1
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
2
|
Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 2023; 14:1009-1033. [PMID: 38147065 PMCID: PMC10750837 DOI: 10.18632/oncotarget.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool to selectively and efficiently recover a given chromosomal segment up to several hundred kb in length from complex genomes (such as animals and plants) and simple genomes (such as bacteria and viruses). The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. In this review, we summarize multiple applications of the pioneering TAR cloning technique, developed previously for complex genomes, for functional, evolutionary, and structural studies, and extended the modified TAR versions to isolate biosynthetic gene clusters (BGCs) from microbes, which are the major source of pharmacological agents and industrial compounds, and to engineer synthetic viruses with novel properties to design a new generation of vaccines. TAR cloning was adapted as a reliable method for the assembly of synthetic microbe genomes for fundamental research. In this review, we also discuss how the TAR cloning in combination with HAC (human artificial chromosome)- and CRISPR-based technologies may contribute to the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Baranova SV, Zhdanova PV, Lomzov AA, Koval VV, Chernonosov AA. Structure- and Content-Dependent Efficiency of Cas9-Assisted DNA Cleavage in Genome-Editing Systems. Int J Mol Sci 2022; 23:ijms232213889. [PMID: 36430368 PMCID: PMC9693425 DOI: 10.3390/ijms232213889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Genome-editing systems, being some of the key tools of molecular biologists, represent a reasonable hope for progress in the field of personalized medicine. A major problem with such systems is their nonideal accuracy and insufficient selectivity. The selectivity of CRISPR-Cas9 systems can be improved in several ways. One efficient way is the proper selection of the consensus sequence of the DNA to be cleaved. In the present work, we attempted to evaluate the effect of formed non-Watson-Crick pairs in a DNA duplex on the efficiency of DNA cleavage in terms of the influence of the structure of the formed partially complementary pairs. We also studied the effect of the location of such pairs in DNA relative to the PAM (protospacer-adjacent motif) on the cleavage efficiency. We believe that the stabilization of the Cas9-sgRNA complex with a DNA substrate containing noncomplementary pairs is due to loop reorganization in the RuvC domain of the enzyme. In addition, PAM-proximal mismatches in the DNA substrate lower enzyme efficiency because the "seed" region is involved in binding and cleavage, whereas PAM-distal mismatches have no significant impact on target DNA cleavage. Our data suggest that in the case of short duplexes with mismatches, the stages of recognition and binding of dsDNA substrates by the enzyme determine the reaction rate and time rather than the thermodynamic parameters affected by the "unwinding" of DNA. The results will provide a theoretical basis for predicting the efficiency and accuracy of CRISPR-Cas9 systems at cleaving target DNA.
Collapse
Affiliation(s)
- Svetlana V. Baranova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Zhang H, You C. 16S ribosomal RNA-depletion PCR and its application in cause analysis of yogurt package shrinkage. J Dairy Sci 2022; 105:7288-7297. [PMID: 35931476 DOI: 10.3168/jds.2021-21575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Fermentative bacteria, the main microbiota in yogurt, interfere with the detection of unintended bacterial contaminants. The removal of fermentative bacteria and enrichment of unintended bacterial contaminants is a challenging task in bacterial detection. The present study developed a new 16S rRNA-depletion PCR for such enrichment and detection. Specifically, a single-guide RNA was designed and synthesized based on the 16S rRNA sequence of Streptococcus thermophilus, with the highest DNA abundance in the yogurt. The CRISPR-Cas9 system was used to specifically cleave and remove the genomic DNA of the fermentative bacteria, followed by PCR amplification. This method improved the detection sensitivity, simplified the operation steps, and reduced the detection cost of PCR analysis. We also used the 16S rRNA-depletion PCR to amplify and detect the unintended bacterial contaminants in yogurts with shrunken packages and analyzed the underlying reasons to prevent this issue of product quality.
Collapse
Affiliation(s)
- Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China.
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China
| |
Collapse
|
5
|
Vos PD, Rossetti G, Mantegna JL, Siira SJ, Gandadireja AP, Bruce M, Raven SA, Khersonsky O, Fleishman SJ, Filipovska A, Rackham O. Computationally designed hyperactive Cas9 enzymes. Nat Commun 2022; 13:3023. [PMID: 35641498 PMCID: PMC9156780 DOI: 10.1038/s41467-022-30598-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
The ability to alter the genomes of living cells is key to understanding how genes influence the functions of organisms and will be critical to modify living systems for useful purposes. However, this promise has long been limited by the technical challenges involved in genetic engineering. Recent advances in gene editing have bypassed some of these challenges but they are still far from ideal. Here we use FuncLib to computationally design Cas9 enzymes with substantially higher donor-independent editing activities. We use genetic circuits linked to cell survival in yeast to quantify Cas9 activity and discover synergistic interactions between engineered regions. These hyperactive Cas9 variants function efficiently in mammalian cells and introduce larger and more diverse pools of insertions and deletions into targeted genomic regions, providing tools to enhance and expand the possible applications of CRISPR-based gene editing. The ability to alter the genomes of living cells is key to understanding how genes influence the functions of organisms and will be critical to modify living systems for useful purposes. Here, the authors use computational design to discover Cas9 enzymes with increased activity.
Collapse
Affiliation(s)
- Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Jessica L Mantegna
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
| | - Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
| | - Mitchell Bruce
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Samuel A Raven
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
| | - Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, WA, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia. .,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia. .,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
6
|
Kouprina N, Kim J, Larionov V. Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast. Curr Protoc 2021; 1:e207. [PMID: 34370406 PMCID: PMC8363120 DOI: 10.1002/cpz1.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here we describe an updated TAR cloning protocol for the selective and efficient isolation of any genomic fragment or gene of interest up to 280 kb in size from genomic DNA. The method exploits the special recombination machinery of the yeast Saccharomyces cerevisiae. TAR cloning is based on the high level of in vivo recombination that occurs between a specific genomic DNA fragment of interest and targeting sequences (hooks) in a TAR vector that are homologous to the 5' and 3' ends of the targeted region. Upon co-transformation into yeast, this results in the isolation of the chromosomal region of interest as a circular YAC molecule, which then propagates and segregates in yeast cells and can be selected for. In the updated TAR cloning protocol described here, the fraction of region-positive clones typically obtained is increased from 1% up to 35% by pre-treatment of the genomic DNA with specifically designed CRISPR/Cas9 endonucleases that create double-strand breaks (DSBs) bracketing the target genomic DNA sequence, thereby making the ends of the chromosomal region of interest highly recombinogenic. In addition, a new TAR vector was constructed that contains YAC and BAC cassettes, permitting direct transfer of a TAR-cloned DNA from yeast to bacterial cells. Once the TAR vector with the hooks is constructed and genomic DNA is prepared, the entire procedure takes 3 weeks to complete. The updated TAR protocol does not require significant yeast experience or extensively time-consuming yeast work because screening only about a dozen yeast transformants is typically enough to find a clone with the region of interest. TAR cloning of chromosomal fragments, individual genes, or gene families can be used for functional, structural, and population studies, for comparative genomics, and for long-range haplotyping, and has potential for gene therapy. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of CRISPR/Cas9-treated genomic DNA for TAR cloning Basic Protocol 2: Isolation of a gene or genomic locus by TAR cloning Basic Protocol 3: Transfer of TAR/YAC/BAC isolates from yeast to E. coli.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Jung‐Hyun Kim
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| |
Collapse
|
7
|
Xu X, Feng J, Zhang P, Fan J, Yin WB. A CRISPR/Cas9 Cleavage System for Capturing Fungal Secondary Metabolite Gene Clusters. J Microbiol Biotechnol 2021; 31:8-15. [PMID: 33144546 PMCID: PMC9705949 DOI: 10.4014/jmb.2008.08040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
More and more available fungal genome sequence data reveal a large amount of secondary metabolite (SM) biosynthetic 'dark matter' to be discovered. Heterogeneous expression is one of the most effective approaches to exploit these novel natural products, but it is limited by having to clone entire biosynthetic gene clusters (BGCs) without errors. So far, few effective technologies have been developed to manipulate the specific large DNA fragments in filamentous fungi. Here, we developed a fungal BGC-capturing system based on CRISPR/Cas9 cleavage in vitro. In our system, Cas9 protein was purified and CRISPR guide sequences in combination with in vivo yeast assembly were rationally designed. Using targeted cleavages of plasmid DNAs with linear (8.5 kb) or circular (8.5 kb and 28 kb) states, we were able to cleave the plasmids precisely, demonstrating the high efficiency of this system. Furthermore, we successfully captured the entire Nrc gene cluster from the genomic DNA of Neosartorya fischeri. Our results provide an easy and efficient approach to manipulate fungal genomic DNA based on the in vitro application of Cas9 endonuclease. Our methodology will lay a foundation for capturing entire groups of BGCs in filamentous fungi and accelerate fungal SMs mining.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jin Feng
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China
| | - Peng Zhang
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China
| | - Jie Fan
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China,Corresponding author Phone: +86-10-64806170 E-mail:
| |
Collapse
|
8
|
Wang G, Liang R, Liu Z, Shen Z, Shi J, Shi Y, Deng F, Xiao S, Fu ZF, Peng G. The N-Terminal Domain of Spike Protein Is Not the Enteric Tropism Determinant for Transmissible Gastroenteritis Virus in Piglets. Viruses 2019; 11:v11040313. [PMID: 30935078 PMCID: PMC6520731 DOI: 10.3390/v11040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is the etiologic agent of transmissible gastroenteritis in pigs, and the N-terminal domain of TGEV spike protein is generally recognized as both the virulence determinant and enteric tropism determinant. Here, we assembled a full-length infectious cDNA clone of TGEV in a bacterial artificial chromosome. Using a novel approach, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems efficiently and rapidly rescued another recombinant virus with a 224-amino-acid deletion in the N-terminal domain of the TGEV Spike gene (S_NTD224), which is analogous to the N-terminal domain of porcine respiratory coronavirus. S_NTD224 notably affected the TGEV growth kinetics in PK-15 cells but was not essential for recombinant virus survival. In animal experiments with 13 two-day-old piglets, the TGEV recombinant viruses with/without S_NTD224 deletion induced obvious clinical signs and mortality. Together, our results directly demonstrated that S_NTD224 of TGEV mildly influenced TGEV virulence but was not the enteric tropism determinant and provide new insights for the development of a new attenuated vaccine against TGEV. Importantly, the optimized reverse genetics platform used in this study will simplify the construction of mutant infectious clones and help accelerate progress in coronavirus research.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Ziwei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Feng Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
- Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
She W, Ni J, Shui K, Wang F, He R, Xue J, Reetz MT, Li A, Ma L. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System. ACS Synth Biol 2018; 7:2236-2244. [PMID: 30075075 DOI: 10.1021/acssynbio.8b00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The quality and efficiency of any PCR-based mutagenesis technique may not be optimal due to, among other things, amino acid bias, which means that the development of efficient PCR-free methods is desirable. Here, we present a highly efficient in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants in a PCR-free manner. First, it involves plasmid digestion by utilizing a complex of Cas9 with specific single guide RNA (sgRNA) followed by degradation with T5 exonuclease to generate a 15 nt homologous region. Second, primers containing the desired mutations are annealed to form the double-stranded DNA fragments, which are then ligated into the linearized plasmid. In theory, neither the size of the target plasmid nor the unavailable restriction enzyme site poses any problems that may arise in traditional techniques. In this study, single and multiple site-directed mutagenesis were successfully performed even for a large size plasmid (up to 9.0 kb). Moreover, a PCR-free site-saturation mutagenesis library on single site and two adjacent sites of a green fluorescent protein was also generated with promising results. This demonstrates the great potential of the ICM system for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.
Collapse
Affiliation(s)
- Wenwen She
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jing Ni
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ruyi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jinhui Xue
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
10
|
Gerlach M, Kraft T, Brenner B, Petersen B, Niemann H, Montag J. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9- GMNN Fusion Gene. Genes (Basel) 2018; 9:genes9060296. [PMID: 29899280 PMCID: PMC6027509 DOI: 10.3390/genes9060296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene (GMNN). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9-GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9-GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.
Collapse
Affiliation(s)
- Max Gerlach
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Bernhard Brenner
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
11
|
Kang HS, Charlop-Powers Z, Brady SF. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast. ACS Synth Biol 2016; 5:1002-10. [PMID: 27197732 DOI: 10.1021/acssynbio.6b00080] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Laboratory of Genetically
Encoded Small Molecules, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Zachary Charlop-Powers
- Laboratory of Genetically
Encoded Small Molecules, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Sean F. Brady
- Laboratory of Genetically
Encoded Small Molecules, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
12
|
Cui Y, Yu L. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites. Parasitol Int 2016; 65:641-644. [PMID: 27586395 DOI: 10.1016/j.parint.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 07/01/2016] [Accepted: 08/28/2016] [Indexed: 11/18/2022]
Abstract
The clustered regularly-interspaced short palindromic repeats (CRISPR) structural family functions as an acquired immune system in prokaryotes. Gene editing techniques have co-opted CRISPR and the associated Cas nucleases to allow for the precise genetic modification of human cells, zebrafish, mice, and other eukaryotes. Indeed, this approach has been used to induce a variety of modifications including directed insertion/deletion (InDel) of bases, gene knock-in, introduction of mutations in both alleles of a target gene, and deletion of small DNA fragments. Thus, CRISPR technology offers a precise molecular tool for directed genome modification with a range of potential applications; further, its high mutation efficiency, simple process, and low cost provide additional advantages over prior editing techniques. This paper will provide an overview of the basic structure and function of the CRISPR gene editing system as well as current and potential applications to research on parasites.
Collapse
Affiliation(s)
- Yubao Cui
- Department of Clinical Laboratory, The Third People's Hospital of Yancheng, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng 224001, Jiangsu Province, PR China.
| | - Lili Yu
- Department of Laboratory Medicine, Yancheng Health Vocational & Technical College, Yancheng 224006, Jiangsu Province, PR China
| |
Collapse
|
13
|
Jiang W, Zhu TF. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nat Protoc 2016; 11:960-75. [PMID: 27101517 DOI: 10.1038/nprot.2016.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cloning of long microbial genomic sequences is an essential tool in synthetic biology and genome engineering. Such long sequences are often difficult to obtain directly by traditional PCR or restriction enzyme digestion, and therefore the cloning of these sequences has remained a technical obstacle in molecular biology. Based on the in vitro application of RNA-guided Cas9 nuclease, the method of Cas9-assisted targeting of chromosome segments (CATCH) cleaves target DNA in vitro from intact bacterial chromosomes embedded in agarose plugs, which can be subsequently ligated with cloning vector through Gibson assembly. Here we describe an optimized protocol of CATCH cloning for the targeted cloning of long genomic sequences of up to 100 kb from microorganisms. The protocol uses standard laboratory equipment and takes ∼8 h of bench time over several days, and it may potentially simplify and accelerate efforts to isolate and clone large gene clusters from microorganisms.
Collapse
Affiliation(s)
- Wenjun Jiang
- School of Life Sciences, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioinformatics, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| | - Ting F Zhu
- School of Life Sciences, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioinformatics, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y, Yang A, Liu Y, Ju Y, Deng Z, Tosin M, Sun Y, Leadlay PF. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis. Chem Sci 2016; 7:376-385. [PMID: 28791099 PMCID: PMC5518548 DOI: 10.1039/c5sc03059e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
Thiolactomycin (TLM) is a thiotetronate antibiotic that selectively targets bacterial fatty acid biosynthesis through inhibition of the β-ketoacyl-acyl carrier protein synthases (KASI/II) that catalyse chain elongation on the type II (dissociated) fatty acid synthase. It has proved effective in in vivo infection models of Mycobacterium tuberculosis and continues to attract interest as a template for drug discovery. We have used a comparative genomics approach to uncover the (hitherto elusive) biosynthetic pathway to TLM and related thiotetronates. Analysis of the whole-genome sequence of Streptomyces olivaceus Tü 3010 producing the more ramified thiotetronate Tü 3010 provided initial evidence that such thiotetronates are assembled by a novel iterative polyketide synthase-nonribosomal peptide synthetase, and revealed the identity of other pathway enzymes, encoded by adjacent genes. Subsequent genome sequencing of three other thiotetronate-producing actinomycetes, including the Lentzea sp. ATCC 31319 that produces TLM, confirmed that near-identical clusters were also present in these genomes. In-frame gene deletion within the cluster for Tü 3010 from Streptomyces thiolactonus NRRL 15439, or within the TLM cluster, led to loss of production of the respective thiotetronate, confirming their identity. Each cluster houses at least one gene encoding a KASI/II enzyme, suggesting plausible mechanisms for self-resistance. A separate genetic locus encodes a cysteine desulfurase and a (thiouridylase-like) sulfur transferase to supply the sulfur atom for thiotetronate ring formation. Transfer of the main Tü 3010 gene cluster (stu gene cluster) into Streptomyces avermitilis led to heterologous production of this thiotetronate, showing that an equivalent sulfur donor can be supplied by this host strain. Mutational analysis of the Tü 3010 and TLM clusters has revealed the unexpected role of a cytochrome P450 enzyme in thiotetronate ring formation. These insights have allowed us to propose a mechanism for sulfur insertion, and have opened the way to engineering of the biosynthesis of TLM and other thiotetronates to produce novel analogues.
Collapse
Affiliation(s)
- W Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - M E Yurkovich
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - S Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - K E Lebe
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - M Samborskyy
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - Y Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - A Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Y Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Y Ju
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Z Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - M Tosin
- Department of Chemistry , University of Warwick , Library Road , Coventry CV4 7AL , UK
| | - Y Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - P F Leadlay
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| |
Collapse
|
15
|
Glemzaite M, Balciunaite E, Karvelis T, Gasiunas G, Grusyte MM, Alzbutas G, Jurcyte A, Anderson EM, Maksimova E, Smith AJ, Lubys A, Zaliauskiene L, Siksnys V. Targeted gene editing by transfection of in vitro reconstituted Streptococcus thermophilus Cas9 nuclease complex. RNA Biol 2015; 12:1-4. [PMID: 25826410 PMCID: PMC4615908 DOI: 10.1080/15476286.2015.1017209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
16
|
Abstract
UNLABELLED The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, an RNA-guided nuclease for specific genome editing in vivo, has been adopted in a wide variety of organisms. In contrast, the in vitro application of the CRISPR/Cas9 system has rarely been reported. We present here a highly efficient in vitro CRISPR/Cas9-mediated editing (ICE) system that allows specific refactoring of biosynthetic gene clusters in Streptomyces bacteria and other large DNA fragments. Cleavage by Cas9 of circular pUC18 DNA was investigated here as a simple model, revealing that the 3'→5' exonuclease activity of Cas9 generates errors with 5 to 14 nucleotides (nt) randomly missing at the editing joint. T4 DNA polymerase was then used to repair the Cas9-generated sticky ends, giving substantial improvement in editing accuracy. Plasmid pYH285 and cosmid 10A3, harboring a complete biosynthetic gene cluster for the antibiotics RK-682 and holomycin, respectively, were subjected to the ICE system to delete the rkD and homE genes in frame. Specific insertion of the ampicillin resistance gene (bla) into pYH285 was also successfully performed. These results reveal the ICE system to be a rapid, seamless, and highly efficient way to edit DNA fragments, and a powerful new tool for investigating and engineering biosynthetic gene clusters. IMPORTANCE Recent improvements in cloning strategies for biosynthetic gene clusters promise rapid advances in understanding and exploiting natural products in the environment. For manipulation of such biosynthetic gene clusters to generate valuable bioactive compounds, efficient and specific gene editing of these large DNA fragments is required. In this study, a highly efficient in vitro DNA editing system has been established. When combined with end repair using T4 DNA polymerase, Cas9 precisely and seamlessly catalyzes targeted editing, including in-frame deletion or insertion of the gene(s) of interest. This in vitro CRISPR editing (ICE) system promises a step forward in our ability to engineer biosynthetic pathways.
Collapse
|
17
|
Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP. DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus. Nucleic Acids Res 2015; 43:10353-63. [PMID: 26519471 PMCID: PMC4666368 DOI: 10.1093/nar/gkv1140] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
CRISPR–Cas systems silence plasmids and viruses in prokaryotes. CRISPR–Cas effector complexes contain CRISPR RNAs (crRNAs) that include sequences captured from invaders and direct CRISPR-associated (Cas) proteins to destroy corresponding invader nucleic acids. Pyrococcus furiosus (Pfu) harbors three CRISPR–Cas immune systems: a Cst (Type I-G) system with an associated Cmr (Type III-B) module at one locus, and a partial Csa (Type I-A) module (lacking known invader sequence acquisition and crRNA processing genes) at another locus. The Pfu Cmr complex cleaves complementary target RNAs, and Csa systems have been shown to target DNA, while the mechanism by which Cst complexes silence invaders is unknown. In this study, we investigated the function of the Cst as well as Csa system in Pfu strains harboring a single CRISPR–Cas system. Plasmid transformation assays revealed that the Cst and Csa systems both function by DNA silencing and utilize similar flanking sequence information (PAMs) to identify invader DNA. Silencing by each system specifically requires its associated Cas3 nuclease. crRNAs from the 7 shared CRISPR loci in Pfu are processed for use by all 3 effector complexes, and Northern analysis revealed that individual effector complexes dictate the profile of mature crRNA species that is generated.
Collapse
Affiliation(s)
- Joshua Elmore
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Trace Deighan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jan Westpheling
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rebecca M Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun 2015; 6:8101. [PMID: 26323354 PMCID: PMC4569707 DOI: 10.1038/ncomms9101] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022] Open
Abstract
The cloning of long DNA segments, especially those containing large gene clusters, is of particular importance to synthetic and chemical biology efforts for engineering organisms. While cloning has been a defining tool in molecular biology, the cloning of long genome segments has been challenging. Here we describe a technique that allows the targeted cloning of near-arbitrary, long bacterial genomic sequences of up to 100 kb to be accomplished in a single step. The target genome segment is excised from bacterial chromosomes in vitro by the RNA-guided Cas9 nuclease at two designated loci, and ligated to the cloning vector by Gibson assembly. This technique can be an effective molecular tool for the targeted cloning of large gene clusters that are often expensive to synthesize by gene synthesis or difficult to obtain directly by traditional PCR and restriction-enzyme-based methods. Genomic engineering often requires the cloning of long DNA segments that contain large gene clusters. Here, the authors describe an RNA-guided Cas9 nuclease assisted in vitro technique that allows the targeted cloning of near-arbitrary, long bacterial genomic sequences of up to 100 kb in a single step.
Collapse
Affiliation(s)
- Wenjun Jiang
- School of Life Sciences, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioinformatics, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Xuejin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tslil Gabrieli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ting F Zhu
- School of Life Sciences, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioinformatics, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 2015; 21:310-21. [PMID: 25716921 DOI: 10.1007/s13365-014-0308-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Current therapy for controlling human immunodeficiency virus (HIV-1) infection and preventing acquired immunodeficiency syndrome (AIDS) progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells, which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or "sterile" cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS.
Collapse
Affiliation(s)
- Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA,
| | | | | | | | | |
Collapse
|
20
|
Lee NCO, Larionov V, Kouprina N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res 2015; 43:e55. [PMID: 25690893 PMCID: PMC4417148 DOI: 10.1093/nar/gkv112] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022] Open
Abstract
Transformation-associated recombination (TAR) protocol allowing the selective isolation of full-length genes complete with their distal enhancer regions and entire genomic loci with sizes up to 250 kb from complex genomes in yeast S. cerevisiae has been developed more than a decade ago. However, its wide spread usage has been impeded by a low efficiency (0.5–2%) of chromosomal region capture during yeast transformants which in turn requires a time-consuming screen of hundreds of colonies. Here, we demonstrate that pre-treatment of genomic DNA with CRISPR-Cas9 nucleases to generate double-strand breaks near the targeted genomic region results in a dramatic increase in the fraction of gene-positive colonies (up to 32%). As only a dozen or less yeast transformants need to be screened to obtain a clone with the desired chromosomal region, extensive experience with yeast is no longer required. A TAR-CRISPR protocol may help to create a bank of human genes, each represented by a genomic copy containing its native regulatory elements, that would lead to a significant advance in functional, structural and comparative genomics, in diagnostics, gene replacement, generation of animal models for human diseases and has a potential for gene therapy.
Collapse
Affiliation(s)
- Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Mahfouz MM, Piatek A, Stewart CN. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1006-14. [PMID: 25250853 DOI: 10.1111/pbi.12256] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 05/07/2023]
Abstract
The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any sequence of interest. Thus, TALEs have been used as a DNA targeting module fused to functional domains for a variety of targeted genomic and epigenomic modifications. TALE nucleases (TALENs) have been used with much success across eukaryotic species to edit genomes. Recently, clustered regularly interspaced palindromic repeats (CRISPRs) that are used as guide RNAs for Cas9 nuclease-specific digestion has been introduced as a highly efficient DNA-targeting platform for genome editing and regulation. Here, we review the discovery, development and limitations of TALENs and CRIPSR/Cas9 systems as genome-engineering platforms in plants. We discuss the current questions, potential improvements and the development of the next-generation genome-editing platforms with an emphasis on producing designer plants to address the needs of agriculture and basic plant biology.
Collapse
Affiliation(s)
- Magdy M Mahfouz
- Division of Biological Sciences & Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | |
Collapse
|
22
|
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 2014; 111:11461-6. [PMID: 25049410 PMCID: PMC4128125 DOI: 10.1073/pnas.1405186111] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIDS remains incurable due to the permanent integration of HIV-1 into the host genome, imparting risk of viral reactivation even after antiretroviral therapy. New strategies are needed to ablate the viral genome from latently infected cells, because current methods are too inefficient and prone to adverse off-target effects. To eliminate the integrated HIV-1 genome, we used the Cas9/guide RNA (gRNA) system, in single and multiplex configurations. We identified highly specific targets within the HIV-1 LTR U3 region that were efficiently edited by Cas9/gRNA, inactivating viral gene expression and replication in latently infected microglial, promonocytic, and T cells. Cas9/gRNAs caused neither genotoxicity nor off-target editing to the host cells, and completely excised a 9,709-bp fragment of integrated proviral DNA that spanned from its 5' to 3' LTRs. Furthermore, the presence of multiplex gRNAs within Cas9-expressing cells prevented HIV-1 infection. Our results suggest that Cas9/gRNA can be engineered to provide a specific, efficacious prophylactic and therapeutic approach against AIDS.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140;
| | - Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Fan Yang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Yonggang Zhang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Laura Cosentino
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Fang Li
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Biao Luo
- Cancer Genome Institute, Fox Chase Cancer Center, Temple University School of Medicine, Philadelphia, PA 19111
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140;
| |
Collapse
|