 2014; 28:5349-60. [PMID: 25223608 DOI: 10.1096/fj.14-259291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The short palate, lung and nasal epithelial clone 1 (SPLUNC1) protein is a member of the palate, lung, and nasal epithelium clone (PLUNC) family, also known as bactericidal/permeability-increasing (BPI) fold-containing protein, family A, member 1 (BPIFA1). SPLUNC1 is an abundant protein in human airways, but its function remains poorly understood. The lipid ligands of SPLUNC1 as well as other PLUNC family members are largely unknown, although some reports provide evidence that lipopolysaccharide (LPS) could be a lipid ligand. Unlike previous hypotheses, we found significant structural differences between SPLUNC1 and BPI. Recombinant SPLUNC1 produced in HEK 293 cells harbored several molecular species of sphingomyelin and phosphatidylcholine as its ligands. Significantly, in vitro lipid-binding studies failed to demonstrate interactions between SPLUNC1 and LPS, lipoteichoic acid, or polymyxin B. Instead, one of the major and most important pulmonary surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC), bound to SPLUNC1 with high affinity and specificity. We found that SPLUNC1 could be the first protein receptor for DPPC. These discoveries provide insight into the specific determinants governing the interaction between SPLUNC1 and lipids and also shed light on novel functions that SPLUNC1 and other PLUNC family members perform in host defense.
Collapse
Affiliation(s)
- Fangkun Ning
- School of Life Sciences, University of Science and Technology of China, Hefei, China; Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Chao Wang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Karin Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Haolin Liu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Choel-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Shaodong Dai
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Liwen Niu
- School of Life Sciences, University of Science and Technology of China, Hefei, China;
| | - Hong-Wei Chu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Gongyi Zhang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
26
|
Prokopovic V, Popovic M, Andjelkovic U, Marsavelski A, Raskovic B, Gavrovic-Jankulovic M, Polovic N. Isolation, biochemical characterization and anti-bacterial activity of BPIFA2 protein. Arch Oral Biol 2013; 59:302-9. [PMID: 24581853 DOI: 10.1016/j.archoralbio.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/20/2013] [Accepted: 12/15/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Human BPIFA2 (parotid secretory protein) is a ubiquitous soluble salivary protein, which belongs to the PLUNC family of proteins. Having sequence similarity to bactericidal/permeability-increasing protein and lipopolysaccharide-binding protein, PLUNC proteins are probably involved in local antibacterial response at mucosal sites, such as oral cavity. The aim of the study was to isolate and characterize human BPIFA2. DESIGN In this paper, we report one-step affinity chromatography method for BPIFA2 purification from whole human saliva. The isolated BPIFA2 was identified by trypsin mass fingerprinting and characterized by electrophoretic methods. Antibacterial activity of BPIFA2 against model microorganism Pseudomonas aeruginosa was shown in minimum inhibitory concentration and time kill study assays. RESULTS The protein showed microheterogeneity, both in molecular weight and pI value. BPIFA2 inhibited the growth of P. aeruginosa in microgram concentration range determined by minimum inhibitory concentration assay. In the time kill study, 32μg/mL BPIFA2 showed clear bactericidal activity and did not cause any aggregation of bacteria. CONCLUSION Affinity chromatography is well suited for isolation of functional BPIFA2 with a potent bactericidal activity against P. aeruginosa.
Collapse
Affiliation(s)
- Vladimir Prokopovic
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milica Popovic
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Uros Andjelkovic
- Institute for Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandra Marsavelski
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brankica Raskovic
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Gavrovic-Jankulovic
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Natalija Polovic
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
27
|
Budding K, van de Graaf EA, Hoefnagel T, Hack CE, Otten HG. Anti-BPIFA1/SPLUNC1: a new autoantibody prevalent in patients with endstage cystic fibrosis. J Cyst Fibros 2013; 13:281-8. [PMID: 24269518 DOI: 10.1016/j.jcf.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bactericidal/permeability increasing protein fold containing family A (BPIFA) 1, is a secreted protein of the upper airways that shares structural homology with BPI and exhibits comparable antimicrobial capacities. We hypothesized that CF patients have circulating IgG or IgA anti-BPIFA1 autoantibodies, similarly as reported for BPI autoantibodies. METHODS We analyzed pre- and post-transplantation sera from 67 endstage lung disease patients who underwent lung transplantation (LTx) because of COPD (n=27), CF (n=25), and ILD (n=15). RESULTS Anti-BPIFA1 (48%) and anti-BPI (92%) were elevated in CF patients compared to healthy controls, with anti-BPIFA1 IgG isotype being most prevalent, whereas anti-BPI is of the IgA isotype. Levels of anti-BPI autoantibodies significantly declined post-LTx, whereas anti-BPIFA1 did not. No relation was found between autoantibodies against BPIFA1 and BPI. CONCLUSION Our results indicate that BPIFA1 is a novel target for autoantibodies in CF. The function of these autoantibodies needed to be investigated in future studies.
Collapse
Affiliation(s)
- K Budding
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - E A van de Graaf
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - T Hoefnagel
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - C E Hack
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Rheumatology, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Dermatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - H G Otten
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Britto CJ, Liu Q, Curran DR, Patham B, Dela Cruz CS, Cohn L. Short palate, lung, and nasal epithelial clone-1 is a tightly regulated airway sensor in innate and adaptive immunity. Am J Respir Cell Mol Biol 2013; 48:717-24. [PMID: 23470624 DOI: 10.1165/rcmb.2012-0072oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Short palate, lung, and nasal epithelial clone-1 (SPLUNC1) is a protein abundantly expressed by the respiratory epithelium of the proximal lower respiratory tract, a site of great environmental exposure. Previous studies showed that SPLUNC1 exerts antimicrobial effects, regulates airway surface liquid and mucociliary clearance, and suppresses allergic airway inflammation. We studied SPLUNC1 to gain insights into its role in host defense. In the lower respiratory tract, concentrations of SPLUNC1 are high under basal conditions. In models of pneumonia caused by common respiratory pathogens, and in Th1-induced and Th2-induced airway inflammation, SPLUNC1 secretion is markedly reduced. Pathogen-associated molecular patterns and IFN-γ act directly on airway epithelial cells to inhibit SPLUNC1 mRNA expression. Thus, SPLUNC1 is quickly suppressed during infection, in response to an insult on the epithelial surface. These experiments highlight the finely tuned fluctuations of SPLUNC1 in response to exposures in the respiratory tract, and suggest that the loss of SPLUNC1 is a crucial feature of host defense across air-breathing animal species.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary and Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
29
|
Musa M, Wilson K, Sun L, Mulay A, Bingle L, Marriott HM, LeClair EE, Bingle CD. Differential localisation of BPIFA1 (SPLUNC1) and BPIFB1 (LPLUNC1) in the nasal and oral cavities of mice. Cell Tissue Res 2012; 350:455-64. [PMID: 22986921 PMCID: PMC3505551 DOI: 10.1007/s00441-012-1490-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/16/2012] [Indexed: 01/14/2023]
Abstract
Despite being initially identified in mice, little is known about the sites of production of members of the BPI fold (BPIF) containing (PLUNC) family of putative innate defence proteins in this species. These proteins have largely been considered to be specificaly expressed in the respiratory tract, and we have recently shown that they exhibit differential expression in the epithelium of the proximal airways. In this study, we have used species-specific antibodies to systematically localize two members of this protein family; BPIFA1 (PLUNC/SPLUNC1) and BPIFB1 (LPLUNC1) in adult mice. In general, these proteins exhibit distinct and only partially overlapping localization. BPIFA1 is highly expressed in the respiratory epithelium and Bowman’s glands of the nasal passages, whereas BPIFB1 is present in small subset of goblet cells in the nasal passage and pharynx. BPIFB1 is also present in the serous glands in the proximal tongue where is co-localised with the salivary gland specific family member, BPIFA2E (parotid secretory protein) and also in glands of the soft palate. Both proteins exhibit limited expression outside of these regions. These results are consistent with the localization of the proteins seen in man. Knowledge of the complex expression patterns of BPIF proteins in these regions will allow the use of tractable mouse models of disease to dissect their function.
Collapse
Affiliation(s)
- Maslinda Musa
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Although the biology the PLUNC (recently renamed BPI fold, BPIF) family of secreted proteins is poorly understood, multiple array based studies have suggested that some are differentially expressed in lung diseases. We have examined the expression of BPIFB1 (LPLUNC1), the prototypic two-domain containing family member, in lungs from CF patients and in mouse models of CF lung disease. BPIFB1 was localized in CF lung samples along with BPIFA1, MUC5AC, CD68 and NE and directly compared to histologically normal lung tissues and that of bacterial pneumonia. We generated novel antibodies to mouse BPIF proteins to conduct similar studies on ENaC transgenic (ENaC-Tg) mice, a model for CF-like lung disease. Small airways in CF demonstrated marked epithelial staining of BPIFB1 in goblet cells but staining was absent from alveolar regions. BPIFA1 and BPIFB1 were not co-localised in the diseased lungs. In ENaC-Tg mice there was strong staining of both proteins in the airways and luminal contents. This was most marked for BPIFB1 and was noted within 2 weeks of birth. The two proteins were present in distinct cells within epithelium. BPIFB1 was readily detected in BAL from ENaC-Tg mice but was absent from wild-type mice. Alterations in the expression of BPIF proteins is associated with CF lung disease in humans and mice. It is unclear if this elevation of protein production, which results from phenotypic alteration of the cells within the diseased epithelium, plays a role in the pathogenesis of the disease.
Collapse
|
31
|
Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB proteins as a subfamily of the BPI fold-containing superfamily. Biochem Soc Trans 2011; 39:977-83. [PMID: 21787333 DOI: 10.1042/bst0390977] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present the BPIFAn/BPIFBn systematic nomenclature for the PLUNC (palate lung and nasal epithelium clone)/PSP (parotid secretory protein)/BSP30 (bovine salivary protein 30)/SMGB (submandibular gland protein B) family of proteins, based on an adaptation of the SPLUNCn (short PLUNCn)/LPLUNCn (large PLUNCn) nomenclature. The nomenclature is applied to a set of 102 sequences which we believe represent the current reliable data for BPIFA/BPIFB proteins across all species, including marsupials and birds. The nomenclature will be implemented by the HGNC (HUGO Gene Nomenclature Committee).
Collapse
|
32
|
Abstract
Although gene expression studies have shown that human PLUNC (palate, lung and nasal epithelium clone) proteins are predominantly expressed in the upper airways, nose and mouth, and proteomic studies have indicated they are secreted into airway and nasal lining fluids and saliva, there is currently little information concerning the localization of human PLUNC proteins. Our studies have focused on the localization of three members of this protein family, namely SPLUNC1 (short PLUNC1), SPLUNC2 and LPLUNC1 (long PLUNC1). Western blotting has indicated that PLUNC proteins are highly glycosylated, whereas immunohistochemical analysis demonstrated distinct patterns of expression. For example, SPLUNC2 is expressed in serous cells of the major salivary glands and in minor mucosal glands, whereas SPLUNC1 is expressed in the mucous cells of these glands. LPLUNC1 is a product of a population of goblet cells in the airway epithelium and nasal passages and expressed in airway submucosal glands and minor glands of the oral and nasal cavities. SPLUNC1 is also found in the epithelium of the upper airways and nasal passages and in airway submucosal glands, but is not co-expressed with LPLUNC1. We suggest that this differential expression may be reflected in the function of individual PLUNC proteins.
Collapse
|