1
|
Stanforth KJ, Zakhour MI, Chater PI, Wilcox MD, Adamson B, Robson NA, Pearson JP. The MUC2 Gene Product: Polymerisation and Post-Secretory Organisation-Current Models. Polymers (Basel) 2024; 16:1663. [PMID: 38932019 PMCID: PMC11207715 DOI: 10.3390/polym16121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
MUC2 mucin, the primary gel-forming component of intestinal mucus, is well researched and a model of polymerisation and post-secretory organisation has been published previously. Recently, several significant developments have been made which either introduce new ideas or challenge previous theories. New ideas include an overhaul of the MUC2 C-terminal globular structure which is proposed to harbour several previously unobserved domains, and include a site for an extra intermolecular disulphide bridge dimer between the cysteine 4379 of adjacent MUC2 C-termini. MUC2 polymers are also now thought to be secreted attached to the epithelial surface of goblet cells in the small intestine and removed following secretion via a metalloprotease meprin β-mediated cleavage of the von Willebrand D2 domain of the N-terminus. It remains unclear whether MUC2 forms intermolecular dimers, trimers, or both, at the N-termini during polymerisation, with several articles supporting either trimer or dimer formation. The presence of a firm inner mucus layer in the small intestine is similarly unclear. Considering this recent research, this review proposes an update to the previous model of MUC2 polymerisation and secretion, considers conflicting theories and data, and highlights the importance of this research to the understanding of MUC2 mucus layers in health and disease.
Collapse
Affiliation(s)
- Kyle J. Stanforth
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Maria I. Zakhour
- Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (M.I.Z.); (J.P.P.)
| | - Peter I. Chater
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Matthew D. Wilcox
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Beth Adamson
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Niamh A. Robson
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Jeffrey P. Pearson
- Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (M.I.Z.); (J.P.P.)
| |
Collapse
|
2
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
3
|
Zhao B, Osbelt L, Lesker TR, Wende M, Galvez EJC, Hönicke L, Bublitz A, Greweling-Pils MC, Grassl GA, Neumann-Schaal M, Strowig T. Helicobacter spp. are prevalent in wild mice and protect from lethal Citrobacter rodentium infection in the absence of adaptive immunity. Cell Rep 2023; 42:112549. [PMID: 37245209 DOI: 10.1016/j.celrep.2023.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023] Open
Abstract
Transfer of the gut microbiota from wild to laboratory mice alters the host's immune status and enhances resistance to infectious and metabolic diseases, but understanding of which microbes and how they promote host fitness is only emerging. Our analysis of metagenomic sequencing data reveals that Helicobacter spp. are enriched in wild compared with specific-pathogen-free (SPF) and conventionally housed mice, with multiple species commonly co-colonizing their hosts. We create laboratory mice harboring three non-SPF Helicobacter spp. to evaluate their effect on mucosal immunity and colonization resistance to the enteropathogen Citrobacter rodentium. Our experiments reveal that Helicobacter spp. interfere with C. rodentium colonization and attenuate C. rodentium-induced gut inflammation in wild-type (WT) mice, even preventing lethal infection in Rag2-/- SPF mice. Further analyses suggest that Helicobacter spp. interfere with tissue attachment of C. rodentium, putatively by reducing the availability of mucus-derived sugars. These results unveil pivotal protective functions of wild mouse microbiota constituents against intestinal infection.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; ESF International Graduate School on Analysis, Imaging, and Modelling of Neuronal and Inflammatory Processes, Otto von Guericke University, Magdeburg, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; ESF International Graduate School on Analysis, Imaging, and Modelling of Neuronal and Inflammatory Processes, Otto von Guericke University, Magdeburg, Germany
| | - Eric J C Galvez
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lisa Hönicke
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Arne Bublitz
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Guntram A Grassl
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Center for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
4
|
Overstreet AMC, Anderson B, Burge M, Zhu X, Tao Y, Cham CM, Michaud B, Horam S, Sangwan N, Dwidar M, Liu X, Santos A, Finney C, Dai Z, Leone VA, Messer JS. HMGB1 acts as an agent of host defense at the gut mucosal barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542477. [PMID: 37398239 PMCID: PMC10312563 DOI: 10.1101/2023.05.30.542477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mucosal barriers provide the first line of defense between internal body surfaces and microbial threats from the outside world. 1 In the colon, the barrier consists of two layers of mucus and a single layer of tightly interconnected epithelial cells supported by connective tissue and immune cells. 2 Microbes colonize the loose, outer layer of colonic mucus, but are essentially excluded from the tight, epithelial-associated layer by host defenses. 3 The amount and composition of the mucus is calibrated based on microbial signals and loss of even a single component of this mixture can destabilize microbial biogeography and increase the risk of disease. 4-7 However, the specific components of mucus, their molecular microbial targets, and how they work to contain the gut microbiota are still largely unknown. Here we show that high mobility group box 1 (HMGB1), the prototypical damage-associated molecular pattern molecule (DAMP), acts as an agent of host mucosal defense in the colon. HMGB1 in colonic mucus targets an evolutionarily conserved amino acid sequence found in bacterial adhesins, including the well-characterized Enterobacteriaceae adhesin FimH. HMGB1 aggregates bacteria and blocks adhesin-carbohydrate interactions, inhibiting invasion through colonic mucus and adhesion to host cells. Exposure to HMGB1 also suppresses bacterial expression of FimH. In ulcerative colitis, HMGB1 mucosal defense is compromised, leading to tissue-adherent bacteria expressing FimH. Our results demonstrate a new, physiologic role for extracellular HMGB1 that refines its functions as a DAMP to include direct, virulence limiting effects on bacteria. The amino acid sequence targeted by HMGB1 appears to be broadly utilized by bacterial adhesins, critical for virulence, and differentially expressed by bacteria in commensal versus pathogenic states. These characteristics suggest that this amino acid sequence is a novel microbial virulence determinant and could be used to develop new approaches to diagnosis and treatment of bacterial disease that precisely identify and target virulent microbes.
Collapse
|
5
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
6
|
Wang H, Zhang X, Kang P, Cui X, Hao G, Wang Z, Han B, Lv X, Zhang J, Ge W. Variations in Oligosaccharides and N/ O-Glycans in Human Milk through the Eight-Month Lactation Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14272-14283. [PMID: 36315615 DOI: 10.1021/acs.jafc.2c05869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oligosaccharides and N/O-glycans are abundant in human milk and have numerous biological functions (for instance sialylated glycans provide sialic acid for the growth of infant brains), but their variation trends during lactation need further exploration. Qualitative and quantitative analyses of oligosaccharides and N/O-glycans in human milk at different lactation stages (from 7 days to 8 months) were performed using UHPLC-ESI-MS/MS. Thirty-four oligosaccharides, twenty-three N-glycans, and six O-glycans were identified. Oligosaccharides showed the highest abundance in human colostrum and decreased with the progression of lactation, and the abundance of N/O-glycans fluctuated as lactation progressed, while a high abundance of sialylated oligosaccharides and sialylated N/O-glycans was observed in human colostrum. These findings provide evidence for breastfeeding support and contribute to the development of infant formula supplemented with human milk glycans.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ximei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peng Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd, Yanliang 710089, China
| | - Guo Hao
- Shaanxi Goat Milk Product Quality Supervision and Inspection Center, Fuping 711700, China
| | - Zhongfu Wang
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bei Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Robinson CM, Short NE, Riglar DT. Achieving spatially precise diagnosis and therapy in the mammalian gut using synthetic microbial gene circuits. Front Bioeng Biotechnol 2022; 10:959441. [PMID: 36118573 PMCID: PMC9478464 DOI: 10.3389/fbioe.2022.959441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian gut and its microbiome form a temporally dynamic and spatially heterogeneous environment. The inaccessibility of the gut and the spatially restricted nature of many gut diseases translate into difficulties in diagnosis and therapy for which novel tools are needed. Engineered bacterial whole-cell biosensors and therapeutics have shown early promise at addressing these challenges. Natural and engineered sensing systems can be repurposed in synthetic genetic circuits to detect spatially specific biomarkers during health and disease. Heat, light, and magnetic signals can also activate gene circuit function with externally directed spatial precision. The resulting engineered bacteria can report on conditions in situ within the complex gut environment or produce biotherapeutics that specifically target host or microbiome activity. Here, we review the current approaches to engineering spatial precision for in vivo bacterial diagnostics and therapeutics using synthetic circuits, and the challenges and opportunities this technology presents.
Collapse
Affiliation(s)
| | | | - David T. Riglar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W, Yang Q, Yan J, Yang B. Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2022; 14:2110822. [PMID: 35971812 PMCID: PMC9387321 DOI: 10.1080/19490976.2022.2110822] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTARCTEnterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen that causes a variety of diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. Flagellum-dependent motility plays diverse roles in the pathogenesis of EHEC O157:H7, including its migration to an optimal host site, adherence and colonization, survival at the infection site, and post-infection dispersal. However, it is very expensive for cellular economy in terms of the number of genes and the energy required for flagellar biosynthesis and functioning. Furthermore, the flagellar filament bears strong antigenic properties that induce a strong host immune response. Consequently, the flagellar gene expression and biosynthesis are highly regulated to occur at the appropriate time and place by different regulatory influences. The present review focuses on the regulatory mechanisms of EHEC O157:H7 motility and flagellar biosynthesis, especially in terms of flagellar gene regulation by environmental factors, regulatory proteins, and small regulatory RNAs.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China,CONTACT Bin Yang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin300457, P. R. China
| |
Collapse
|
9
|
Santos MGDC, Trindade CNDR, Vommaro RC, Domingues RMCP, Ferreira EDO. Binding of the extracellular matrix laminin-1 to Clostridioides difficile strains. Mem Inst Oswaldo Cruz 2022; 117:e220035. [PMID: 35730804 PMCID: PMC9208321 DOI: 10.1590/0074-02760220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Clostridioides difficile is the most common cause of nosocomial diarrhea associated with antibiotic use. The disease’s symptoms are caused by enterotoxins, but other surface adhesion factors also play a role in the pathogenesis. These adhesins will bind to components of extracellular matrix. OBJECTIVE There is a lack of knowledge on MSCRAMM, this work set-out to determine the adhesive properties of several C. difficile ribotypes (027, 133, 135, 014, 012) towards laminin-1 (LMN-1). METHODS A binding experiment revealed that different ribotypes have distinct adhesion capabilities. To identify this adhesin, an affinity chromatography column containing LMN-1 was prepared and total protein extracts were analysed using mass spectrometry. FINDINGS Strains from ribotypes 012 and 027 had the best adhesion when incubated with glucose supplementations (0.2%, 0.5%, and 1%), while RT135 had a poor adherence. The criteria were not met by RT014 and RT133. In the absence of glucose, there was no adhesion for any ribotype, implying that glucose is required and plays a significant role in adhesion. MAIN CONCLUSIONS These findings show that in the presence of glucose, each C. difficile ribotype interacts differently with LMN-1, and the adhesin responsible for recognition could be SlpA protein.
Collapse
Affiliation(s)
- Mayara Gil de Castro Santos
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Camilla Nunes Dos Reis Trindade
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Rossiane Cláudia Vommaro
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho e Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, Brasil
| | | | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Bergstrom K, Xia L. The barrier and beyond: Roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes 2022; 14:2052699. [PMID: 35380912 PMCID: PMC8986245 DOI: 10.1080/19490976.2022.2052699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over the past two decades, our appreciation of the gut mucus has moved from a static lubricant to a dynamic and essential component of the gut ecosystem that not only mediates the interface between host tissues and vast microbiota, but regulates how this ecosystem functions to promote mutualistic symbioses and protect from microbe-driven diseases. By delving into the complex chemistry and biology of the mucus, combined with innovative in vivo and ex vivo approaches, recent studies have revealed novel insights into the formation and function of the mucus system, the O-glycans that make up this system, and how they mediate two major host-defense strategies - resistance and tolerance - to reduce damage caused by indigenous microbes and opportunistic pathogens. This current review summarizes these findings by highlighting the emerging roles of mucus and mucin-type O-glycans in influencing host and microbial physiology with an emphasis on host defense strategies against bacteria in the gastrointestinal tract.
Collapse
Affiliation(s)
- Kirk Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, British ColumbiaV1V 1V7, Canada,Kirk Bergstrom Department of Biology, University of British Columbia, 3333 University Way, Kelowna, B.C. Canada
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, OK, Oklahoma73104, USA,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, Oklahoma73104, USA,CONTACT Lijun Xia Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, OK, Oklahoma73104, USA
| |
Collapse
|
11
|
Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Front Mol Biosci 2021; 8:656439. [PMID: 34026832 PMCID: PMC8138122 DOI: 10.3389/fmolb.2021.656439] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter species infections may be associated with the development of gastric disorders, such as gastritis, peptic ulcers, intestinal metaplasia, dysplasia and gastric carcinoma. Binding of these bacteria to the gastric mucosa occurs through the recognition of specific glycan receptors expressed by the host epithelial cells. This review addresses the state of the art knowledge on these host glycan structures and the bacterial adhesins involved in Helicobacter spp. adhesion to gastric mucosa colonization. Glycans are expressed on every cell surface and they are crucial for several biological processes, including protein folding, cell signaling and recognition, and host-pathogen interactions. Helicobacter pylori is the most predominant gastric Helicobacter species in humans. The adhesion of this bacterium to glycan epitopes present on the gastric epithelial surface is a crucial step for a successful colonization. Major adhesins essential for colonization and infection are the blood-group antigen-binding adhesin (BabA) which mediates the interaction with fucosylated H-type 1 and Lewis B glycans, and the sialic acid-binding adhesin (SabA) which recognizes the sialyl-Lewis A and X glycan antigens. Since not every H. pylori strain expresses functional BabA or SabA adhesins, other bacterial proteins are most probably also involved in this adhesion process, including LabA (LacdiNAc-binding adhesin), which binds to the LacdiNAc motif on MUC5AC mucin. Besides H. pylori, several other gastric non-Helicobacter pylori Helicobacters (NHPH), mainly associated with pigs (H. suis) and pets (H. felis, H. bizzozeronii, H. salomonis, and H. heilmannii), may also colonize the human stomach and cause gastric disease, including gastritis, peptic ulcers and mucosa-associated lymphoid tissue (MALT) lymphoma. These NHPH lack homologous to the major known adhesins involved in colonization of the human stomach. In humans, NHPH infection rate is much lower than in the natural hosts. Differences in the glycosylation profile between gastric human and animal mucins acting as glycan receptors for NHPH-associated adhesins, may be involved. The identification and characterization of the key molecules involved in the adhesion of gastric Helicobacter species to the gastric mucosa is important to understand the colonization and infection strategies displayed by different members of this genus.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
12
|
Wu L, Wu ZC, Todosiichuk T, Korneva O. Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2021. [DOI: 10.20535/ibb.2021.5.2.228970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background. The fight against the spread of infectious diseases creates the problem of resistance to pathogens and the most resistant of them – the propagators of nosocomial infections – are formed in hospitals because of a number of reasons. The solution of the problem lies in different areas, but the search of new effective means for the treatment of such diseases remains relevant right today. The shortest way to do this is to find the "pain points" of the pathogens themselves, i.e. the factors of their pathogenicity and resistance to which the action of novel antiseptics should be directed.
Objective. We aimed to analyse and evaluate the main factors of pathogenicity and resistance of pathogens of nosocomial infections to determine modern approaches to the development of novel antimicrobials.
Methods. Search and systematization of new scientific data and results concerning pathogenic factors of microbial pathogens that can be used as targets for the action of drugs.
Results. Over the last 10–20 years, due to the development of new research methods in biology, it has become possible to clarify the features and additional conditions for the detection of pathogenic factors of nosocomial infections. Additional mechanisms of manifestation of resistance, adhesiveness, invasiveness, transmission of signs, secretion of toxins by pathogens are shownthat determines the general increase of their resistance to the action of currently used means. The general idea of creating antiseptics that will not increase the resistance of pathogens can now be implemented by using substances with multidirectional or indirect mechanisms of action that minimally affect the metabolism of the cell and significantly reduce its resistance and pathogenicity.
Conclusions. Factors of pathogenicity of propagators of nosocomial infections and mechanisms of their implementation can be considered as the main targets for the action of novel antiseptics that will inhibit the spread of pathogens without increasing their resistance. The promising substances for such drugs, among other things, are bacteriophages and their modifications, enzybiotics, immunobiotics, autoinducer inhibitors, quorum sensing-system inhibitors, b-lactamase inhibitors and others. Some of these substances in combination with the new generation of antibiotics significantly enhance their effectiveness and together they are able to overcome the resistance of even multidrug-resistant pathogens.
Collapse
|
13
|
Carroll-Portillo A, Lin HC. Exploring Mucin as Adjunct to Phage Therapy. Microorganisms 2021; 9:microorganisms9030509. [PMID: 33670927 PMCID: PMC7997181 DOI: 10.3390/microorganisms9030509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Correspondence: ; Tel.: +1-505-265-1711 (ext. 4552)
| |
Collapse
|
14
|
Discovery of Bacterial Fimbria-Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. mBio 2021; 12:mBio.03664-20. [PMID: 33622724 PMCID: PMC8545135 DOI: 10.1128/mbio.03664-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.
Collapse
|
15
|
Zhang F, Dai J, Chen T. Role of Lactobacillus in Female Infertility Via Modulating Sperm Agglutination and Immobilization. Front Cell Infect Microbiol 2021; 10:620529. [PMID: 33569356 PMCID: PMC7868545 DOI: 10.3389/fcimb.2020.620529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Infertility has become a common problem in recent decades. The pathogenesis of infertility is variable, but microbiological factors account for a large proportion of it. Dysbiosis of vaginal microbiota is reportedly associated with female infertility, but the influence of normal vaginal microbiota on infertility is unclear. In this review, we summarize the physiological characteristics of the vaginal tract and vaginal microbiota communities. We mainly focus on the bacterial adherence of vaginal Lactobacillus species. Given that the adherent effect plays a crucial role in the colonization of bacteria, we hypothesize that the adherent effect of vaginal Lactobacillus may also influence the fertility of the host. We also analyze the agglutination and immobilization effects of other bacteria, especially Escherichia coli, on ejaculated spermatozoa, and speculate on the possible effects of normal vaginal microbiota on female fertility.
Collapse
Affiliation(s)
- Fenghao Zhang
- Institute of Translational Medicine & School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Tingtao Chen
- Institute of Translational Medicine & School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
González-Morelo KJ, Vega-Sagardía M, Garrido D. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Front Microbiol 2020; 11:591568. [PMID: 33224127 PMCID: PMC7674204 DOI: 10.3389/fmicb.2020.591568] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
O-linked glycosylation is a post-translational modification found mainly in eukaryotic cells, which covalently attaches oligosaccharides to secreted proteins in certain threonine or serine residues. Most of O-glycans have N-acetylgalactosamine (GalNAc) as a common core. Several glycoproteins, such as mucins (MUCs), immunoglobulins, and caseins are examples of O-glycosylated structures. These glycans are further elongated with other monosaccharides and sulfate groups. Some of them could be found in dairy foods, while others are produced endogenously, in both cases interacting with the gut microbiota. Interestingly, certain gut microbes can access, release, and consume O-linked glycans as a carbon source. Among these, Akkermansia muciniphila, Bifidobacterium bifidum, and Bacteroides thetaiotaomicron are prominent O-linked glycan utilizers. Their consumption strategies include specialized α-fucosidases and α-sialidases, in addition to endo-α-N-acetylgalactosaminidases that release galacto-N-biose (GNB) from peptides backbones. O-linked glycan utilization by certain gut microbes represents an important niche that allows them to predominate and modulate host responses such as inflammation. Here, we focus on the distinct molecular mechanisms of consumption of O-linked GalNAc glycans by prominent gut microbes, especially from mucin and casein glycomacropeptide (GMP), highlighting the potential of these structures as emerging prebiotics.
Collapse
Affiliation(s)
| | | | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Rubio APD, Martínez J, Palavecino M, Fuentes F, López CMS, Marcilla A, Pérez OE, Piuri M. Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Sci Rep 2020; 10:3120. [PMID: 32080346 PMCID: PMC7033168 DOI: 10.1038/s41598-020-60077-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60-120 min and increased after 240 min with an estimated average uptake efficiency of 30% and this process is dose-dependent. EVs movement into intestinal epithelial cells was mainly through Z axis and scarcely on X and Y axis. This work demonstrates that EVs could be transported across the gastrointestinal epithelium. We speculate this mechanism could be the first step allowing EVs to reach the bloodstream for further delivery up to extraintestinal tissues and organs. The expression and further encapsulation of bioactive molecules into natural nanoparticles produced by probiotic bacteria could have practical implications in food, nutraceuticals and clinical therapies.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jimena Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcos Palavecino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christian Miquel Sánchez López
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Lu Y, Liu J, Jia Y, Yang Y, Chen Q, Sun L, Song S, Huang L, Wang Z. Mass Spectrometry Analysis of Changes in Human Milk N/ O-Glycopatterns at Different Lactation Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10702-10712. [PMID: 31490688 DOI: 10.1021/acs.jafc.9b02034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human milk oligosaccharides are complex carbohydrates with multibiofunctional health benefits to newborns. Human milk free oligosaccharides (HMOs) are well characterized. However, changes in the N/O-glycome during lactation are poorly reported. Herein, we qualitatively and quantitatively investigated N/O-glycome profiles and their alteration in human milk at different lactation stages. N-Glycans were mainly fucosylated and nonsialylated, nonfucosylated throughout lactation. O-Glycans mainly consisted of sialylated and nonsialylated, nonfucosylated in colostrum and transitional milk, and fucosylated and nonfucosylated, nonsialylated in mature milk. Fucosylated and sialylated N-glycans gradually decreased and increased, respectively, as lactation progressed; O-glycans showed the reverse. Interestingly, changes in HMO abundance decreased during lactation, complementing HMG N/O-glycome changes. In conclusion, temporal HMG glycosylation changes provide the groundwork for developing infant formula that is closer to breast milk at different lactation stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | | | | |
Collapse
|
19
|
Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation. Appl Microbiol Biotechnol 2019; 103:2745-2758. [PMID: 30685814 DOI: 10.1007/s00253-019-09642-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/04/2023]
Abstract
Nutritional intake may influence the intestinal epithelial glycome and in turn the available attachment sites for bacteria. In this study, we tested the hypothesis that bovine colostrum may influence the intestinal cell surface and in turn the attachment of commensal organisms. Human HT-29 intestinal cells were exposed to a bovine colostrum fraction (BCF) rich in free oligosaccharides. The adherence of several commensal bacteria, comprising mainly bifidobacteria, to the intestinal cells was significantly enhanced (up to 52-fold) for all strains tested which spanned species that are found across the human lifespan. Importantly, the changes to the HT-29 cell surface did not support enhanced adhesion of the enteric pathogens tested. The gene expression profile of the HT-29 cells following treatment with the BCF was evaluated by microarray analysis. Many so called "glyco-genes" (glycosyltransferases and genes involved in the complex biosynthetic pathways of glycans) were found to be differentially regulated suggesting modulation of the enzymatic addition of sugars to glycoconjugate proteins. The microarray data was further validated by means of real-time PCR. The current findings provide an insight into how commensal microorganisms colonise the human gut and highlight the potential of colostrum and milk components as functional ingredients that can potentially increase commensal numbers in individuals with lower counts of health-promoting bacteria.
Collapse
|
20
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
21
|
Mall AS, Habte H, Mthembu Y, Peacocke J, de Beer C. Mucus and Mucins: do they have a role in the inhibition of the human immunodeficiency virus? Virol J 2017; 14:192. [PMID: 28985745 PMCID: PMC5639604 DOI: 10.1186/s12985-017-0855-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mucins are large O-linked glycosylated proteins which give mucus their gel-forming properties. There are indications that mucus and mucins in saliva, breast milk and in the cervical plug inhibit the human immunodeficiency virus (HIV-1) in an in vitro assay. Crude mucus gels form continuous layers on the epithelial surfaces of the major internal tracts of the body and protect these epithelial surfaces against aggressive luminal factors such as hydrochloric acid and pepsin proteolysis in the stomach lumen, the movement of hard faecal pellets in the colon at high pressure, the effects of shear against the vaginal epithelium during intercourse and the presence of foreign substances in the respiratory airways. Tumour-associated epitopes on mucins make them suitable as immune-targets on malignant epithelial cells, rendering mucins important as diagnostic and prognostic markers for various diseases, even influencing the design of mucin-based vaccines. Sub-Saharan Africa has the highest prevalence of HIV-AIDS in the world. The main points of viral transmission are via the vaginal epithelium during sexual intercourse and mother-to-child transmission during breast-feeding. There have been many studies showing that several body fluids have components that prevent the transmission of HIV-1 from infected to non-infected persons through various forms of contact. Crude saliva and its purified mucins, MUC5B and MUC7, and the purified mucins from breast milk, MUC1 and MUC4 and pregnancy plug cervical mucus (MUC2, MUC5AC, MUC5B and MUC6), inhibit HIV-1 in an in vitro assay. There are conflicting reports of whether crude breast-milk inhibits HIV-1 in an in vitro assay. However studies with a humanised BLT mouse show that breast-milk does inhibit HIV and that breast-feeding is still advisable even amongst HIV-positive women in under-resourced areas, preferably in conjunction with anti-retroviral treatment. CONCLUSION These findings raise questions of how such a naturally occurring biological substance such as mucus, with remarkable protective properties of epithelial surfaces against aggressive luminal factors in delicate locations, could be used as a tool in the fight against HIV-AIDS, which has reached epidemic proportions in sub-Saharan Africa.
Collapse
Affiliation(s)
- Anwar Suleman Mall
- Division of General Surgery, University of Cape Town and Immune Modulation and Biotherapeutics Discovery, Boehringer- Ingelheim, Danbury, USA
| | - Habtom Habte
- Discipline of Medical Virology, University of Stellenbosch & Tygerberg Hospital, Parow, South Africa
| | - Yolanda Mthembu
- Division of General Surgery, University of Cape Town and Immune Modulation and Biotherapeutics Discovery, Boehringer- Ingelheim, Danbury, USA
| | - Julia Peacocke
- Division of General Surgery, University of Cape Town and Immune Modulation and Biotherapeutics Discovery, Boehringer- Ingelheim, Danbury, USA
| | - Corena de Beer
- Department of Surgery, Division of General Surgery, University of Cape Town, Observatory Cape, 7925 South Africa
| |
Collapse
|
22
|
Domínguez Rubio AP, Martínez JH, Martínez Casillas DC, Coluccio Leskow F, Piuri M, Pérez OE. Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect. Front Microbiol 2017; 8:1783. [PMID: 28979244 PMCID: PMC5611436 DOI: 10.3389/fmicb.2017.01783] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022] Open
Abstract
Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30–50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus’ probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies.
Collapse
Affiliation(s)
- A Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Jimena H Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Diana C Martínez Casillas
- Departamento de Física de la Materia Condensada, Centro Nacional de Energía AtómicaBuenos Aires, Argentina
| | - Federico Coluccio Leskow
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de LujánBuenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Oscar E Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Departamento de Desarrollo Productivo y Tecnológico, Universidad Nacional de LanúsBuenos Aires, Argentina
| |
Collapse
|
23
|
Abstract
Pili are filamentous bacterial structures that promote adhesion to host cells. It emerges that a small molecule that inhibits this adhesion can prevent colonization of the mouse gut by a pathogenic bacterium.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Infectious Diseases Service in the Department of Medicine and the Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center
| | - Eric G Pamer
- Infectious Diseases Service in the Department of Medicine and the Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center
| |
Collapse
|