1
|
Trevizol JS, Dionizio A, Delgado AQ, Ventura TMO, Ribeiro CFDS, Ribeiro L, Buzalaf NR, Cestari TM, Magalhães AC, Suzuki M, Bosqueiro JR, Buzalaf MAR. Metabolic effect of low fluoride levels in the islets of NOD mice: integrative morphological, immunohistochemical, and proteomic analyses. J Appl Oral Sci 2023; 31:e20230036. [PMID: 37283331 PMCID: PMC10247282 DOI: 10.1590/1678-7757-2023-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVES Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. METHODOLOGY In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. RESULTS In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. CONCLUSION Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aline Dionizio
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | | | | | - Laura Ribeiro
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nathalia Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Tânia Mary Cestari
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Ana Carolina Magalhães
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Maiko Suzuki
- The Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta, Georgia, United States
| | - José Roberto Bosqueiro
- Universidade Estadual Paulista, Faculdade de Ciências, Departamento de Educação Física, Bauru, São Paulo, Brasil
| | - Marília Afonso Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
2
|
Celik F, Simsek S, Selcuk MA, Kesik HK, Gunyakti Kilinc S, Aslan Celik B. Cloning and expression of Fasciola hepatica enolase gene and efficacy of recombinant protein in the serodiagnosis of sheep fasciolosis. Vet Parasitol 2023; 320:109961. [PMID: 37290212 DOI: 10.1016/j.vetpar.2023.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Fasciolosis caused by Fasciola hepatica is a disease of zoonotic importance that is common worldwide and can cause serious problems in farm animals, some wild animals and humans. The development of diagnostic kits for the correct diagnosis of fasciolosis in sheep is important in terms of preventing yield losses. With this study, it is aimed to clone and express the enolase gene to be isolated from adult F. hepatica and to determine the effectiveness of the recombinant antigen in the serodiagnosis of sheep fasciolosis. For this aim, primers were designed to amplify the enolase gene from the F. hepatica enolase sequence, mRNA was isolated from F. hepatica adult fluke obtained from an infected sheep followed by cDNA was obtained. Enolase gene was amplified by PCR and the product was cloned and then expressed. The efficiency of the purified recombinant protein was displayed by Western blot (WB) and ELISA using positive and negative sheep sera. As a result, the sensitivity and specificity rates of the recombinant FhENO antigen were 85% and %82.8 by WB while the rates were 90% and 97.14% by ELISA, respectively. At the same time, in sheep blood sera samples collected from the Elazig and Siirt provinces of Turkey, 100 (50%) of 200 sera were found to be positive by WB and 46 (23%) were found to be positive by ELISA. The most important problem in ELISA was the high cross-reaction rate of the recombinant antigen used, as in WB. In order to prevent the cross-reactions, it will be useful to compare the genes encoding the enolase protein of parasites from the closely related parasite family, and select the regions where there are no common epitopes, and clone them and test the purified protein.
Collapse
Affiliation(s)
- Figen Celik
- University of Firat, Faculty of Veterinary Medicine, Department of Parasitology, Elazig, Turkey
| | - Sami Simsek
- University of Firat, Faculty of Veterinary Medicine, Department of Parasitology, Elazig, Turkey.
| | - Muhammed Ahmed Selcuk
- Siirt University, Faculty of Veterinary Medicine, Department of Parasitology, Siirt, Turkey
| | - Harun Kaya Kesik
- Bingol University, Faculty of Veterinary Medicine, Department of Parasitology, Bingol, Turkey
| | - Seyma Gunyakti Kilinc
- Bingol University, Faculty of Veterinary Medicine, Department of Parasitology, Bingol, Turkey
| | - Burcak Aslan Celik
- Siirt University, Faculty of Veterinary Medicine, Department of Parasitology, Siirt, Turkey
| |
Collapse
|
3
|
Lesko MA, Chandrashekarappa DG, Jordahl EM, Oppenheimer KG, Bowman RW, Shang C, Durrant JD, Schmidt MC, O’Donnell AF. Changing course: Glucose starvation drives nuclear accumulation of Hexokinase 2 in S. cerevisiae. PLoS Genet 2023; 19:e1010745. [PMID: 37196001 PMCID: PMC10228819 DOI: 10.1371/journal.pgen.1010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Glucose is the preferred carbon source for most eukaryotes, and the first step in its metabolism is phosphorylation to glucose-6-phosphate. This reaction is catalyzed by hexokinases or glucokinases. The yeast Saccharomyces cerevisiae encodes three such enzymes, Hxk1, Hxk2, and Glk1. In yeast and mammals, some isoforms of this enzyme are found in the nucleus, suggesting a possible moonlighting function beyond glucose phosphorylation. In contrast to mammalian hexokinases, yeast Hxk2 has been proposed to shuttle into the nucleus in glucose-replete conditions, where it reportedly moonlights as part of a glucose-repressive transcriptional complex. To achieve its role in glucose repression, Hxk2 reportedly binds the Mig1 transcriptional repressor, is dephosphorylated at serine 15 and requires an N-terminal nuclear localization sequence (NLS). We used high-resolution, quantitative, fluorescent microscopy of live cells to determine the conditions, residues, and regulatory proteins required for Hxk2 nuclear localization. Countering previous yeast studies, we find that Hxk2 is largely excluded from the nucleus under glucose-replete conditions but is retained in the nucleus under glucose-limiting conditions. We find that the Hxk2 N-terminus does not contain an NLS but instead is necessary for nuclear exclusion and regulating multimerization. Amino acid substitutions of the phosphorylated residue, serine 15, disrupt Hxk2 dimerization but have no effect on its glucose-regulated nuclear localization. Alanine substation at nearby lysine 13 affects dimerization and maintenance of nuclear exclusion in glucose-replete conditions. Modeling and simulation provide insight into the molecular mechanisms of this regulation. In contrast to earlier studies, we find that the transcriptional repressor Mig1 and the protein kinase Snf1 have little effect on Hxk2 localization. Instead, the protein kinase Tda1 regulates Hxk2 localization. RNAseq analyses of the yeast transcriptome dispels the idea that Hxk2 moonlights as a transcriptional regulator of glucose repression, demonstrating that Hxk2 has a negligible role in transcriptional regulation in both glucose-replete and limiting conditions. Our studies define a new model of cis- and trans-acting regulators of Hxk2 dimerization and nuclear localization. Based on our data, the nuclear translocation of Hxk2 in yeast occurs in glucose starvation conditions, which aligns well with the nuclear regulation of mammalian orthologs. Our results lay the foundation for future studies of Hxk2 nuclear activity.
Collapse
Affiliation(s)
- Mitchell A. Lesko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dakshayini G. Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine G. Oppenheimer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin C. Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
ENO2 Promotes Colorectal Cancer Metastasis by Interacting with the LncRNA CYTOR and Activating YAP1-Induced EMT. Cells 2022; 11:cells11152363. [PMID: 35954207 PMCID: PMC9367517 DOI: 10.3390/cells11152363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The glycolytic enzyme enolase 2 (ENO2) is dysregulated in many types of cancer. However, the roles and detailed molecular mechanism of ENO2 in colorectal cancer (CRC) metastasis remain unclear. Here, we performed a comprehensive analysis of ENO2 expression in 184 local CRC samples and samples from the TCGA and GEO databases and found that ENO2 upregulation in CRC samples was negatively associated with prognosis. By knocking down and overexpressing ENO2, we found that ENO2 promoted CRC cell migration and invasion, which is dependent on its interaction with the long noncoding RNA (lncRNA) CYTOR, but did not depend on glycolysis regulation. Furthermore, CYTOR mediated ENO2 binding to large tumor suppressor 1 (LATS1) and competitively inhibited the phosphorylation of Yes-associated protein 1 (YAP1), which ultimately triggered epithelial–mesenchymal transition (EMT). Collectively, these findings highlight the molecular mechanism of the ENO2–CYTOR interaction, and ENO2 could be considered a potential therapeutic target for CRC.
Collapse
|
5
|
He Z, Piao J, Qiu Y, Lei D, Yang Y, Shi L, Wang F. Investigation of the location and secretion features of Candida albicans enolase with monoclonal antibodies. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The glycolytic enzyme enolase plays important role in the pathogenesis of Candida albicans infection and has been also considered as a promising molecular marker for the diagnosis of invasive candidiasis. This study aimed to investigate the location and secretion features of Candida albicans enolase (CaEno) with a couple of specific monoclonal antibodies (mAbs).
Methods
Two mAbs named 9H8 and 10H8 against CaEno were generated by fusing SP2/0 myeloma cell with the spleen lymphocytes from CaEno immunized mice. The specificity of the mAbs was then validated by Western blot and liquid chromatography-mass spectrometry (LC–MS/MS). A diverse set of experiments were conducted based on the pair of mAbs which involved immunohistochemical staining analysis, whole cell enzyme-linked immunosorbent assay (ELISA), double antibody sandwich ELISA, and confocal microscopy to analyze the possible location and secretion features of CaEno.
Results
CaEno is abundantly expressed in the cytoplasm of C. albicans blastospores and is distributed in a ring-shaped pattern along the cell wall. CaEno appeared in the hyphal C. albicans as just a “mushroom” form. CaEno was found to be weakly expressed on the surface of blastospores but constantly expressed at various stages of growth. CaEno concentrations in C. albicans blastospores culture supernatant are considerably higher than in C. albicans hyphae culture supernatant. The dynamic changes of supernatant CaEno concentration in blastospores and hyphal C. albicans exhibit distinct features, although both appear to be associated with the C. albicans growth state. When cultivated under normal circumstances, however, no apparent CaEno degradation was seen in the cell-free supernatant.
Conclusion
Our results implied that CaEno was constantly expressed on the cell surface and its secretion features varied according to the growth stage of C. albicans. However, further experimental and theoretical studies are needed in future to identify the specific mechanisms by which this phenomenon can arise.
Collapse
|
6
|
Moreno JC, Rojas BE, Vicente R, Gorka M, Matz T, Chodasiewicz M, Peralta‐Ariza JS, Zhang Y, Alseekh S, Childs D, Luzarowski M, Nikoloski Z, Zarivach R, Walther D, Hartman MD, Figueroa CM, Iglesias AA, Fernie AR, Skirycz A. Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO J 2021; 40:e106800. [PMID: 34156108 PMCID: PMC8327957 DOI: 10.15252/embj.2020106800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.
Collapse
Affiliation(s)
- Juan C Moreno
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Bruno E Rojas
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Michal Gorka
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Timon Matz
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- BioinformaticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | | | | | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Dorothee Childs
- European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | | | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- BioinformaticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Raz Zarivach
- Faculty of Natural SciencesThe Ben Gurion University of the NegevBeer ShevaIsrael
| | - Dirk Walther
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Matías D Hartman
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Boyce Thompson InstituteIthacaUSA
| |
Collapse
|
7
|
Ventura TMO, Ribeiro NR, Taira EA, de Lima Leite A, Dionizio A, Rubira CMF, da Silva Santos PS, Buzalaf MAR. Radiotherapy changes the salivary proteome in head and neck cancer patients: evaluation before, during, and after treatment. Clin Oral Investig 2021; 26:225-258. [PMID: 34052889 DOI: 10.1007/s00784-021-03995-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Salivary glands are affected during radiotherapy in the head and neck region, leading to a reduction in salivary flow and changes its composition. Besides negatively affecting the oral soft tissues, this can also lead to dental impairment. Thus, we evaluated the effect of radiotherapy in the proteomic profile of the saliva in patients with head and neck cancer (HNC). MATERIALS AND METHODS HNC patients had their saliva collected before (BRT), during (2-5 weeks; DRT), and after (3-4 months; ART) radiotherapy. Saliva was also collected from healthy volunteers (control; C). Samples were processed for proteomic analysis. RESULTS In total, 1055 proteins were identified, among which 46 were common to all groups, while 86, 86, 286, and 395 were exclusively found in C, BRT, DRT, and ART, respectively. Remarkably, alpha-enolase was increased 35-fold DRT compared with BRT, while proline-rich proteins were decreased. ART there was a 16-fold increase in scaffold attachment factor-B1 and a 3-fold decrease in alpha-enolase and several cystatins. When compared with C, salivary proteins of BRT patients showed increases cystatin-C, lysozyme C, histatin-1, and proline-rich proteins CONCLUSION/CLINICAL REVELANCE: Both HNC and radiotherapy remarkably change the salivary protein composition. Altogether, our results, for the first time, suggest investigating alpha-enolase levels in saliva DRT in future studies as a possible biomarker and strategy to predict the efficiency of the treatment. Moreover, our data provide important insights for designing dental products that are more effective for these patients and contribute to a better understanding of the progressive changes in salivary proteins induced by radiotherapy. Graphical abstract.
Collapse
Affiliation(s)
- Talita Mendes Oliveira Ventura
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Nathalia Regina Ribeiro
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Even Akemi Taira
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Aline Dionizio
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Cássia Maria Fischer Rubira
- Department of Surgery, Stomatology, Pathology and Radiology - Discipline of Radiology and Stomatology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology - Discipline of Radiology and Stomatology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil.
| |
Collapse
|
8
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, Cestari TM, Bosqueiro JR, Magalhães AC, Buzalaf MAR. Effects of low-level fluoride exposure on glucose homeostasis in female NOD mice. CHEMOSPHERE 2020; 254:126602. [PMID: 32334241 DOI: 10.1016/j.chemosphere.2020.126602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Water fluoridation is an important public health measure for the control of dental caries. Recent animal studies have shown that low doses of fluoride (F) in the drinking water, similar to those found in public water supplies, increase insulin sensitivity and reduce blood glucose. In the present study we evaluated the effects of low-level F exposure through the drinking water on glucose homeostasis in female NOD mice. Seventy-two 6-week mice were randomly divided into 2 groups according to the concentration of F in the drinking water (0-control, or 10 mg/L) they received for 14 weeks. After the experimental period the blood was collected for analyses of plasma F, glucose and insulin. Liver and gastrocnemius muscle were collected for proteomic analysis. Plasma F concentrations were significantly higher in the F-treated than in the control group. Despite treatment with fluoridated water reduced plasma levels glucose by 20% compared to control, no significant differences were found between the groups for plasma glucose and insulin. In the muscle, treatment with fluoridated water increased the expression of proteins related to muscle contraction, while in the liver, there was an increase in expression of antioxidant proteins and in proteins related to carboxylic acid metabolic process. Remarkably, phosphoenolpyruvate carboxykinase (PEPCK) was found exclusively in the liver of control mice. The reduction in PEPCK, a positive regulator of gluconeogenesis, thus increasing glucose uptake, might be a probable mechanism to explain the anti-diabetic effects of low doses of F, which should be evaluated in further studies.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Tania Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - José Roberto Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
9
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
10
|
Mo Y, Fan Y, Fu W, Xu W, Chen S, Wen Y, Liu S, Peng L, Xiao Y. Acute immune stress improves cell resistance to chemical poison damage in SP600125-induced polyploidy of fish cells in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 84:656-663. [PMID: 30393156 DOI: 10.1016/j.fsi.2018.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Previous research has indicated that the small compound, SP600125, could induce polyploidy of fish cells, and has established a stable tetraploid cell line from diploid fish cells. In order to explore how fish cells maintain homeostasis under SP600125-stress in vitro, this study investigates impacts of SP600125-stress on intracellular pathways, as well as on regulation of the cellular homeostasis feedback in fish cells. Transcriptomes are obtained from the SP600125-treated cells. Compared with unigenes expressed in control group (crucial carp fin cells), a total of 2670 and 1846 unigenes are significantly upregulated and downregulated in these cells, respectively. Differentially expressed genes are found, which are involved in innate defense, inflammatory pathways and cell adhesion molecules-related pathways. The SP600125-stress enhances cell-mediated immunity, characterized by significantly increasing expression of multiple immune genes. These enhanced immune genes include the pro-inflammatory cytokines (IL-1β, TNF-ɑ, IL-6R), the adaptor signal transducers (STAT, IκBɑ), and the integrins (ɑ2β1, ɑMβ2). Furthermore, mitochondria are contributed to the cellular homeostasis regulation upon the SP600125-stress. The results show that acute inflammation is an adaptive and controlled response to the SP600125-stress, which is beneficial for alleviating toxicity by SP600125. They provide a potential way of breeding fish polyploidy induced by SP600125 in the future research.
Collapse
Affiliation(s)
- Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, 423000, PR China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Yuanhui Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China.
| |
Collapse
|
11
|
Vidal RS, Quarti J, Rodrigues MF, Rumjanek FD, Rumjanek VM. Metabolic Reprogramming During Multidrug Resistance in Leukemias. Front Oncol 2018; 8:90. [PMID: 29675398 PMCID: PMC5895924 DOI: 10.3389/fonc.2018.00090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR) phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Raphael Silveira Vidal
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Franklin D Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners. Cancers (Basel) 2018; 10:cancers10020051. [PMID: 29462900 PMCID: PMC5836083 DOI: 10.3390/cancers10020051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.
Collapse
|
13
|
Cho H, Um J, Lee JH, Kim WH, Kang WS, Kim SH, Ha HH, Kim YC, Ahn YK, Jung DW, Williams DR. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes. Sci Rep 2017; 7:44186. [PMID: 28272459 PMCID: PMC5341156 DOI: 10.1038/srep44186] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly impacts on human health and patient numbers are predicted to rise. Discovering novel drugs and targets for treating T2DM is a research priority. In this study, we investigated targeting of the glycolysis enzyme, enolase, using the small molecule ENOblock, which binds enolase and modulates its non-glycolytic ‘moonlighting’ functions. In insulin-responsive cells ENOblock induced enolase nuclear translocation, where this enzyme acts as a transcriptional repressor. In a mammalian model of T2DM, ENOblock treatment reduced hyperglycemia and hyperlipidemia. Liver and kidney tissue of ENOblock-treated mice showed down-regulation of known enolase target genes and reduced enolase enzyme activity. Indicators of secondary diabetic complications, such as tissue apoptosis, inflammatory markers and fibrosis were inhibited by ENOblock treatment. Compared to the well-characterized anti-diabetes drug, rosiglitazone, ENOblock produced greater beneficial effects on lipid homeostasis, fibrosis, inflammatory markers, nephrotoxicity and cardiac hypertrophy. ENOblock treatment was associated with the down-regulation of phosphoenolpyruvate carboxykinase and sterol regulatory element-binding protein-1, which are known to produce anti-diabetic effects. In summary, these findings indicate that ENOblock has potential for therapeutic development to treat T2DM. Previously considered as a ‘boring’ housekeeping gene, these results also implicate enolase as a novel drug target for T2DM.
Collapse
Affiliation(s)
- Haaglim Cho
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Wan Seok Kang
- Cell Regeneration Research Center, Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, 671 Jebong-ro, Dong-gu, Gwangju, 501-757, Korea
| | - So Hun Kim
- Division of Endocrinology and Metabolism, Inha University School of Medicine, 400-711, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 540950, Republic of Korea
| | - Yong-Chul Kim
- Drug Discovery Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Young-Keun Ahn
- Cell Regeneration Research Center, Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, 671 Jebong-ro, Dong-gu, Gwangju, 501-757, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
14
|
Park JH, Williams DR, Lee JH, Lee SD, Lee JH, Ko H, Lee GE, Kim S, Lee JM, Abdelrahman A, Müller CE, Jung DW, Kim YC. Potent Suppressive Effects of 1-Piperidinylimidazole Based Novel P2X7 Receptor Antagonists on Cancer Cell Migration and Invasion. J Med Chem 2016; 59:7410-30. [PMID: 27427902 DOI: 10.1021/acs.jmedchem.5b01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P2X7 receptor (P2X7R) has been reported as a key mediator in inflammatory processes and cancer invasion/metastasis. In this study, we report the discovery of novel P2X7R antagonists and their functional activities as potential antimetastatic agents. Modifications of the hydantoin core-skeleton and the side chain substituents of the P2X7R antagonist 7 were performed. The structure-activity relationships (SAR) and optimization demonstrated the importance of the sulfonyl group at the R1 position and the substituted position and overall size of R2 for P2X7R antagonism. The optimized novel analogues displayed potent P2X7 receptor antagonism (IC50 = 0.11-112 nM) along with significant suppressive effects on IL-1β release (IC50 = 0.32-210 nM). Moreover, representative antagonists (12g, 13k, and 17d) with imidazole and uracil core skeletons significantly inhibited the invasion of MDA-MB-231 triple negative breast cancer cells and cancer cell migration in a zebrafish xenograft model, suggesting the potential therapeutic application of these novel P2X7 antagonists to block metastatic cancer.
Collapse
Affiliation(s)
- Jin-Hee Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Darren R Williams
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Ji-Hyung Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - So-Deok Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Je-Heon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Hyojin Ko
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Ga-Eun Lee
- Department of Pharmaceutical Industry, Korea Health Industry Development Institute (KHIDI) , Chungcheongbuk-do 363-700, Republic of Korea
| | - Sujin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Jeong-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea.,Department of Medical System Engineering, Gwangju Institute of Science and Technology (GIST) , Gwangju 500-712, Republic of Korea
| |
Collapse
|
15
|
Mahana N, Abd-Allah HS, Salah M, Tallima H, El Ridi R. Fasciola gigantica enolase is a major component of worm tegumental fraction protective against sheep fasciolosis. Acta Trop 2016; 158:189-196. [PMID: 26970372 DOI: 10.1016/j.actatropica.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
Abstract
Infection of cattle and sheep with the parasite Fasciola gigantica is a cause of important economic losses throughout Asia and Africa. Many of the available anthelmintics have undesirable side effects, and the parasite may acquire drug resistance as a result of mass and repeated treatments of livestock. Accordingly, the need for developing a vaccine is evident. Triton-soluble surface membrane and tegumental proteins (TSMTP) of 60, 32, and 28 kDa previously shown to elicit protective immunity in mice against challenge F. gigantica infection were found to be strongly immunogenic in sheep eliciting vigorous specific antibody responses to a titer>1:16,000 as assessed by enzyme-linked immunosorbent assay. Furthermore, the 60 kDa fraction induced production of antibodies able to bind to the surface membrane of newly excysted juvenile flukes and mediate their attrition in antibody-dependent complement- and cell-mediated cytotoxicity assays, and significant (P<0.05) 40% protection of sheep against F. gigantica challenge infection. Amino acid micro sequencing of the 60 kDa-derived tryptic peptides revealed the fraction predominantly consists of F. gigantica enolase. The cDNA nucleotide and translated amino acid sequences of F. gigantica enolase showed homology of 92% and 95%, respectively to Fasciola hepatica enolase, suggesting that a fasciolosis vaccine might be effective against both tropical and temperate liver flukes.
Collapse
|
16
|
Kim WH, Shen H, Jung DW, Williams DR. Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol Toxicol 2016; 32:157-68. [DOI: 10.1007/s10565-016-9333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
|
17
|
Sheshukova EV, Shindyapina AV, Komarova TV, Dorokhov YL. “Matreshka” genes with alternative reading frames. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kumar S, Parameswaran S, Sharma RK. Novel myristoylation of the sperm-specific hexokinase 1 isoform regulates its atypical localization. Biol Open 2015; 4:1679-87. [PMID: 26581589 PMCID: PMC4736023 DOI: 10.1242/bio.012831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexokinase 1 variant in mammalian spermatozoa (HK1S) has a unique N-terminus and this isoform atypically localizes to the plasma membrane. However, the mechanism of this process currently remains ambiguous. In this report, we show that fatty acylation underlies the specific sorting of HK1S. Employing chimeric reporter constructs, we first established that compartmentalization of HK1S does not function exclusively in sperm cells and that this feature is swappable to somatic HEK293 cells. Although the N-terminus lacks the classical consensus signature for myristoylation and the sequence-based predictions fail to predict myristoylation of HK1S, complementary experimental approaches confirmed that HK1S is myristoylated. Using live-cell confocal microscopy, we show that the mutation of a single amino acid, the myristoyl recipient Gly(2), impedes the prominent feature of plasma membrane association and relocates the enzyme to the cytosol but not the nucleus. Additionally, substitutions of the putatively palmitoylated Cys(5) is also reflected in a similar loss of compartmentalization of the protein. Taken together, our findings conclusively demonstrate that the N-terminal 'MGQICQ' motif in the unique GCS domain of HK1S acquires hydrophobicity by dual lipidic modifications, N-myristoylation and palmitoylation, to serve the requirements for membranous associations and thus its compartmentalization.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Rajendra K Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|