1
|
Wu J, Bureik M, Marchisio MA. Efficient sex hormone biosensors in Saccharomyces cerevisiae cells to evaluate human aromatase activity and inhibition. Sci Rep 2025; 15:737. [PMID: 39753751 PMCID: PMC11698725 DOI: 10.1038/s41598-024-85022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain. Our best biosensors showed high accuracy since their recovery concentration ranged between 97.13% and 104.69%. As a novelty, we built on top of them testosterone biosensors that exploit the conversion of testosterone into β-estradiol by the human aromatase enzyme-expressed in S. cerevisiae together with its co-factor CPR. We used our engineered yeast strains to evaluate aromatase activity through fluorescence measurements without the need for protein purification. Besides, we set up an aromatase-inhibitors evaluation assay to measure the IC50 (half-maximal inhibitory concentration) of candidate inhibitory compounds and developed a screening assay for enzymes that metabolize β-estradiol that demands only to measure fluorescence. These two assays allow the screening of a large number of chemicals and proteins in a fast and economic fashion. We think that our work will facilitate considerably high throughput screening for the discovery of new drugs and unknown metabolic processes.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
- School of Life Science and Health, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
2
|
Panov AV, Mayorov VI, Dikalov SI. Role of Fatty Acids β-Oxidation in the Metabolic Interactions Between Organs. Int J Mol Sci 2024; 25:12740. [PMID: 39684455 DOI: 10.3390/ijms252312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, several discoveries have been made that force us to reconsider old ideas about mitochondria and energy metabolism in the light of these discoveries. In this review, we discuss metabolic interaction between various organs, the metabolic significance of the primary substrates and their metabolic pathways, namely aerobic glycolysis, lactate shuttling, and fatty acids β-oxidation. We rely on the new ideas about the supramolecular structure of the mitochondrial respiratory chain (respirasome), the necessity of supporting substrates for fatty acids β-oxidation, and the reverse electron transfer via succinate dehydrogenase during β-oxidation. We conclude that ATP production during fatty acid β-oxidation has its upper limits and thus cannot support high energy demands alone. Meanwhile, β-oxidation creates conditions that significantly accelerate the cycle: glucose-aerobic glycolysis-lactate-gluconeogenesis-glucose. Therefore, glycolytic ATP production becomes an important energy source in high energy demand. In addition, lactate serves as a mitochondrial substrate after converting to pyruvate + H+ by the mitochondrial lactate dehydrogenase. All coupled metabolic pathways are irreversible, and the enzymes are organized into multienzyme structures.
Collapse
Affiliation(s)
- Alexander V Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | - Vladimir I Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | | |
Collapse
|
3
|
Zhang Y, Zhang G, Wang T, Chen Y, Wang J, Li P, Wang R, Su J. Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies. Chembiochem 2024; 25:e202400297. [PMID: 39287061 DOI: 10.1002/cbic.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Indexed: 09/19/2024]
Abstract
Cytochrome P450 (CYP450) enzymes, which are widely distributed and pivotal in various biochemical reactions, catalyze diverse processes such as hydroxylation, epoxidation, dehydrogenation, dealkylation, nitrification, and bond formation. These enzymes have been applied in drug metabolism, antibiotic production, bioremediation, and fine chemical synthesis. Recent research revealed that CYP450 catalytic kinetics deviated from the classic Michaelis-Menten model. A notable substrate inhibition phenomenon that affects the catalytic efficiency of CYP450 at high substrate concentrations was identified. However, the substrate inhibition of various reactions catalyzed by CYP450 enzymes have not been comprehensively reviewed. This review describes CYP450 substrate inhibition examples and atypical Michaelis-Menten kinetic models, and provides insight into mechanisms of these enzymes. We also reviewed 3D structure and dynamics of CYP450 with substrate binding. Outline methods for alleviating substrate inhibition in CYP450 and other enzymes, including traditional fermentation approaches and protein engineering modifications. The comprehensive analysis presented in this study lays the foundation for enhancing the catalytic efficiency of CYP450 by deregulating substrate inhibition.
Collapse
Affiliation(s)
- Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Guobin Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Taichang Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
4
|
Jiang Y, Li P, Li Z, Zhang B, Li S. Photoenzymatic synthesis of 1-alkenes and hydroxyl fatty acids by cascading a COF photocatalyst and P450 peroxygenases. Sci Bull (Beijing) 2024; 69:3350-3354. [PMID: 38735790 DOI: 10.1016/j.scib.2024.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peifeng Li
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
5
|
Tong X, Li X, Wang Y, Xie F, Li R, Ren M, Hu Q, Li S. Comprehensive analysis of mRNA and miRNA differential expression profiles in the hypothalamus-pituitary-gonadal axis in laying and broodiness period of Wanxi white geese. Poult Sci 2024; 104:104510. [PMID: 39549391 DOI: 10.1016/j.psj.2024.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
The hypothalamus-pituitary-gonadal (HPG) axis is an important neuroendocrine regulatory center involved in egg-laying process in poultry. However, its mechanism of regulating broodiness behavior and laying performance in geese remains unclear. This study explored the molecular mechanism by which the HPG axis regulates brooding behavior in Wanxi white geese (WWG). The hypothalamus, pituitary, and ovarian tissues of Wanxi white geese were collected at laying and brooding periods for transcriptome sequencing analysis. A total of 240 (BH vs. LH), 319 (BP vs. LP), and 445 (BO vs. LO) differentially expressed genes, and 56 (BH vs. LH), 82 (BP vs. LP), and 48 (BO vs. LO) differentially expressed miRNAs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis showed that differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were significantly enriched in hormone level regulation, cell communication, calcium signaling pathway, GnRH signaling pathway, MAPK signaling pathway, Wnt signaling pathway, and other processes. Six DEGs and four DEMs were randomly selected for real-time fluorescence quantitative reverse transcription PCR (RT-qPCR). The results showed that the transcriptome sequencing data were accurate and reliable. In addition, 22 potential hub miRNAs were screened. Dual luciferase reporter assays confirmed the targeting relationship between miR-144-y and DIO3. The results showed that the miRNAs mainly regulated the laying performance and brooding behavior of WWG by mediating the expression of target genes. In this study, we systematically elucidated the mechanisms by which the HPG axis regulates the broodiness behavior and laying performance of WWG at the post-transcriptional level. Several miRNAs and mRNAs associated with the reproductive performance of WWG were identified, providing a crucial reference for the subsequent use of gene editing technologies to breed new varieties and advance the development of WWG breeding industry.
Collapse
Affiliation(s)
- Xinwei Tong
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yuhua Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Fei Xie
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Ruidong Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China.
| |
Collapse
|
6
|
Xu G, Zhu J, Song L, Li W, Tang J, Cai L, Han XX. Immobilization of Membrane-Associated Protein Complexes on SERS-Active Nanomaterials for Structural and Dynamic Characterization. NANO LETTERS 2024; 24:13843-13850. [PMID: 39423236 DOI: 10.1021/acs.nanolett.4c04423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Exploring the structural basis of membrane proteins is significant for a deeper understanding of protein functions. In situ analysis of membrane proteins and their dynamics, however, still challenges conventional techniques. Here we report the first attempt to immobilize membrane protein complexes on surface-enhanced Raman scattering (SERS)-active supports, titanium dioxide-coated silver (Ag@TiO2) nanoparticles. Biocompatible immobilization of microsomal monooxygenase complexes is achieved through lipid fission and fusion. SERS activity of the Ag@TiO2 nanoparticles enables in situ monitoring of protein-protein electron transfer and enzyme catalysis in real time. Through SERS fingerprints of the monooxygenase redox centers, the correlations between these protein-ligand interactions and reactive oxygen species generation are revealed, providing novel insights into the molecular mechanisms underlying monooxygenase-mediated apoptotic regulation. This study offers a novel strategy to explore structure-function relationships of membrane protein complexes and has the potential to advance the development of novel reactive oxygen species-inducing drugs for cancer therapy.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
8
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
9
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Wu L, Luo H, Xu J, Yu L, Xiong J, Liu Y, Huang X, Zou X. Vital role of CYP450 in the biodegradation of antidiabetic drugs in the aerobic activated sludge system and the mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134056. [PMID: 38522208 DOI: 10.1016/j.jhazmat.2024.134056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
The extensive use of antidiabetic drugs (ADDs) and their detection in high concentrations in the environment have been extensively documented. However, the mechanism of ADDs dissipation in aquatic environments is still not well understood. This study thoroughly investigates the dissipation behavior of ADDs and the underlying mechanisms in the aerobic activated sludge system. The results indicate that the removal efficiencies of ADDs range from 3.98% to 100% within 48 h, largely due to the biodegradation process. Additionally, the gene expression of cytochrome P450 (CYP450) is shown to be significantly upregulated in most ADDs-polluted samples (P < 0.05), indicating the vital role of CYP450 enzymes in the biodegradation of ADDs. Enzyme inhibition experiments validated this hypothesis. Moreover, molecular docking and simulation results indicate that a strong correlation between the biodegradation of ADDs and the interactions between ADDs and CYP450 (Ebinding). The differences in dissipation behavior among the tested ADDs are possibly due to their electrophilic characteristics. Overall, this study makes the initial contribution to a more profound comprehension of the crucial function of CYP450 enzymes in the dissipation behavior of ADDs in a typical aquatic environment.
Collapse
Affiliation(s)
- Ligui Wu
- School of Life Science, Jinggangshan University, Ji'an 343009, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hao Luo
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Jingcheng Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ling Yu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Jiangtao Xiong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Yizhi Liu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
11
|
Wang H, Su K, Liu M, Liu Y, Wu Z, Fu C. Overexpressing CYP81D11 enhances 2,4,6-trinitrotoluene tolerance and removal efficiency in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14364. [PMID: 38837226 DOI: 10.1111/ppl.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlong Su
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Meifeng Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuchen Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Zhenying Wu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Yamoune S, Müller JP, Langmia IM, Scholl C, Stingl JC. Uncoupling of Cytochrome P450 2B6 and stimulation of reactive oxygen species production in pharmacogenomic alleles affected by interethnic variability. Biochim Biophys Acta Gen Subj 2024; 1868:130595. [PMID: 38467309 DOI: 10.1016/j.bbagen.2024.130595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cytochrome P450 mediated substrate metabolism is generally characterized by the formation of reactive intermediates. In vitro and in vivo reaction uncoupling, results in the accumulation and dissociation of reactive intermediates, leading to increased ROS formation. The susceptibility towards uncoupling and altered metabolic activity is partly modulated by pharmacogenomic alleles resulting in amino acid substitutions. A large variability in the prevalence of these alleles has been demonstrated in CYP2B6, with some being predominantly unique to African populations. The aim of this study is to characterize the uncoupling potential of recombinant CYP2B6*1, CYP2B6*6 and CYP2B6*34 metabolism of specific substrates. Therefore, functional effects of these alterations on enzyme activity were determined by quantification of bupropion, efavirenz and ketamine biotransformation using HPLC-MS/MS. Determination of H2O2 levels was performed by the AmplexRed/horseradish peroxidase assay. Our studies of the amino acid substitutions Q172H, K262R and R487S revealed an exclusive use of the peroxide shunt for the metabolism of bupropion and ketamine by CYP2B6*K262R. Ketamine was also identified as a trigger for the peroxide shunt in CYP2B6*1 and all variants. Concurrently, ketamine acted as an uncoupler for all enzymes. We further showed that the expressed CYP2B6*34 allele results in the highest H2O2 formation. We therefore conclude that the reaction uncoupling and peroxide shunt are directly linked and can be substrate specifically induced with K262R carriers being most likely to use the peroxide shunt and R487S carrier being most prone to reaction uncoupling. This elucidates the functional diversity of pharmacogenomics in drug metabolism and safety.
Collapse
Affiliation(s)
- Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Germany; Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | | | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | | |
Collapse
|
13
|
Farinelli G, Rebilly JN, Banse F, Cretin M, Quemener D. Assessment of new hydrogen peroxide activators in water and comparison of their active species toward contaminants of emerging concern. Sci Rep 2024; 14:9301. [PMID: 38653989 DOI: 10.1038/s41598-024-59381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Advanced oxidation processes are the most efficient tool to thwart the overaccumulation of harmful organic compounds in the environment. In this direction bioinspired metal complexes may be a viable solution for oxidative degradations in water. However, their synthesis is often elaborated and their scalability consequently low. This study presents alternative easy-to-synthesize bioinspired metal complexes to promote degradations in water. The metals employed were iron and manganese ions, hence cheap and highly accessible ions. The complexes were tested toward Phenol, Estrone, Triclosan, Oxybenzone, Diclofenac, Carbamazepine, Erythromycin, Aspartame, Acesulfame K, Anisole and 2,4-Dinitrotoluene. The reaction favoured electron-rich compounds reaching a removal efficiency of over 90%. The central ion plays a crucial role. Specifically, Mn(II) induces a non-radical pathway while iron ions a predominant radical one (⋅OH is predominant). The iron systems resulted more versatile toward contaminants, while the manganese ones showed a higher turn-over number, hence higher catalytic behaviour.
Collapse
Affiliation(s)
- Giulio Farinelli
- Institut Européen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univeristé de Montpellier, 34090, Montpellier, France.
| | - Jean-Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univeristé de Montpellier, 34090, Montpellier, France
| | - Damien Quemener
- Institut Européen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univeristé de Montpellier, 34090, Montpellier, France.
| |
Collapse
|
14
|
Yadav S, Shaik S, Dubey KD. On the engineering of reductase-based-monooxygenase activity in CYP450 peroxygenases. Chem Sci 2024; 15:5174-5186. [PMID: 38577361 PMCID: PMC10988616 DOI: 10.1039/d3sc06538c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Recent bioengineering of CYP450OleT shows that peroxide-based CYP450OleT can be converted to a reductase-based self-sufficient enzyme, which is capable of showing efficient hydroxylation and decarboxylation activity for a wide range of substrates. The so-generated enzyme creates several mechanistic puzzles: (A) as CYP450 peroxygenases lack the conventional acid-alcohol pair, what is the source of two protons that are required to create the ultimate oxidant Cpd I? (B) Why is it only CYP450OleT that shows the reductase-based activity but no other CYP members? The present study provides a mechanistic solution to these puzzles using comprehensive MD simulations and hybrid QM/MM calculations. We show that the fusion of the reductase domain to the heme-binding domain triggers significant conformational rearrangement, which is gated by the propionate side chain, which constitutes a new water aqueduct via the carboxylate end of the substrate that ultimately participates in Cpd I formation. Importantly, such well-synchronized choreographies are controlled by remotely located Tyr359, which senses the fusion of reductase and communicates to the heme domain via non-covalent interactions. These findings provide crucial insights and a broader perspective which enables us to make a verifiable prediction: thus, the catalytic activity is not only limited to the first or second catalytic shell of an enzyme. Furthermore, it is predicted that reinstatement of tyrosine at a similar position in other members of CYP450 peroxygenases can convert these enzymes to reductase-based monooxygenases.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence NH91 Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence NH91 Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| |
Collapse
|
15
|
Reed JH, Seebeck FP. Reagent Engineering for Group Transfer Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202311159. [PMID: 37688533 DOI: 10.1002/anie.202311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Biocatalysis has become a major driver in the innovation of preparative chemistry. Enzyme discovery, engineering and computational design have matured to reliable strategies in the development of biocatalytic processes. By comparison, substrate engineering has received much less attention. In this Minireview, we highlight the idea that the design of synthetic reagents may be an equally fruitful and complementary approach to develop novel enzyme-catalysed group transfer chemistry. This Minireview discusses key examples from the literature that illustrate how synthetic substrates can be devised to improve the efficiency, scalability and sustainability, as well as the scope of such reactions. We also provide an opinion as to how this concept might be further developed in the future, aspiring to replicate the evolutionary success story of natural group transfer reagents, such as adenosine triphosphate (ATP) and S-adenosyl methionine (SAM).
Collapse
Affiliation(s)
- John H Reed
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| |
Collapse
|
16
|
Lee JHZ, Bruning JB, Bell SG. An In Crystallo Reaction with an Engineered Cytochrome P450 Peroxygenase. Chemistry 2024; 30:e202303335. [PMID: 37971151 DOI: 10.1002/chem.202303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.
Collapse
Affiliation(s)
- Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Fan S, Cong Z. Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes. Acc Chem Res 2024. [PMID: 38293787 DOI: 10.1021/acs.accounts.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C-H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid-base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O-O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O-O cleavage of the adduct Fe-O-OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C-H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C-H bonds in synthetic chemistry.
Collapse
Affiliation(s)
- Shengxian Fan
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| |
Collapse
|
18
|
Dhawi F. Abiotic stress tolerance in pearl millet: Unraveling molecular mechanisms via transcriptomics. Sci Prog 2024; 107:368504241237610. [PMID: 38500301 PMCID: PMC10953032 DOI: 10.1177/00368504241237610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Pearl millet (Pennisetum glaucum (L.)) is a vital cereal crop renowned for its ability to thrive in challenging environmental conditions; however, the molecular mechanisms governing its salt stress tolerance remain poorly understood. To address this gap, next-generation RNA sequencing was conducted to compare gene expression patterns in pearl millet seedlings exposed to salt stress with those grown under normal conditions. Our RNA sequencing analysis focused on shoots from 13-day-old pearl millet plants subjected to either salinity stress (150 mmol of NaCl for 3 days) or thermal stress (50°C for 60 s). Of 36,041 genes examined, 17,271 genes with fold changes ranging from 2.2 to 19.6 were successfully identified. Specifically, 2388 genes were differentially upregulated in response to heat stress, whereas 4327 genes were downregulated. Under salt stress conditions, 2013 genes were upregulated and 4221 genes were downregulated. Transcriptomic analysis revealed four common abiotic KEGG pathways that play crucial roles in the response of pearl millet to salt and heat stress: phenylpropanoid biosynthesis, photosynthesis-antenna proteins, photosynthesis, and plant hormone signal transduction. These metabolic pathways are necessary for pearl millet to withstand and adapt to abiotic stresses caused by salt and heat. Moreover, the pearl millet shoot heat stress group showed specific transcriptomics related to KEEG metabolic pathways such as cytochrome P450, cutin, suberine, and wax biosynthesis, zeatin biosynthesis, crocin biosynthesis, ginsenoside biosynthesis, saponin biosynthesis, and biosynthesis of various plant secondary metabolites. In contrast, pearl millet shoots exposed to salinity stress exhibited transcriptomic changes associated with KEEG metabolic pathways related to carbon fixation in photosynthetic organisms, mismatch repair, and nitrogen metabolism. Our findings underscore the remarkable cross-tolerance of pearl millet to simultaneous salt and heat stress, elucidated through the activation of shared abiotic KEGG pathways. This study emphasizes the pivotal role of transcriptomics analysis in unraveling the molecular responses of pearl millet under abiotic stress conditions.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
19
|
Siddiqui SA, Stuyver T, Shaik S, Dubey KD. Designed Local Electric Fields-Promising Tools for Enzyme Engineering. JACS AU 2023; 3:3259-3269. [PMID: 38155642 PMCID: PMC10752214 DOI: 10.1021/jacsau.3c00536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/30/2023]
Abstract
Designing efficient catalysts is one of the ultimate goals of chemists. In this Perspective, we discuss how local electric fields (LEFs) can be exploited to improve the catalytic performance of supramolecular catalysts, such as enzymes. More specifically, this Perspective starts by laying out the fundamentals of how local electric fields affect chemical reactivity and review the computational tools available to study electric fields in various settings. Subsequently, the advances made so far in optimizing enzymatic electric fields through targeted mutations are discussed critically and concisely. The Perspective ends with an outlook on some anticipated evolutions of the field in the near future. Among others, we offer some pointers on how the recent data science/machine learning revolution, engulfing all science disciplines, could potentially provide robust and principled tools to facilitate rapid inference of electric field effects, as well as the translation between optimal electrostatic environments and corresponding chemical modifications.
Collapse
Affiliation(s)
- Shakir Ali Siddiqui
- Molecular Simulation Lab, Department of Chemistry,
School of Natural Sciences, Shiv Nadar Institution of Eminence,
Delhi NCR, India 201314
| | - Thijs Stuyver
- Ecole Nationale Supérieure de
Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health
Sciences, 75 005 Paris, France
| | - Sason Shaik
- Institute of Chemistry, Edmond J Safra Campus,
The Hebrew University of Jerusalem, Givat Ram, Jerusalem,
9190400, Israel
| | - Kshatresh Dutta Dubey
- Molecular Simulation Lab, Department of Chemistry,
School of Natural Sciences, Shiv Nadar Institution of Eminence,
Delhi NCR, India 201314
| |
Collapse
|
20
|
Pardhe BD, Oh TJ. Analysis of critical residues for peroxygenation and improved peroxygenase activity via in situ H 2O 2 generation in CYP105D18. Front Microbiol 2023; 14:1296202. [PMID: 38149268 PMCID: PMC10750395 DOI: 10.3389/fmicb.2023.1296202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Limited numbers of CYPs have been reported to work naturally as peroxygenases. The peroxide shunt pathway can be efficiently used as an alternative for the NAD(P)H and reductase systems, particularly in high hydrogen peroxide (H2O2) resistance CYPs. We reported the structural and biochemical features of CYP105D18 peroxygenase for its high H2O2 tolerance capacity. Q348 was a crucial residue for the stability of CYP105D18 during the exposure to H2O2. In addition, the role of the hydrophilic amino acid T239 from the I helix for peroxygenation and regiospecificity toward testosterone was investigated. Interestingly, T239E differs in product formation from wild type, catalyzing testosterone to androstenedione in the presence of H2O2. The other variant, T239A, worked with the Pdx/Pdr system and was unable to catalyze testosterone conversion in the presence of H2O2, suggesting the transformation of peroxygenase into monooxygenase. CYP105D18 supported the alternative method of H2O2 used for the catalysis of testosterone. The use of the same concentration of urea hydrogen peroxide adducts in place of direct H2O2 was more efficient for 2β-hydroxytestosterone conversion. Furthermore, in situ H2O2 generation using GOx/glucose system enhanced the catalytic efficiency (kcat/Km) for wild type and F184A by 1.3- and 1.9-fold, respectively, compared to direct use of H2O2 The engineering of CYP105D18, its improved peroxygenase activity, and alteration in the product oxidation facilitate CYP105D18 as a potential candidate for biotechnological applications.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
21
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
22
|
Bou-Nader C, Pecqueur L, de Crécy-Lagard V, Hamdane D. Integrative Approach to Probe Alternative Redox Mechanisms in RNA Modifications. Acc Chem Res 2023; 56:3142-3152. [PMID: 37916403 PMCID: PMC10999249 DOI: 10.1021/acs.accounts.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA modifications found in most RNAs, particularly in tRNAs and rRNAs, reveal an abundance of chemical alterations of nucleotides. Over 150 distinct RNA modifications are known, emphasizing a remarkable diversity of chemical moieties in RNA molecules. These modifications play pivotal roles in RNA maturation, structural integrity, and the fidelity and efficiency of translation processes. The catalysts responsible for these modifications are RNA-modifying enzymes that use a striking array of chemistries to directly influence the chemical landscape of RNA. This diversity is further underscored by instances where the same modification is introduced by distinct enzymes that use unique catalytic mechanisms and cofactors across different domains of life. This phenomenon of convergent evolution highlights the biological importance of RNA modification and the vast potential within the chemical repertoire for nucleotide alteration. While shared RNA modifications can hint at conserved enzymatic pathways, a major bottleneck is to identify alternative routes within species that possess a modified RNA but are devoid of known RNA-modifying enzymes. To address this challenge, a combination of bioinformatic and experimental strategies proves invaluable in pinpointing new genes responsible for RNA modifications. This integrative approach not only unveils new chemical insights but also serves as a wellspring of inspiration for biocatalytic applications and drug design. In this Account, we present how comparative genomics and genome mining, combined with biomimetic synthetic chemistry, biochemistry, and anaerobic crystallography, can be judiciously implemented to address unprecedented and alternative chemical mechanisms in the world of RNA modification. We illustrate these integrative methodologies through the study of tRNA and rRNA modifications, dihydrouridine, 5-methyluridine, queuosine, 8-methyladenosine, 5-carboxymethylamino-methyluridine, or 5-taurinomethyluridine, each dependent on a diverse array of redox chemistries, often involving organic compounds, organometallic complexes, and metal coenzymes. We explore how vast genome and tRNA databases empower comparative genomic analyses and enable the identification of novel genes that govern RNA modification. Subsequently, we describe how the isolation of a stable reaction intermediate can guide the synthesis of a biomimetic to unveil new enzymatic pathways. We then discuss the usefulness of a biochemical "shunt" strategy to study catalytic mechanisms and to directly visualize reactive intermediates bound within active sites. While we primarily focus on various RNA-modifying enzymes studied in our laboratory, with a particular emphasis on the discovery of a SAM-independent methylation mechanism, the strategies and rationale presented herein are broadly applicable for the identification of new enzymes and the elucidation of their intricate chemistries. This Account offers a comprehensive glimpse into the evolving landscape of RNA modification research and highlights the pivotal role of integrated approaches to identify novel enzymatic pathways.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, 32611, USA
- University of Florida, Genetics Institute, Gainesville, Florida, 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
23
|
Jiang Y, Li S. P450 fatty acid decarboxylase. Methods Enzymol 2023; 693:339-374. [PMID: 37977736 DOI: 10.1016/bs.mie.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
P450 fatty acid decarboxylases are able to utilize hydrogen peroxide as the sole cofactor to decarboxylate free fatty acids to produce α-olefins with abundant applications as drop-in biofuels and important chemical precursors. In this chapter, we review diverse approaches for discovery, characterization, engineering, and applications of P450 fatty acid decarboxylases. Information gained from structural data has been advancing our understandings of the unique mechanisms underlying alkene production, and providing important insights for exploring new activities. To build an efficient olefin-producing system, various engineering strategies have been proposed and applied to this unusual P450 catalytic system. Furthermore, we highlight a select number of applied examples of P450 fatty acid decarboxylases in enzyme cascades and metabolic engineering.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P.R. China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P.R. China.
| |
Collapse
|
24
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
25
|
Rade LL, Generoso WC, Das S, Souza AS, Silveira RL, Avila MC, Vieira PS, Miyamoto RY, Lima ABB, Aricetti JA, de Melo RR, Milan N, Persinoti GF, Bonomi AMFLJ, Murakami MT, Makris TM, Zanphorlin LM. Dimer-assisted mechanism of (un)saturated fatty acid decarboxylation for alkene production. Proc Natl Acad Sci U S A 2023; 120:e2221483120. [PMID: 37216508 PMCID: PMC10235961 DOI: 10.1073/pnas.2221483120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.
Collapse
Affiliation(s)
- Leticia L. Rade
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Wesley C. Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Suman Das
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Amanda S. Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Rodrigo L. Silveira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Mayara C. Avila
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Plinio S. Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Renan Y. Miyamoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ana B. B. Lima
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Juliana A. Aricetti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ricardo R. de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Natalia Milan
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Gabriela F. Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Antonio M. F. L. J. Bonomi
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Mario T. Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Leticia M. Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| |
Collapse
|
26
|
Shaya J, Aloum L, Lu CS, Corridon PR, Aoudi A, Shunnar A, Alefishat E, Petroianu G. Theoretical Study of Hydroxylation of α- and β-Pinene by a Cytochrome P450 Monooxygenase Model. Int J Mol Sci 2023; 24:ijms24065150. [PMID: 36982225 PMCID: PMC10048887 DOI: 10.3390/ijms24065150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/30/2023] Open
Abstract
Previous studies on biocatalytic transformations of pinenes by cytochrome P450 (CYP) enzymes reveal the formation of different oxygenated products from a single substrate due to the multistate reactivity of CYP and the many reactive sites in the pinene scaffold. Up until now, the detailed mechanism of these biocatalytic transformations of pinenes have not been reported. Hereby, we report a systematic theoretical study of the plausible hydrogen abstraction and hydroxylation reactions of α- and β-pinenes by CYP using the density functional theory (DFT) method. All DFT calculations in this study were based on B3LYP/LAN computational methodology using the Gaussian09 software. We used the B3LYP functional with corrections for dispersive forces, BSSE, and anharmonicity to study the mechanism and thermodynamic properties of these reactions using a bare model (without CYP) and a pinene-CYP model. According to the potential energy surface and Boltzmann distribution for radical conformers, the major reaction products of CYP-catalyzed hydrogen abstraction from β-pinene are the doublet trans (53.4%) and doublet cis (46.1%) radical conformer at delta site. The formation of doublet cis/trans hydroxylated products released a total Gibbs free energy of about 48 kcal/mol. As for alpha pinene, the most stable radicals were trans-doublet (86.4%) and cis-doublet (13.6%) at epsilon sites, and their hydroxylation products released a total of ~50 kcal/mol Gibbs free energy. Our results highlight the likely C-H abstraction and oxygen rebounding sites accounting for the multi-state of CYP (doublet, quartet, and sextet spin states) and the formation of different conformers due to the presence of cis/trans allylic hydrogen in α-pinene and β-pinene molecules.
Collapse
Affiliation(s)
- Janah Shaya
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Chung-Shin Lu
- Department of General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan, China
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abdulrahman Aoudi
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abeer Shunnar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11972, Jordan
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
27
|
Gomez de Santos P, González-Benjumea A, Fernandez-Garcia A, Aranda C, Wu Y, But A, Molina-Espeja P, Maté DM, Gonzalez-Perez D, Zhang W, Kiebist J, Scheibner K, Hofrichter M, Świderek K, Moliner V, Sanz-Aparicio J, Hollmann F, Gutiérrez A, Alcalde M. Engineering a Highly Regioselective Fungal Peroxygenase for the Synthesis of Hydroxy Fatty Acids. Angew Chem Int Ed Engl 2023; 62:e202217372. [PMID: 36583658 DOI: 10.1002/anie.202217372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.
Collapse
Affiliation(s)
| | - Alejandro González-Benjumea
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Angela Fernandez-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Yinqi Wu
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Andrada But
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - Diana M Maté
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - David Gonzalez-Perez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - Wuyuan Zhang
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Jan Kiebist
- Institute of Biotechnology Institution, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- Institute of Biotechnology Institution, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| |
Collapse
|
28
|
Pardhe BD, Kwon KP, Park JK, Lee JH, Oh TJ. H 2O 2-Driven Hydroxylation of Steroids Catalyzed by Cytochrome P450 CYP105D18: Exploration of the Substrate Access Channel. Appl Environ Microbiol 2023; 89:e0158522. [PMID: 36511686 PMCID: PMC9888293 DOI: 10.1128/aem.01585-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
CYP105D18 supports H2O2 as an oxygen surrogate for catalysis well and shows high H2O2 resistance capacity. We report the hydroxylation of different steroids using H2O2 as a cosubstrate. Testosterone was regiospecifically hydroxylated to 2β-hydroxytestosterone. Based on the experimental data and molecular docking, we predicted that hydroxylation of methyl testosterone and nandrolone would occur at position 2 in the A-ring, while hydroxylation of androstenedione and adrenosterone was predicted to occur in the B-ring. Further, structure-guided rational design of the substrate access channel was performed with the mutagenesis of residues S63, R82, and F184. Among the mutants, S63A showed a marked decrease in product formation, while F184A showed a significant increase in product formation in testosterone, nandrolone, methyl testosterone, androstenedione, and adrenosterone. The catalytic efficiency (kcat/Km) toward testosterone was increased 1.36-fold in the F184A mutant over that in the wild-type enzyme. These findings might facilitate the potential use of CYP105D18 and further engineering to establish the basis of biotechnological applications. IMPORTANCE The structural modification of steroids is a challenging chemical reaction. Modifying the core ring and the side chain improves the biological activity of steroids. In particular, bacterial cytochrome P450s are used as promiscuous enzymes for the activation of nonreactive carbons of steroids. In the present work, we reported the H2O2-mediated hydroxylation of steroids by CYP105D18, which also overcomes the use of expensive cofactors. Further, exploring the substrate access channel and modifying the bulky amino acid F184A increase substrate conversion while modifying the substrate recognizing amino acid S63 markedly decreases product formation. Exploring the substrate access channel and the rational design of CYP105D18 can improve the substrate conversion, which facilitates the engineering of P450s for industrial application.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Kyoung Pyo Kwon
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
29
|
Li Y, Lin Y, Wang F, Wang J, Shoji O, Xu J. Construction of Biocatalysts Using the P450 Scaffold for the Synthesis of Indigo from Indole. Int J Mol Sci 2023; 24:ijms24032395. [PMID: 36768714 PMCID: PMC9917246 DOI: 10.3390/ijms24032395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
With the increasing demand for blue dyes, it is of vital importance to develop a green and efficient biocatalyst to produce indigo. This study constructed a hydrogen peroxide-dependent catalytic system for the direct conversion of indole to indigo using P450BM3 with the assistance of dual-functional small molecules (DFSM). The arrangements of amino acids at 78, 87, and 268 positions influenced the catalytic activity. F87G/T268V mutant gave the highest catalytic activity with kcat of 1402 min-1 and with a yield of 73%. F87A/T268V mutant was found to produce the indigo product with chemoselectivity as high as 80%. Moreover, F87G/T268A mutant was found to efficiently catalyze indole oxidation with higher activity (kcat/Km = 1388 mM-1 min-1) than other enzymes, such as the NADPH-dependent P450BM3 (2.4-fold), the Ngb (32-fold) and the Mb (117-fold). Computer simulation results indicate that the arrangements of amino acid residues in the active site can significantly affect the catalytic activity of the protein. The DFSM-facilitated P450BM3 peroxygenase system provides an alternative, simple approach for a key step in the bioproduction of indigo.
Collapse
Affiliation(s)
- Yanqing Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Jinghan Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Correspondence: (O.S.); (J.X.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (O.S.); (J.X.)
| |
Collapse
|
30
|
Zhang H, Cui P, Xie D, Wang Y, Wang P, Sheng G. Axial N Ligand-Modulated Ultrahigh Activity and Selectivity Hyperoxide Activation over Single-Atoms Nanozymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205681. [PMID: 36446629 PMCID: PMC9875630 DOI: 10.1002/advs.202205681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Learning and studying the structure-activity relationship in the bio-enzymes is conducive to the design of nanozymes for energy and environmental application. Herein, Fe single-atom nanozymes (Fe-SANs) with Fe-N5 site, inspired by the structure of cytochromes P450 (CYPs), are developed and characterized. Similar to the CYPs, the hyperoxide can activate the Fe(III) center of Fe-SANs to generate Fe(IV)O intermediately, which can transfer oxygen to the substrate with ultrafast speed. Particularly, using the peroxymonosulfate (PMS)-activated Fe-SANs to oxidize sulfamethoxazole, a typical antibiotic contaminant, as the model hyperoxides activation reaction, the excellent activity within 284 min-1 g-1 (catalyst) mmol-1 (PMS) oxidation rate and 91.6% selectivity to the Fe(IV)O intermediate oxidation are demonstrated. More importantly, instead of promoting PMS adsorption, the axial N ligand modulates the electron structure of FeN5 SANs for the lower reaction energy barrier and promotes electron transfer to PMS to produce Fe(IV)O intermediate with high selectivity. The highlight of the axial N coordination in the nanozymes in this work provides deep insight to guide the design and development of nanozymes nearly to the bio-enzyme with excellent activity and selectivity.
Collapse
Affiliation(s)
- Han‐Chao Zhang
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
- Department of Civil & Environmental EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Pei‐Xin Cui
- Key Laboratory of Soil Environment and Pollution RemediationInstitute of Soil ScienceChinese Academy of SciencesNanjing210008China
| | - Dong‐Hua Xie
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Yu‐Jun Wang
- Key Laboratory of Soil Environment and Pollution RemediationInstitute of Soil ScienceChinese Academy of SciencesNanjing210008China
| | - Peng Wang
- Department of Civil & Environmental EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Guo‐Ping Sheng
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
31
|
Yadav S, Kardam V, Tripathi A, T G S, Dubey KD. The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes. J Chem Inf Model 2022; 62:6679-6690. [PMID: 36073971 DOI: 10.1021/acs.jcim.2c00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water models─TIP3P, SPC/E, and OPC─for three different CYP450 enzymes─CYP450BM3, CYP450OleT, and CYP450BSβ─during MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Ankita Tripathi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Shruti T G
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
32
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
33
|
Giuriato D, Correddu D, Catucci G, Di Nardo G, Bolchi C, Pallavicini M, Gilardi G. Design of a H 2 O 2 -generating P450 SPα fusion protein for high yield fatty acid conversion. Protein Sci 2022; 31:e4501. [PMID: 36334042 PMCID: PMC9679977 DOI: 10.1002/pro.4501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Sphingomonas paucimobilis' P450SPα (CYP152B1) is a good candidate as industrial biocatalyst. This enzyme is able to use hydrogen peroxide as unique cofactor to catalyze the fatty acids conversion to α-hydroxy fatty acids, thus avoiding the use of expensive electron-donor(s) and redox partner(s). Nevertheless, the toxicity of exogenous H2 O2 toward proteins and cells often results in the failure of the reaction scale-up when it is directly added as co-substrate. In order to bypass this problem, we designed a H2 O2 self-producing enzyme by fusing the P450SPα to the monomeric sarcosine oxidase (MSOX), as H2 O2 donor system, in a unique polypeptide chain, obtaining the P450SPα -polyG-MSOX fusion protein. The purified P450SPα -polyG-MSOX protein displayed high purity (A417 /A280 = 0.6) and H2 O2 -tolerance (kdecay = 0.0021 ± 0.000055 min-1 ; ΔA417 = 0.018 ± 0.001) as well as good thermal stability (Tm : 59.3 ± 0.3°C and 63.2 ± 0.02°C for P450SPα and MSOX domains, respectively). The data show how the catalytic interplay between the two domains can be finely regulated by using 500 mM sarcosine as sacrificial substrate to generate H2 O2 . Indeed, the fusion protein resulted in a high conversion yield toward fat waste biomass-representative fatty acids, that is, lauric acid (TON = 6,800 compared to the isolated P450SPα TON = 2,307); myristic acid (TON = 6,750); and palmitic acid (TON = 1,962).
Collapse
Affiliation(s)
- Daniele Giuriato
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Danilo Correddu
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Gianluca Catucci
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Cristiano Bolchi
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoMilanItaly
| | - Marco Pallavicini
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoMilanItaly
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
34
|
Meng S, Ji Y, Zhu L, Dhoke GV, Davari MD, Schwaneberg U. The molecular basis and enzyme engineering strategies for improvement of coupling efficiency in cytochrome P450s. Biotechnol Adv 2022; 61:108051. [DOI: 10.1016/j.biotechadv.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
35
|
Malewschik T, Carey LM, de Serrano V, Ghiladi RA. Bridging the functional gap between reactivity and inhibition in dehaloperoxidase B from Amphitrite ornata: Mechanistic and structural studies with 2,4- and 2,6-dihalophenols. J Inorg Biochem 2022; 236:111944. [PMID: 35969974 DOI: 10.1016/j.jinorgbio.2022.111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
The multifunctional catalytic globin dehaloperoxidase (DHP) from the marine worm Amphitrite ornata was shown to catalyze the H2O2-dependent oxidation of 2,4- and 2,6-dihalophenols (DXP; X = F, Cl, Br). Product identification by LC-MS revealed multiple monomeric products with varying degrees of oxidation and/or dehalogenation, as well as oligomers with n up to 6. Mechanistic and 18O-labeling studies demonstrated sequential dihalophenol oxidation via peroxidase and peroxygenase activities. Binding studies established that 2,4-DXP (X = Cl, Br) have the highest affinities of any known DHP substrate. X-ray crystallography identified different binding positions for 2,4- and 2,6-DXP substrates in the hydrophobic distal pocket of DHP. Correlation between the number of halogens and the substrate binding orientation revealed a halogen-dependent binding motif for mono- (4-halophenol), di- (2,4- and 2,6-dihalophenol) and trihalophenols (2,4,6-trihalopenol). Taken together, the findings here on dihalophenol reactivity with DHP advance our understanding of how these compounds bridge the inhibitory and oxidative functions of their mono- and trihalophenol counterparts, respectively, and provide further insight into the protein structure-function paradigm relevant to multifunctional catalytic globins in comparison to their monofunctional analogs.
Collapse
Affiliation(s)
- Talita Malewschik
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Leiah M Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
36
|
Feng Z, McLamb F, Vu JP, Gong S, Gersberg RM, Bozinovic G. Physiological and transcriptomic effects of hexafluoropropylene oxide dimer acid in Caenorhabditis elegans during development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114047. [PMID: 36075119 DOI: 10.1016/j.ecoenv.2022.114047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals resistant to degradation. While such a feature is desirable in consumer and industrial products, some PFAS, including perfluorooctanoic acid (PFOA), are toxic and bioaccumulate. Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging PFAS developed to replace PFOA, has not been extensively studied. To evaluate the potential toxicity of HFPO-DA with a cost- and time-efficient approach, we exposed C. elegans larvae for 48 h to 4 × 10-9-4 g/L HFPO-DA in liquid media and measured developmental, behavioral, locomotor, and transcriptional effects at various exposure levels. Worms exposed to 1.5-4 g/L HFPO-DA were developmentally delayed, and progeny production was significantly delayed (p < 0.05) in worms exposed to 2-4 g/L HFPO-DA. Statistically significant differential gene expression was identified in all fourteen HFPO-DA exposure groups ranging from 1.25 × 10-5 to 4 g/L, except for 6.25 × 10-5 g/L. Among 10298 analyzed genes, 2624 differentially expressed genes (DEGs) were identified in the developmentally delayed 4 g/L group only, and 78 genes were differentially expressed in at least one of the thirteen groups testing 1.25 × 10-5-2 g/L HFPO-DA exposures. Genes encoding for detoxification enzymes including cytochrome P450 and UDP glucuronosyltransferases were upregulated in 0.25-4 g/L acute exposure groups. DEGs were also identified in lower exposure level groups, though they did not share biological functions except for six ribosomal protein-coding genes. While our transcriptional data is inconclusive to infer mechanisms of toxicity, the significant gene expression differences at 1.25 × 10-5 g/L, the lowest concentration tested for transcriptional changes, calls for further targeted analyses of low-dose HFPO-DA exposure effects.
Collapse
Affiliation(s)
- Zuying Feng
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Richard M Gersberg
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA.
| |
Collapse
|
37
|
Zhang C, Gilardi G, Di Nardo G. Depicting the proton relay network in human aromatase: New insights into the role of the alcohol-acid pair. Protein Sci 2022; 31:e4389. [PMID: 36040260 PMCID: PMC9366932 DOI: 10.1002/pro.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Human aromatase is the cytochrome P450 catalyzing the conversion of androgens into estrogens in a three steps reaction essential to maintain steroid hormones balance. Here we report the capture and spectroscopic characterization of its compound I (Cpd I), the main reactive species in cytochromes P450. The typical spectroscopic transitions indicating the formation of Cpd I are detected within 0.8 s when mixing aromatase with meta-chloroperoxybenzoic acid. The estrogen product is obtained from the same reaction mixture, demonstrating the involvement of Cpd I in aromatization reaction. Site-directed mutagenesis is applied to the acid-alcohol pair D309 and T310 and to R192, predicted to be part of the proton relay network. Mutants D309N and R192Q do not lead to Cpd I with an associated loss of activity, confirming that these residues are involved in proton delivery for Cpd I generation. Cpd I is captured for T310A mutant and shows 2.9- and 4.4-fold faster rates of formation and decay, respectively, compared to wild-type (WT). However, its activity is lower than the WT and a larger amount of H2 O2 is produced during catalysis, indicating that T310 has an essential role in proton gating for generation of Cpd 0 and Cpd I and for their stabilization. The data provide new evidences on the role of threonine belonging to the conserved "acid-alcohol" pair and known to be crucial for oxygen activation in cytochromes P450.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| |
Collapse
|
38
|
Wang B, Zhang X, Fang W, Rovira C, Shaik S. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Acc Chem Res 2022; 55:2280-2290. [PMID: 35926175 DOI: 10.1021/acs.accounts.2c00304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This Account describes the manner whereby nature controls the Fenton-type reaction of O-O homolysis of hydrogen peroxide and harnesses it to carry out various useful oxidative transformations in metalloenzymes. H2O2 acts as the cosubstrate for the heme-dependent peroxidases, P450BM3, P450SPα, P450BSβ, and the P450 decarboxylase OleT, as well as the nonheme enzymes HppE and the copper-dependent lytic polysaccharide monooxygenases (LPMOs). Whereas heme peroxidases use the Poulos-Kraut heterolytic mechanism for H2O2 activation, some heme enzymes prefer the alternative Fenton-type mechanism, which produces •OH radical intermediates. The fate of the •OH radical is controlled by the protein environment, using tight H-bonding networks around H2O2. The so-generated •OH radical is constrained by the surrounding H-bonding interactions, the orientation of which is targeted to perform H-abstraction from the Fe(III)-OH group and thereby leading to the formation of the active species, called Compound I (Cpd I), Por+•Fe(IV)═O, which performs oxidation of the substrate. Alternatively, for the nonheme HppE enzyme, the O-O homolysis catalyzed by the resting state Fe(II) generates an Fe(III)-OH species that effectively constrains the •OH radical species by a tight H-bonding network. The so-formed H-bonded •OH radical acts directly as the oxidant, since it is oriented to perform H-abstraction from the C-H bond of the substrate (S)-2-HPP. The Fenton-type H2O2 activation is strongly suggested by computations to occur also in copper-dependent LPMOs and pMMO. In LPMOs, the Cu(I)-catalyzed O-O homolysis of the H2O2 cosubstrate generates an •OH radical that abstracts a hydrogen atom from Cu(II)-OH and forms thereby the active species of the enzyme, Cu(II)-O•. Such Fenton-type O-O activation can be shared by both the O2-dependent activations of LPMOs and pMMOs, in which the O2 cosubstrate may be reduced to H2O2 by external reductants. Our studies show that, generally, the H2O2 activation is highly dependent on the protein environment, as well as on the presence/absence of substrates. Since H2O2 is a highly flexible and hydrophilic molecule, the absence of suitable substrates may lead to unproductive binding or even to the release of H2O2 from the active site, as has been suggested in P450cam and LPMOs, whereas the presence of the substrate seems to play a role in steering a Fenton-type H2O2 activation. In the absence of a substrate, the hydrophilic active site of P450BM3 disfavors the binding and activation of H2O2 and protects thereby the enzyme from the damage by the Fenton reaction. Due to the distinct coordination and reaction environment, the Fenton-type H2O2 activation mechanism by enzymes differs from the reaction in synthetic systems. In nonenzymatic reactions, the H-bonding networks are quite dynamic and flexible and the reactivity of H2O2 is not strategically constrained as in the enzymatic environment. As such, our Account describes the controlled Fenton-type mechanism in metalloenzymes, and the role of the protein environment in constraining the •OH radical against oxidative damage, while directing it to perform useful oxidative transformations.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
39
|
Alassadi S, Pisani MJ, Wheate NJ. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans 2022; 51:10835-10846. [PMID: 35781551 DOI: 10.1039/d2dt01875f] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platinum drugs have been a mainstay of cancer chemotherapy since the introduction of cisplatin in the 1970s. Since then, carboplatin and oxaliplatin have been approved world-wide and nedaplatin, lobaplatin, heptaplatin, dicycloplatin, and miriplatin have been approved in individual countries. The three main platinum drugs are not used in isolation but are combined in chemotherapy protocols from a range of 28 drugs that include: anthracyclines, alkylating agents, vinca alkaloids, antimetabolites, topoisomerase inhibitors, taxanes, and monoclonal antibodies. Interestingly, they are not yet used in combination with tyrosine kinase inhibitors or proteasome inhibitors. How platinum drugs are formulated for administration to patients is important to minimise aquation during storage and administration. Cisplatin is typically formulated in saline-based solutions while carboplatin and oxaliplatin are formulated in dextrose. Pharmacokinetics are an important factor in both the efficacy and safety of platinum drugs. This includes the quantity of protein-bound drug in blood serum, how fast the drugs are cleared by the body, and how fast the drugs are degraded and deactivated. Attempts to control platinum pharmacokinetics and side effects using rescue agents, macrocycles, and nanoparticles, and through the design of platinum(IV)-based drugs have not yet resulted in clinically successful outcomes. As cancer is predominantly a disease of old age, many cancer patients who are administered a platinum drug may have other medical conditions which means they may also be taking many non-cancer medicines. The co-administration of non-cancer medicines to patients can potentially affect the efficacy of platinum drugs and/or change the severity of their side effects through drug-drug interactions.
Collapse
Affiliation(s)
- Shoohb Alassadi
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Michelle J Pisani
- East Hills Boys High School, Lucas Road, Panania, NSW, 2213, Australia
| | - Nial J Wheate
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
40
|
Novel Unspecific Peroxygenase from Truncatella angustata Catalyzes the Synthesis of Bioactive Lipid Mediators. Microorganisms 2022; 10:microorganisms10071267. [PMID: 35888989 PMCID: PMC9322767 DOI: 10.3390/microorganisms10071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lipid mediators, such as epoxidized or hydroxylated eicosanoids (EETs, HETEs) of arachidonic acid (AA), are important signaling molecules and play diverse roles at different physiological and pathophysiological levels. The EETs and HETEs formed by the cytochrome P450 enzymes are still not fully explored, but show interesting anti-inflammatory properties, which make them attractive as potential therapeutic target or even as therapeutic agents. Conventional methods of chemical synthesis require several steps and complex separation techniques and lead only to low yields. Using the newly discovered unspecific peroxygenase TanUPO from the ascomycetous fungus Truncatella angustata, 90% regioselective conversion of AA to 14,15-EET could be achieved. Selective conversion of AA to 18-HETE, 19-HETE as well as to 11,12-EET and 14,15-EET was also demonstrated with known peroxygenases, i.e., AaeUPO, CraUPO, MroUPO, MweUPO and CglUPO. The metabolites were confirmed by HPLC-ELSD, MS1 and MS2 spectrometry as well as by comparing their analytical data with authentic standards. Protein structure simulations of TanUPO provided insights into its substrate access channel and give an explanation for the selective oxyfunctionalization of AA. The present study expands the scope of UPOs as they can now be used for selective syntheses of AA metabolites that serve as reference material for diagnostics, for structure-function elucidation as well as for therapeutic and pharmacological purposes.
Collapse
|
41
|
Wang P, Huang Q, Meng S, Mu T, Liu Z, He M, Li Q, Zhao S, Wang S, Qiu M. Identification of lung cancer breath biomarkers based on perioperative breathomics testing: A prospective observational study. EClinicalMedicine 2022; 47:101384. [PMID: 35480076 PMCID: PMC9035731 DOI: 10.1016/j.eclinm.2022.101384] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breathomics testing has been considered a promising method for detection and screening for lung cancer. This study aimed to identify breath biomarkers of lung cancer through perioperative dynamic breathomics testing. METHODS The discovery study was prospectively conducted between Sept 1, 2020 and Dec 31, 2020 in Peking University People's Hospital in China. High-pressure photon ionisation time-of-flight mass spectrometry was used for breathomics testing before surgery and 4 weeks after surgery. 28 volatile organic compounds (VOCs) were selected as candidates based on a literature review. VOCs that changed significantly postoperatively in patients with lung cancer were selected as potential breath biomarkers. An external validation was conducted to evaluate the performance of these VOCs for lung cancer diagnosis. Multivariable logistic regression was used to establish diagnostic models based on selected VOCs. FINDINGS In the discovery study of 84 patients with lung cancer, perioperative breathomics demonstrated 16 VOCs as lung cancer breath biomarkers. They were classified as aldehydes, hydrocarbons, ketones, carboxylic acids, and furan. In the external validation study including 157 patients with lung cancer and 368 healthy individuals, patients with lung cancer showed elevated spectrum peak intensity of the 16 VOCs after adjusting for age, sex, smoking, and comorbidities. The diagnostic model including 16 VOCs achieved an area under the curve (AUC) of 0.952, sensitivity of 89.2%, specificity of 89.1%, and accuracy of 89.1% in lung cancer diagnosis. The diagnostic model including the top eight VOCs achieved an AUC of 0.931, sensitivity of 86.0%, specificity of 87.2%, and accuracy of 86.9%. INTERPRETATION Perioperative dynamic breathomics is an effective approach for identifying lung cancer breath biomarkers. 16 lung cancer-related breath VOCs (aldehydes, hydrocarbons, ketones, carboxylic acids, and furan) were identified and validated. Further studies are warranted to investigate the underlying mechanisms of identified VOCs. FUNDING National Natural Science Foundation of China (82173386) and Peking University People's Hospital Scientific Research Development Founds (RDH2021-07).
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Qi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China
| | - Shushi Meng
- Department of Thoracic Surgery, Beijing Haidian Hospital, Beijing 100080, China
| | - Teng Mu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Mengqi He
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100074, China
| | - Qingyun Li
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100074, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China
- Corresponding authors at: Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China.
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
- Corresponding authors at: Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100074, China
- Corresponding authors at: Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| |
Collapse
|
42
|
Catucci G, Ciaramella A, Di Nardo G, Zhang C, Castrignanò S, Gilardi G. Molecular Lego of Human Cytochrome P450: The Key Role of Heme Domain Flexibility for the Activity of the Chimeric Proteins. Int J Mol Sci 2022; 23:ijms23073618. [PMID: 35408976 PMCID: PMC8998974 DOI: 10.3390/ijms23073618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as ‘molecular Lego’. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the ‘molecular Lego’ approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.
Collapse
|
43
|
Křen V, Kroutil W, Hall M. A Career in Biocatalysis: Kurt Faber. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Křen
- Institute of Microbiology, Czech Academy of Sciences, Laboratory of Biotransformation, 14220 Prague, Czech Republic
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed, University of Graz, 8010 Graz, Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
44
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
45
|
Yadav S, Shaik S, Siddiqui SA, Kalita S, Dubey KD. Local Electric Fields Dictate Function: The Different Product Selectivities Observed for Fatty Acid Oxidation by Two Deceptively Very Similar P450-Peroxygenases OleT and BSβ. J Chem Inf Model 2022; 62:1025-1035. [PMID: 35129977 DOI: 10.1021/acs.jcim.1c01453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytochrome P450 peroxygenases use hydrogen peroxide to hydroxylate long-chain fatty acids by bypassing the use of O2 and a redox partner. Among the peroxygenases, P450OleT uniquely performs decarboxylation of fatty acids and production of terminal olefins. This route taken by P450OleT is intriguing, and its importance is augmented by the practical importance of olefin production. As such, this mechanistic choice merits elucidation. To address this puzzle, we use hybrid QM/MM calculations and MD simulations for the OleT enzyme as well as for the structurally analogous enzyme, P450BSβ. The study of P450OleT reveals that the protonated His85 in the wild-type P450OleT plays a crucial role in steering decarboxylation activity by stabilizing the corresponding hydroxoiron(IV) intermediate (Cpd II). In contrast, for P450BSβ in which Q85 replaces H85, the respective Cpd II species is unstable and it reacts readily with the substrate radical by rebound, producing hydroxylation products. As shown, this single-site difference creates in P450OleT a local electric field (LEF), which is significantly higher than that in P450BSβ. In turn, these LEF differences are responsible for the different stabilities of the respective Cpd II/radical intermediates and hence for different functions of the two enzymes. P450BSβ uses the common rebound mechanism and leads to hydroxylation, whereas P450OleT proceeds via decarboxylation and generates terminal olefins. Olefin production projects the power of a single residue to alter the LEF and the enzyme's function.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Edmond. J. Safra Campus, Givat Ram, Jerusalem 9190400, Israel
| | - Shakir Ali Siddiqui
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Surajit Kalita
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.,Center for Informatics, Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
46
|
Tu D, Ning J, Zou L, Wang P, Zhang Y, Tian X, Zhang F, Zheng J, Ge G. Unique Oxidative Metabolism of Bufalin Generates Two Reactive Metabolites That Strongly Inactivate Human Cytochrome P450 3A. J Med Chem 2022; 65:4018-4029. [DOI: 10.1021/acs.jmedchem.1c01875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dongzhu Tu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Liwei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
47
|
Ma D, Zhang L, Yin Y, Gao Y, Wang Q. Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450. J Pharm Anal 2022; 11:757-763. [PMID: 35028181 PMCID: PMC8740452 DOI: 10.1016/j.jpha.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
P450 fatty acid decarboxylase OleT from Staphylococcus aureus (OleTSA) is a novel cytochrome P450 enzyme that catalyzes the oxidative decarboxylation of fatty acids to yield primarily terminal alkenes and CO2 or minor α- and β-hydroxylated fatty acids as side-products. In this work, the interactions between a series of cycloalkyl phosphorus heterocycles (CPHs) and OleTSA were investigated in detail by fluorescence titration experiment, ultraviolet-visible (UV-vis) and 31P NMR spectroscopies. Fluorescence titration experiment results clearly showed that a dynamic quenching occurred when CPH-6, a representative CPHs, interacted with OleTSA with a binding constant value of 15.2 × 104 M-1 at 293 K. The thermodynamic parameters (ΔH, ΔS and ΔG) showed that the hydrogen bond and van der Waals force played major roles in the interaction between OleTSA and CPHs. The UV-vis and 31P NMR studies indicated the penetration of CPH-6 into the interior environment of OleTSA, which greatly affects the enzymatic activity of OleTSA. Therefore, our study revealed an effective way to use phosphorus heterocyclic compounds to modulate the activity of cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Dumei Ma
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
48
|
Podgorski MN, Harbort JS, Lee JHZ, Nguyen GT, Bruning JB, Donald WA, Bernhardt PV, Harmer JR, Bell SG. An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew N. Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joshua S. Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Giang T.H. Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
49
|
Khayeka-Wandabwa C, Ma X, Jia Y, Bureik M. Monitoring of autoantibodies against CYP4Z1 in patients with colon, ovarian, or prostate cancer. Immunobiology 2022; 227:152174. [PMID: 34999392 DOI: 10.1016/j.imbio.2021.152174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/09/2022]
Abstract
We have previously monitored the detection of autoantibodies (aAbs) directed against CYP4Z1 in the sera of breast and lung cancer patients. In the present study, the occurence of anti-CYP4Z1 aAbs in patients suffering from colon (n = 100), ovarian (n = 72), or prostate (n = 85) cancer was examined. Determination of aAbs was done using our previously established ELISA method. On average, the levels of anti-CYP4Z1 aAbs detected in sera from all cancer patients were not significantly higher than controls. No correlations were found with respect to gender or tumor stage. However, a subgroup of colon cancer patients with increased anti-CYP4Z1 aAb titers exhibited positive fecal occult blood test (FOBT) results and higher levels of both carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA). These results do not suggest that anti-CYP4Z1 aAbs have value as an independent biomarker for the detection of either colon, ovarian, or prostate cancer. However, they might be useful in combination with other biomarkers for the identification of a subset of colon cancers. Investigations involving a more powered sample size of this subgroup are needed to support this notion.
Collapse
Affiliation(s)
| | - Xiaoshuang Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjie Jia
- Dept. of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
50
|
Danek PJ, Daniel WA. Long-Term Treatment with Atypical Antipsychotic Iloperidone Modulates Cytochrome P450 2D (CYP2D) Expression and Activity in the Liver and Brain via Different Mechanisms. Cells 2021; 10:cells10123472. [PMID: 34943983 PMCID: PMC8700221 DOI: 10.3390/cells10123472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
CYP2D enzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (Ki = 11.5 μM and Ki = 462 μM, respectively). However, a two-week treatment with iloperidone (1 mg/kg ip.) produced a significant decrease in the activity of liver CYP2D, which correlated positively with the reduced CYP2D1, CYP2D2 and CYP2D4 protein and mRNA levels. Like in the liver, iloperidone reduced CYP2D activity and protein levels in the frontal cortex and cerebellum but enhanced these levels in the nucleus accumbens, striatum and substantia nigra. Chronic iloperidone did not change the brain CYP2D4 mRNA levels, except in the striatum, where they were significantly increased. In conclusion, by affecting CYP2D activity in the brain, iloperidone may modify its pharmacological effect, via influencing the rate of dopamine and serotonin synthesis or the metabolism of neurosteroids. By elevating the CYP2D expression/activity in the substantia nigra and striatum (i.e., in the dopaminergic nigrostriatal pathway), iloperidone may attenuate extrapyramidal symptoms, while by decreasing the CYP2D activity and metabolism of neurosteroiods in the frontal cortex and cerebellum, iloperidone can have beneficial effects in the treatment of schizophrenia. In the liver, pharmacokinetic interactions involving chronic iloperidone and CYP2D substrates are likely to occur.
Collapse
|