1
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
2
|
Sorting nexin Mdm1/SNX14 regulates nucleolar dynamics at the NVJ after TORC1 inactivation. Biochem Biophys Res Commun 2021; 552:1-8. [PMID: 33740659 DOI: 10.1016/j.bbrc.2021.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
The degradation of nucleolar proteins - nucleophagy - is elicited by nutrient starvation or the inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Prior to nucleophagy, nucleolar proteins migrate to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA (rRNA gene) repeat regions are condensed and escape towards NVJ-distal sites. This suggests that the NVJ controls nucleolar dynamics from outside of the nucleus after TORC1 inactivation, but its molecular mechanism is unclear. Here, we show that sorting nexin (SNX) Mdm1, an inter-organelle tethering protein at the NVJ, mediates TORC1 inactivation-induced nucleolar dynamics. Furthermore, Mdm1 was required for proper nucleophagic degradation of nucleolar proteins after TORC1 inactivation, where it was dispensable for the induction of nucleophagic flux itself. This indicated that nucleophagy and nucleolar dynamics are independently regulated by TORC1 inactivation. Finally, Mdm1 was critical for survival during nutrient starvation conditions. Mutations of SNX14, a human Mdm1 homolog, cause neurodevelopmental disorders. This study provides a novel insight into relationship between sorting nexin-mediated microautophagy and neurodevelopmental disorders.
Collapse
|
3
|
Kohler V, Büttner S. Remodelling of Nucleus-Vacuole Junctions During Metabolic and Proteostatic Stress. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211016608. [PMID: 34124572 PMCID: PMC7610967 DOI: 10.1177/25152564211016608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Cellular adaptation to stress and metabolic cues requires a coordinated response of different intracellular compartments, separated by semipermeable membranes. One way to facilitate interorganellar communication is via membrane contact sites, physical bridges between opposing organellar membranes formed by an array of tethering machineries. These contact sites are highly dynamic and establish an interconnected organellar network able to quickly respond to external and internal stress by changing size, abundance and molecular architecture. Here, we discuss recent work on nucleus-vacuole junctions, connecting yeast vacuoles with the nucleus. Appearing as small, single foci in mitotic cells, these contacts expand into one enlarged patch upon nutrient exhaustion and entry into quiescence or can be shaped into multiple large foci essential to sustain viability upon proteostatic stress at the nuclear envelope. We highlight the remarkable plasticity and rapid remodelling of these contact sites upon metabolic or proteostatic stress and their emerging importance for cellular fitness.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner‐Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner‐Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
4
|
Sasaki K, Yoshida H. Golgi stress response and organelle zones. FEBS Lett 2019; 593:2330-2340. [PMID: 31344260 DOI: 10.1002/1873-3468.13554] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022]
Abstract
Organelles have been studied traditionally as single units, but a novel concept is now emerging: each organelle has distinct functional zones that regulate specific functions. The Golgi apparatus seems to have various zones, including zones for: glycosylphosphatidylinositol-anchored proteins; proteoglycan, mucin and lipid glycosylation; transport of cholesterol and ceramides; protein degradation (Golgi membrane-associated degradation); and signalling for apoptosis. The capacity for these specific functions and the size of the corresponding zones appear to be tightly regulated by the Golgi stress response to accommodate cellular demands. For instance, the proteoglycan and mucin zones seem to be separately augmented during the differentiation of chondrocytes and goblet cells, respectively. The mammalian Golgi stress response consists of several response pathways. The TFE3 pathway regulates the general function of the Golgi, such as structural maintenance, N-glycosylation and vesicular transport, whereas the proteoglycan pathway increases the expression of glycosylation enzymes for proteoglycans. The CREB3 and HSP47 pathways regulate pro- and anti-apoptotic functions, respectively. These observations indicate that the Golgi is a dynamic organelle, the capacity of which is upregulated according to cellular needs.
Collapse
Affiliation(s)
- Kanae Sasaki
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Japan
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Japan
| |
Collapse
|
5
|
Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158490. [PMID: 31252175 DOI: 10.1016/j.bbalip.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
Eukaryotic cells are partitioned into functionally distinct organelles. Long considered as independent units in the cytosol, organelles are actually in constant and direct interaction with each other, mostly through the establishment of physical connections named membrane contact sites. Membrane contact sites constitute specific active regions involved in organelle dynamics, inter-organelle exchanges and communications. The endoplasmic reticulum (ER), which spreads throughout the cytosol, forms an extensive network that has many connections with the other organelles of the cell. Ample connections between the ER and endocytic organelles are observed in many cell types, highlighting their prominent physiological roles. Even though morphologically similar - a contact is a contact -, the identity of ER-Endosome contacts is defined by their specific molecular composition, which in turn determines the function of the contact. Here, we review the molecular mechanisms of ER-Endosome contact site formation and their associated cellular functions. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
6
|
Funato K, Riezman H, Muñiz M. Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158453. [PMID: 31054928 DOI: 10.1016/j.bbalip.2019.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.
Collapse
Affiliation(s)
- Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Japan.
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, Switzerland.
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
7
|
González Montoro A, Auffarth K, Hönscher C, Bohnert M, Becker T, Warscheid B, Reggiori F, van der Laan M, Fröhlich F, Ungermann C. Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites. Dev Cell 2018; 45:621-636.e7. [PMID: 29870720 DOI: 10.1016/j.devcel.2018.05.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/29/2022]
Abstract
The extensive subcellular network of membrane contact sites plays central roles in organelle biogenesis and communication, yet the precise contributions of the involved machineries remain largely enigmatic. The yeast vacuole forms a membrane contact site with mitochondria, called vacuolar and mitochondrial patch (vCLAMP). Formation of vCLAMPs involves the vacuolar Rab GTPase Ypt7 and the Ypt7-interacting Vps39 subunit of the HOPS tethering complex. Here, we uncover the general preprotein translocase of the outer membrane (TOM) subunit Tom40 as the direct binding partner of Vps39 on mitochondria. We identify Vps39 mutants defective in TOM binding, but functional for HOPS. Cells that cannot form vCLAMPs show reduced growth under stress conditions and impaired survival upon starvation. Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES.
Collapse
Affiliation(s)
- Ayelén González Montoro
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany.
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany
| | - Carina Hönscher
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany; Institute of Biology II, Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Martin van der Laan
- Department of Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, Homburg 66421, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany.
| |
Collapse
|
8
|
Ouahoud S, Fiet MD, Martínez-Montañés F, Ejsing CS, Kuss O, Roden M, Markgraf DF. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. J Cell Sci 2018; 131:jcs.213876. [PMID: 29678904 DOI: 10.1242/jcs.213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/13/2018] [Indexed: 01/19/2023] Open
Abstract
Lipid droplets (LDs) store neutral lipids and are integrated into a cellular metabolic network that relies on functional coupling with various organelles. Factors mediating efficient coupling and mechanisms regulating them remain unknown. Here, we conducted a global screen in S. cerevisiae to identify genes required for the functional coupling of LDs and other organelles during LD consumption. We show that LD utilization during growth resumption is coupled to vacuole homeostasis. ESCRT-, V-ATPase- and vacuole protein sorting-mutants negatively affect LD consumption, independent of lipophagy. Loss of ESCRT function leads to the accumulation of LD-derived diacylglycerol (DAG), preventing its conversion into phosphatidic acid (PA) and membrane lipids. In addition, channeling of DAG from LD-proximal sites to the vacuole is blocked. We demonstrate that utilization of LDs requires intact vacuolar signaling via TORC1 and its downstream effector Sit4p. These data suggest that vacuolar status is coupled to LD catabolism via TORC1-mediated regulation of DAG-PA interconversion and explain how cells coordinate organelle dynamics throughout cell growth.
Collapse
Affiliation(s)
- Sarah Ouahoud
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Mitchell D Fiet
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| |
Collapse
|
9
|
Kakimoto Y, Tashiro S, Kojima R, Morozumi Y, Endo T, Tamura Y. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Sci Rep 2018; 8:6175. [PMID: 29670150 PMCID: PMC5906596 DOI: 10.1038/s41598-018-24466-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.
Collapse
Affiliation(s)
- Yuriko Kakimoto
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Shinya Tashiro
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Yuki Morozumi
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan.
| |
Collapse
|
10
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
11
|
Eisenberg-Bord M, Schuldiner M. Mitochatting - If only we could be a fly on the cell wall. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1469-1480. [PMID: 28433686 DOI: 10.1016/j.bbamcr.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|