1
|
Can G, Perk B, Çitil BE, Büyüksünetçi YT, Anık Ü. Electrochemical Immunoassay Platform for Human Monkeypox Virus Detection. Anal Chem 2024; 96:8342-8348. [PMID: 38728056 PMCID: PMC11140668 DOI: 10.1021/acs.analchem.3c05182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/29/2024]
Abstract
In this study, we reported a selective impedimetric biosensor for the detection of A29 which is the target protein of the monkeypox virus (MPXV). The working principle of the biosensor relies on the interaction mechanism between A29, which is an internal membrane protein of MPXV, and the heparan sulfate receptor. For this purpose, after immobilizing heparan sulfate onto the gold screen-printed electrode surface, its interaction with A29 protein was monitored using electrochemical impedance spectroscopy. After the optimization of experimental parameters, the analytical characteristics of the developed MPVX immunosensor were examined. The developed immunosensor exhibited a linear detection range between 2.0 and 50 ng mL-1, with a detection limit of 2.08 ng mL-1 and a quantification limit of 6.28 ng mL-1. Furthermore, a relative standard deviation value of 2.82% was determined for 25 ng mL-1. Apart from that, sample application studies were also performed with the standard addition of A29 protein to 1:10 diluted real serum samples that were taken from healthy individuals, and very good recovery values were obtained.
Collapse
Affiliation(s)
- Göksu Can
- Faculty
of Science, Chemistry Department, Mugla
Sitki Kocman University, Kotekli, Mugla 48000, Turkey
| | - Benay Perk
- Faculty
of Science, Chemistry Department, Mugla
Sitki Kocman University, Kotekli, Mugla 48000, Turkey
| | - Burak Ekrem Çitil
- Faculty
of Medicine, Department of Medical Microbiology, Mugla Sitki Kocman University, Kotekli-Mugla 48000, Turkey
| | | | - Ülkü Anık
- Faculty
of Science, Chemistry Department, Mugla
Sitki Kocman University, Kotekli, Mugla 48000, Turkey
- Sensors,
Biosensors and Nano-diagnostic Systems Laboratory, Research Laboratory
Center, Mugla Sitki Kocman University, Kotekli, Mugla 48000, Turkey
| |
Collapse
|
2
|
Buijsers B, Maciej-Hulme M, Jacobs M, Bebber MBV, de Graaf M, Salmenov R, Parr N, Rabelink TJ, Nijenhuis T, van der Vlag J. Glycosaminoglycans and fucoidan have a protective effect on experimental glomerulonephritis. Front Mol Biosci 2023; 10:1223972. [PMID: 37475889 PMCID: PMC10354240 DOI: 10.3389/fmolb.2023.1223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Background: The glomerular endothelial glycocalyx is degraded during inflammation. The glycocalyx plays a pivotal role in endothelial function and is involved in many processes including binding of chemokines and cytokines, leukocyte trafficking, and preventing proteinuria. HS-based therapeutics are a promising novel class of anti-inflammatory drugs to restore a compromised endothelial glycocalyx under inflammatory conditions. Recently, we demonstrated that treatment with HS extracted from unstimulated glomerular endothelial glycocalyx (unstimulated HSglx) reduced albuminuria during anti-GBM induced glomerulonephritis. Since endothelial HS domains are distinct in unstimulated versus inflammatory conditions, we hypothesized that 1) unstimulated HSglx, 2) LPS-stimulated HSglx, 3) the HS-mimetic fucoidan and 4) the glycosaminoglycan preparation sulodexide, which is a mixture of low molecular weight heparin and dermatan sulfate, might have different beneficial effects in experimental glomerulonephritis. Methods: The effect of unstimulated HSglx, LPS HSglx, Laminaria japonica fucoidan, or sulodexide on experimental glomerulonephritis was tested in LPS-induced glomerulonephritis in mice. Analyses included urinary albumin creatinine measurement, cytokine expression in plasma and renal cortex, and renal influx of immune cells determined by flow cytometry and immunofluorescence staining. Furthermore, the observed in vivo effects were evaluated in cultured glomerular endothelial cells and peripheral blood mononuclear cells by measuring cytokine and ICAM-1 expression levels. The ability of the compounds to inhibit heparanase activity was assessed in a heparanase activity assay. Results: Treatment of mice with LPS HSglx or sulodexide near-significantly attenuated LPS-induced proteinuria. All treatments reduced plasma MCP-1 levels, whereas only fucoidan reduced IL-6 and IL-10 plasma levels. Moreover, all treatments reversed cortical ICAM-1 mRNA expression and both fucoidan and sulodexide reversed cortical IL-6 and nephrin mRNA expression. Sulodexide decreased renal influx of CD45+ immune cells whereas renal influx of macrophages and granulocytes remained unaltered for all treatments. Although all compounds inhibited HPSE activity, fucoidan and sulodexide were the most potent inhibitors. Notably, fucoidan and sulodexide decreased LPS-induced mRNA expression of ICAM-1 and IL-6 by cultured glomerular endothelial cells. Conclusion: Our data show a potentially protective effect of glycosaminoglycans and fucoidan in experimental glomerulonephritis. Future research should be aimed at the further identification of defined HS structures that have therapeutic potential in the treatment of glomerular diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa Maciej-Hulme
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rustem Salmenov
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ton J. Rabelink
- Division of Nephrology, Department of Internal Medicine, The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Maciej-Hulme ML, Van Gemst JJ, Sanderson P, Rops ALWMM, Berden JH, Smeets B, Amster IJ, Rabelink TJ, Van Der Vlag J. Glomerular endothelial glycocalyx-derived heparan sulfate inhibits glomerular leukocyte influx and attenuates experimental glomerulonephritis. Front Mol Biosci 2023; 10:1177560. [PMID: 37325479 PMCID: PMC10267401 DOI: 10.3389/fmolb.2023.1177560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jasper J Van Gemst
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Angelique L W M M Rops
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jo H Berden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Ton J Rabelink
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johan Van Der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Maciej-Hulme ML, Leprince ACN, Lavin A, Guimond SE, Turnbull JE, Pelletier J, Yates EA, Powell AK, Skidmore MA. High sensitivity (zeptomole) detection of BODIPY-labelled heparan sulfate (HS) disaccharides by ion-paired RP-HPLC and LIF detection enables analysis of HS from mosquito midguts. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1461-1469. [PMID: 36876452 PMCID: PMC10019443 DOI: 10.1039/d2ay01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The fine structure of heparan sulfate (HS), the glycosaminoglycan polysaccharide component of cell surface and extracellular matrix HS proteoglycans, coordinates the complex cell signalling processes that control homeostasis and drive development in multicellular animals. In addition, HS is involved in the infection of mammals by viruses, bacteria and parasites. The current detection limit for fluorescently labelled HS disaccharides (low femtomole; 10-15 mol), has effectively hampered investigations of HS composition in small, functionally-relevant populations of cells and tissues that may illuminate the structural requirements for infection and other biochemical processes. Here, an ultra-high sensitivity method is described that utilises a combination of reverse-phase HPLC, with tetraoctylammonium bromide (TOAB) as the ion-pairing reagent and laser-induced fluorescence detection of BODIPY-FL-labelled disaccharides. The method provides an unparalleled increase in the sensitivity of detection by ∼six orders of magnitude, enabling detection in the zeptomolar range (∼10-21 moles; <1000 labelled molecules). This facilitates determination of HS disaccharide compositional analysis from minute samples of selected tissues, as demonstrated by analysis of HS isolated from the midguts of Anopheles gambiae mosquitoes that was achieved without approaching the limit of detection.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Anaëlle C N Leprince
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
- Université de Rennes 1, Rue du Thabor, 35065 Rennes Cedex, France
| | - Andre Lavin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Scott E Guimond
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Jeremy E Turnbull
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Julien Pelletier
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Edwin A Yates
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mark A Skidmore
- Centre for Glycoscience Research and Training, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
5
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
6
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Na L, Yu H, McArthur JB, Ghosh T, Asbell T, Chen X. Engineer P. multocida Heparosan Synthase 2 (PmHS2) for Size-Controlled Synthesis of Longer Heparosan Oligosaccharides. ACS Catal 2020; 10:6113-6118. [PMID: 33520345 PMCID: PMC7842274 DOI: 10.1021/acscatal.0c01231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pasteurella multocida heparosan synthase 2 (PmHS2) is a dual-function polysaccharide synthase having both α1-4-N-acetylglucosaminyltransferase (α1-4-GlcNAcT) and β1-4-glucuronyltransferase (β1-4-GlcAT) activities located in two separate catalytic domains. We found that removing PmHS2 N-terminal 80-amino acid residues improved enzyme stability and expression level while retaining its substrate promiscuity. We also identified the reverse glycosylation activities of PmHS2 which complicated its application in size-controlled synthesis of oligosaccharides longer than hexasaccharide. Engineered Δ80PmHS2 single-function-glycosyltransferase mutants Δ80PmHS2_D291N (α1-4-GlcNAcT lacking both forward and reverse β1-4-GlcAT activities) and Δ80PmHS2_D569N (β1-4-GlcAT lacking both forward and reverse α1-4-GlcNAcT activities) were designed and showed to minimize side product formation. They were successfully used in a sequential one-pot multienzyme (OPME) platform for size-controlled high-yield production of oligosaccharides up to decasaccharide. The study draws attention to the consideration of reverse glycosylation activities of glycosyltransferases, including polysaccharide synthases, when applying them in the synthesis of oligosaccharides and polysaccharides. The mutagenesis strategy has the potential to be extended to other multifunctional polysaccharide synthases with reverse glycosylation activities to generate catalysts with improved synthetic efficiency.
Collapse
Affiliation(s)
| | | | - John B. McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Tamashree Ghosh
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Thomas Asbell
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
8
|
Horta MF, Andrade LO, Martins-Duarte ÉS, Castro-Gomes T. Cell invasion by intracellular parasites - the many roads to infection. J Cell Sci 2020; 133:133/4/jcs232488. [PMID: 32079731 DOI: 10.1242/jcs.232488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Collapse
Affiliation(s)
- Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Érica Santos Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| |
Collapse
|