1
|
Chaudhary A, Chaurasia PK, Kushwaha S, Chauhan P, Chawade A, Mani A. Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions. Int J Biol Macromol 2022; 220:743-753. [PMID: 35987358 DOI: 10.1016/j.ijbiomac.2022.08.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Cold shock proteins (CSPs) are an ancient and conserved family of proteins. They are renowned for their role in response to low-temperature stress in bacteria and nucleic acid binding activities. In prokaryotes, cold and non-cold inducible CSPs are involved in various cellular and metabolic processes such as growth and development, osmotic oxidation, starvation, stress tolerance, and host cell invasion. In prokaryotes, cold shock condition reduces cell transcription and translation efficiency. Eukaryotic cold shock domain (CSD) proteins are evolved form of prokaryotic CSPs where CSD is flanked by N- and C-terminal domains. Eukaryotic CSPs are multi-functional proteins. CSPs also act as nucleic acid chaperons by preventing the formation of secondary structures in mRNA at low temperatures. In human, CSD proteins play a crucial role in the progression of breast cancer, colon cancer, lung cancer, and Alzheimer's disease. A well-defined three-dimensional structure of intrinsically disordered regions of CSPs family members is still undetermined. In this article, intrinsic disorder regions of CSPs have been explored systematically to understand the pleiotropic role of the cold shock family of proteins.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay
| | - Pankaj Kumar Chaurasia
- PG Department of Chemistry, L.S. College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India
| | - Sandeep Kushwaha
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
2
|
Avolio R, Inglés-Ferrándiz M, Ciocia A, Coll O, Bonnin S, Guitart T, Ribó A, Gebauer F. Coordinated post-transcriptional control of oncogene-induced senescence by UNR/CSDE1. Cell Rep 2022; 38:110211. [PMID: 35021076 DOI: 10.1016/j.celrep.2021.110211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a form of stable cell-cycle arrest arising in response to oncogenic stimulation. OIS must be bypassed for transformation, but the mechanisms of OIS establishment and bypass remain poorly understood, especially at the post-transcriptional level. Here, we show that the RNA-binding protein UNR/CSDE1 enables OIS in primary mouse keratinocytes. Depletion of CSDE1 leads to senescence bypass, cell immortalization, and tumor formation, indicating that CSDE1 behaves as a tumor suppressor. Unbiased high-throughput analyses uncovered that CSDE1 promotes OIS by two independent molecular mechanisms: enhancement of the stability of senescence-associated secretory phenotype (SASP) factor mRNAs and repression of Ybx1 mRNA translation. Importantly, depletion of YBX1 from immortal keratinocytes rescues senescence and uncouples proliferation arrest from the SASP, revealing multilayered mechanisms exerted by CSDE1 to coordinate senescence. Our data highlight the relevance of post-transcriptional control in the regulation of senescence.
Collapse
Affiliation(s)
- Rosario Avolio
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Marta Inglés-Ferrándiz
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Annagiulia Ciocia
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Olga Coll
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sarah Bonnin
- Bioinformatics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Anna Ribó
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Wang Y, Lin S, Zhao Z, Xu P, Gao K, Qian H, Zhang Z, Guo X. Functional analysis of a putative Bombyx mori cypovirus miRNA BmCPV-miR-10 and its effect on virus replication. INSECT MOLECULAR BIOLOGY 2021; 30:552-565. [PMID: 34296485 DOI: 10.1111/imb.12725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is an important pathogen of silkworm (B. mori), the economically beneficial insect. The mechanism of its interaction with host immune defence system in the process of infection is still not yet completely clear. Researches have demonstrated that virus-encoded microRNAs (miRNA) play a crucial role in regulating host-pathogen interaction, but few reports are available so far on miRNAs encoded by insect viruses, especially the RNA viruses. In this study, a putative miRNA encoded by the 10th segment of BmCPV genomic RNA, BmCPV-miR-10, was identified and functionally analysed. The expression of the putative BmCPV-miR-10 could be detected via stem-loop RT-PCR (reverse transcription-Polymerase Chain Reaction) in the midgut of silkworm larvae infected with BmCPV. BmCSDE1 (B. mori cold shock domain E1 protein) gene was predicted to be a candidate target gene for BmCPV-miR-10 with the miRNA binding site located in 3' untranslated region of its mRNA. The regulation effect of the putative BmCPV-miR-10 on BmCSDE1 was verified in HEK293 cells by lentiviral expression system, in BmN cells by transfecting BmCPV-miR-10 mimics. The qRT-PCR (quantitative real-time PCR) results showed that the putative BmCPV-miR-10 could suppress the expression of BmCSDE1. By injection of BmCPV-miR-10 mimics into the silkworm larvae infected with BmCPV, it was further proved that the putative BmCPV-miR-10 could suppress the expression of BmCSDE1 in vivo, then inhibit the expression of BmApaf-1 (B. mori apoptotic protease activating factor 1), while enhance the replication of BmCPV genomic RNAs to a certain extent. These results implied that the putative BmCPV-miR-10 could down-regulate the expression of BmCSDE1, then suppress the expression of BmApaf-1, thereby created a favourable intracellular environment for virus replication and proliferation.
Collapse
Affiliation(s)
- Y Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - S Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Z Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - P Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - K Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - H Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Z Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - X Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
4
|
A new horizon for the old antibacterial drug clofoctol. Drug Discov Today 2021; 26:1302-1310. [PMID: 33581321 DOI: 10.1016/j.drudis.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
The synthetic antibacterial drug clofoctol (CFT) has long been used to treat respiratory tract infections in Europe. In recent years, the drug was found to target two biologically important proteins, the Cdc7/Dbf4 protein kinase complex and the mRNA-binding protein cold shock domain containing E1 (CSDE1), also known as upstream-of-N-Ras protein (UNR). These interactions are at the origin of the antitumor activity of CFT, recently evidenced in prostate cancer and neuroglioma. Drug-protein binding models provide a structural basis to guide the design of more potent anticancer compounds. A renewed interest in CFT can be anticipated for the treatment of cancers, and possibly Coronavirus 2019 (COVID-19).
Collapse
|
5
|
Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum. Malar J 2020; 19:382. [PMID: 33109193 PMCID: PMC7592540 DOI: 10.1186/s12936-020-03448-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein 'YBOX-1' (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.
Collapse
|
6
|
Liu H, Li X, Dun MD, Faulkner S, Jiang CC, Hondermarck H. Cold Shock Domain Containing E1 (CSDE1) Protein is Overexpressed and Can be Targeted to Inhibit Invasiveness in Pancreatic Cancer Cells. Proteomics 2020; 20:e1900331. [PMID: 32170829 DOI: 10.1002/pmic.201900331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/11/2020] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer has a dismal prognosis and to date there are no targeted therapies for this malignancy. Using shotgun proteomics, the mRNA binding protein cold shock domain containing E1 (CSDE1), also called upstream-of-N-Ras, is detected in pancreatic cancer cell lines but not in normal pancreatic epithelial cells. The expression of CSDE1 in pancreatic cancer cells is confirmed by Western blotting and immunohistochemistry of human pancreatic tumors. In vitro functional assays show that siRNA downregulation of CSDE1 or gene knockout using CRISPR-Cas9 significantly reduce the invasiveness of pancreatic cancer cells. Together, this study reveals that CSDE1 is overexpressed in pancreatic cancer and is a potential therapeutic target to inhibit pancreatic cancer cell invasion.
Collapse
Affiliation(s)
- Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, P. R. China.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiang Li
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Matthew D Dun
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sam Faulkner
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hubert Hondermarck
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Louis-Mathieu Harvey
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - François Houle
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| |
Collapse
|
8
|
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal 2020; 18:14. [PMID: 31987048 PMCID: PMC6986143 DOI: 10.1186/s12964-019-0496-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a “protein-RNA connector” model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, People's Republic of China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, People's Republic of China.
| |
Collapse
|
9
|
Hu Y, Zhang M, Tian N, Li D, Wu F, Hu P, Wang Z, Wang L, Hao W, Kang J, Yin B, Zheng Z, Jiang T, Yuan J, Qiang B, Han W, Peng X. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13. J Clin Invest 2019; 129:3072-3085. [PMID: 31112526 DOI: 10.1172/jci124979] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gliomas account for approximately 80% of primary malignant tumors in the central nervous system. Despite aggressive therapy, the prognosis of patients remains extremely poor. Glioma stem cells (GSCs) which considered as the potential target of therapy for their crucial role in therapeutic resistance and tumor recurrence, are believed to be key factors for the disappointing outcome. Here, we took advantage of GSCs as the cell model to perform high-throughput drug screening and the old antibiotic, clofoctol, was identified as the most effective compound, showing reduction of colony-formation and induction of apoptosis of GSCs. Moreover, growth of tumors was inhibited obviously in vivo after clofoctol treatment especially in primary patient-derived xenografts (PDXs) and transgenic xenografts. The anticancer mechanisms demonstrated by analyzing related downstream genes and discovering the targeted binding protein revealed that clofoctol exhibited the inhibition of GSCs by upregulation of Kruppel-like factor 13 (KLF13), a tumor suppressor gene, through clofoctol's targeted binding protein, Upstream of N-ras (UNR). Collectively, these data demonstrated that induction of KLF13 expression suppressed growth of gliomas and provided a potential therapy for gliomas targeting GSCs. Importantly, our results also identified the RNA-binding protein UNR as a drug target.
Collapse
Affiliation(s)
- Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Meilian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ningyu Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dengke Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Hao
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingting Kang
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Centralab Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
10
|
Martinez-Useros J, Garcia-Carbonero N, Li W, Fernandez-Aceñero MJ, Cristobal I, Rincon R, Rodriguez-Remirez M, Borrero-Palacios A, Garcia-Foncillas J. UNR/ CSDE1 Expression Is Critical to Maintain Invasive Phenotype of Colorectal Cancer through Regulation of c-MYC and Epithelial-to-Mesenchymal Transition. J Clin Med 2019; 8:560. [PMID: 31027221 PMCID: PMC6517883 DOI: 10.3390/jcm8040560] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
CSDE1 (cold shock domain containing E1) gene is located upstream of the N-RAS locus, and codes for an RNA-binding protein named Upstream of N-Ras (UNR). In cancer, CSDE1 has been shown to regulate c-Fos, c-Myc, Pten, Rac1, or Vimentin. UNR/CSDE1 has been studied in breast, melanoma, pancreatic and prostate cancer. Then, the aim of this study is to evaluate the role of CSDE1 /UNR in colorectal cancer progression and maintenance of aggressive phenotype. We firstly evaluated UNR/CSDE1 expression in human colon cancer derived cell lines and patient samples. Subsequently, we performed functional experiments by UNR/CSDE1 downregulation. We also evaluated UNR/CSDE1 prognostic relevance in two independent sets of patients. Not only was UNR/CSDE1 expression higher in tumor samples compared to untransformed samples, but also in colonospheres and metastatic origin cell lines than their parental and primary cell lines, respectively. Downregulation of UNR/CSDE1 reduced cell viability and migration throughout a restrain of epithelial-to-mesenchymal transition and increases sensitivity to apoptosis. Interestingly, high UNR/CSDE1 expression was associated with poor prognosis and correlated positively with c-MYC expression in colorectal cancer samples and cell lines. Here, we show for the first time compelling data reporting the oncogenic role of UNR/CSDE1 in human colorectal cancer.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Weiyao Li
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | | | - Ion Cristobal
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Raul Rincon
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Maria Rodriguez-Remirez
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Aurea Borrero-Palacios
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| |
Collapse
|
11
|
Mendoza-Topaz C, Yeow I, Riento K, Nichols BJ. BioID identifies proteins involved in the cell biology of caveolae. PLoS One 2018; 13:e0209856. [PMID: 30589899 PMCID: PMC6307745 DOI: 10.1371/journal.pone.0209856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
The mechanisms controlling the abundance and sub-cellular distribution of caveolae are not well described. A first step towards determining such mechanisms would be identification of relevant proteins that interact with known components of caveolae. Here, we applied proximity biotinylation (BioID) to identify a list of proteins that may interact with the caveolar protein cavin1. Screening of these candidates using siRNA to reduce their expression revealed that one of them, CSDE1, regulates the levels of mRNAs and protein expression for multiple components of caveolae. A second candidate, CD2AP, co-precipitated with cavin1. Caveolar proteins were observed in characteristic and previously un-described linear arrays adjacent to cell-cell junctions in both MDCK cells, and in HeLa cells overexpressing an active form of the small GTPase Rac1. CD2AP was required for the recruitment of caveolar proteins to these linear arrays. We conclude that BioID will be useful in identification of new proteins involved in the cell biology of caveolae, and that interaction between CD2AP and cavin1 may have an important role in regulating the sub-cellular distribution of caveolae.
Collapse
Affiliation(s)
| | - I. Yeow
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - K. Riento
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - B. J. Nichols
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
13
|
Moore KS, Yagci N, van Alphen F, Meijer AB, ‘t Hoen PAC, von Lindern M. Strap associates with Csde1 and affects expression of select Csde1-bound transcripts. PLoS One 2018; 13:e0201690. [PMID: 30138317 PMCID: PMC6107111 DOI: 10.1371/journal.pone.0201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/22/2018] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is regulated at many levels, including control of mRNA translation. Changing environmental conditions, such as hypoxia or the availability of nutrients and growth factors, require a rapid response enacted by the enhanced or repressed translation of existing transcripts. Cold shock domain protein e1 (Csde1/Unr) is an RNA-binding protein required for erythropoiesis and strongly upregulated in erythroblasts relative to other hematopoietic progenitors. The aim of this study is to identify the Csde1-containing protein complexes and investigate their role in post-transcriptional expression control of Csde1-bound transcripts. We show that Serine/Threonine kinase receptor-associated protein (Strap/Unrip), was the protein most strongly associated with Csde1 in erythroblasts. Strap is a WD40 protein involved in signaling and RNA splicing, but its role when associated with Csde1 is unknown. Reduced expression of Strap did not alter the pool of transcripts bound by Csde1. Instead, it altered the mRNA and/or protein expression of several Csde1-bound transcripts that encode for proteins essential for translational regulation during hypoxia, such as Hmbs, eIF4g3 and Pabpc4. Also affected by Strap knockdown were Vim, a Gata-1 target crucial for erythrocyte enucleation, and Elavl1, which stabilizes Gata-1 mRNA. The major cellular processes affected by both Csde1 and Strap were ribosome function and cell cycle control.
Collapse
Affiliation(s)
- Kat S. Moore
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nurcan Yagci
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floris van Alphen
- Sanquin Research, Department of Research Facilities, Amsterdam, The Netherlands
| | - Alexander B. Meijer
- Sanquin Research, Department of Research Facilities, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter A. C. ‘t Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Pedro NF, Biselli JM, Maniglia JV, Santi-Neto DD, Pavarino ÉC, Goloni-Bertollo EM, Biselli-Chicote PM. Candidate Biomarkers for Oral Squamous Cell Carcinoma: Differential Expression of Oxidative Stress-Related Genes. Asian Pac J Cancer Prev 2018; 19:1343-1349. [PMID: 29802697 PMCID: PMC6031819 DOI: 10.22034/apjcp.2018.19.5.1343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Alteration in the biotransformation of exogenous compounds can result in production of reactive oxygen species (ROS), which can predispose cells to malignant transformation in the head and neck. This study aimed to evaluate the expression of genes involved in antioxidant metabolism in the oral squamous cell carcinoma (OSCC). Methods: The expression of eighty-four genes was evaluated in OSCC and non-tumor tissues by quantitative real-time polymerase chain reaction using the TaqMan Gene Expression Array. The biological mechanisms related to the differentially expressed genes were investigated using Gene – NCBI, KEGG, UNIPROT and REACTOME databases. Results: Twenty-one genes encoding enzymes involved in antioxidant metabolism were differentially expressed in the OSCC case. Four genes (ATOX1, PRDX4, PRNP, and SOD2) were up-regulated, and seventeen (ALOX12, CAT, CSDE1, DHCR24, DUOX1, DUOX2, EPHX2, GLRX2, GPX3, GSR, GSTZ1, MGST3, PRDX1, OXR1, OXSR1, SOD1, and SOD3) were down-regulated. We identified 14 possible novel biomarkers for OSCC. The differentially expressed genes appeared related to important biological processes involved in carcinogenesis, such as inflammation, angiogenesis, apoptosis, genomic instability, invasion, survival, and cell proliferation. Conclusions: Our study identified novel biomarkers which might warrant further investigation regarding OSCC pathogenesis since the altered expression in the genes can modulate biological processes related to oxidative stress and predispose cells to malignant transformation in the oral cavity.
Collapse
Affiliation(s)
- Nayara Fernandes Pedro
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, 5416, 15090-000, São Pedro, São José do Rio Preto, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Csde1 binds transcripts involved in protein homeostasis and controls their expression in an erythroid cell line. Sci Rep 2018; 8:2628. [PMID: 29422612 PMCID: PMC5805679 DOI: 10.1038/s41598-018-20518-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Expression of the RNA-binding protein Csde1 (Cold shock domain protein e1) is strongly upregulated during erythropoiesis compared to other hematopoietic lineages. Csde1 expression is impaired in the severe congenital anemia Diamond Blackfan Anemia (DBA), and reduced expression of Csde1 in healthy erythroblasts impaired their proliferation and differentiation. To investigate the cellular pathways controlled by Csde1 in erythropoiesis, we identified the transcripts that physically associate with Csde1 in erythroid cells. These mainly encoded proteins involved in ribogenesis, mRNA translation and protein degradation, but also proteins associated with the mitochondrial respiratory chain and mitosis. Crispr/Cas9-mediated deletion of the first cold shock domain of Csde1 affected RNA expression and/or protein expression of Csde1-bound transcripts. For instance, protein expression of Pabpc1 was enhanced while Pabpc1 mRNA expression was reduced indicating more efficient translation of Pabpc1 followed by negative feedback on mRNA stability. Overall, the effect of reduced Csde1 function on mRNA stability and translation of Csde1-bound transcripts was modest. Clones with complete loss of Csde1, however, could not be generated. We suggest that Csde1 is involved in feed-back control in protein homeostasis and that it dampens stochastic changes in mRNA expression.
Collapse
|
16
|
Abstract
The cytoplasmic RNA-binding protein UNR influences key developmental processes by controlling mRNA turnover and translation initiation. In this issue of Cancer Cell, Wurth et al. report that UNR is highly expressed in melanoma and enhances invasion and metastasis at least partly by inducing translation elongation of VIM and RAC1 mRNAs.
Collapse
Affiliation(s)
- Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction. Sci Rep 2016; 6:22461. [PMID: 26936655 PMCID: PMC4776140 DOI: 10.1038/srep22461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/11/2016] [Indexed: 11/09/2022] Open
Abstract
The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.
Collapse
|