1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Pandey E, Harris EN. Chloroquine and cytosolic galectins affect endosomal escape of antisense oligonucleotides after Stabilin-mediated endocytosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:430-443. [PMID: 37575283 PMCID: PMC10412722 DOI: 10.1016/j.omtn.2023.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Non-DNA-binding Stabilin-2/HARE receptors expressed on liver sinusoidal endothelial cells specifically bind to and internalize several classes of phosphorothioate antisense oligonucleotides (PS-ASOs). After Stabilin-mediated uptake, PS-ASOs are trafficked within endosomes (>97%-99%), ultimately resulting in destruction in the lysosome. The ASO entrapment in endosomes lowers therapeutic efficacy, thereby increasing the overall dose for patients. Here, we use confocal microscopy to characterize the intracellular route transverse by PS-ASOs after Stabilin receptor-mediated uptake in stable recombinant Stabilin-1 and -2 cell lines. We found that PS-ASOs as well as the Stabilin-2 receptor transverse the classic path: clathrin-coated vesicle-early endosome-late endosome-lysosome. Chloroquine exposure facilitated endosomal escape of PS-ASOs leading to target knockdown by more than 50% as compared to untreated cells, resulting in increased PS-ASO efficacy. We also characterize cytosolic galectins as novel contributor for PS-ASO escape. Galectins knockdown enhances ASO efficacy by more than 60% by modulating EEA1, Rab5C, and Rab7A mRNA expression, leading to a delay in the endosomal vesicle maturation process. Collectively, our results provide additional insight for increasing PS-ASO efficacy by enhancing endosomal escape, which can further be utilized for other nucleic acid-based modalities.
Collapse
Affiliation(s)
- Ekta Pandey
- University of Nebraska, Department of Biochemistry, Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| | - Edward N. Harris
- University of Nebraska, Department of Biochemistry, Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| |
Collapse
|
3
|
Racchetti G, Meldolesi J. Four distinct cytoplasmic structures generate and release specific vesicles, thus opening the way to intercellular communication. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:44-58. [PMID: 39698300 PMCID: PMC11648438 DOI: 10.20517/evcna.2023.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 12/20/2024]
Abstract
In all cells, generation and release of specific vesicles are the initial steps of back-and-forth intercellular communication. These processes are critical in normal physiology and pathophysiology. Vesicles have particular functions appropriate to their targets. When stimulated, they are released into the extracellular space. Four cytoplasmic membrane-bound structures generate their particular vesicles. Among these structures, multivesicular bodies (MVBs) can accumulate many small vesicles in their lumen; release occurs upon MVB exocytosis. Ectosomes are larger vesicles characterized by their responses and are generated directly and released independently from specific microdomains pre-established in the thickness of the plasma membrane. Most lysosomes do not generate vesicles. However, unique components of a minor form, the endo-lysosome, constitute the third class of structures that release a few vesicles by exocytosis with molecules and structures inducing changes in the extracellular environment. The autophagosome, the fourth structure, releases several heterogeneous vesicles by exocytosis with malformed bio-molecules, assembled structures, and damaged organelles. Interestingly, the frequent interaction of autophagosomes with MVBs and their exosomes contributes to the regulation and intensity of their action. The specificity and function of released vesicles depend on their membranes' and luminal cargoes' composition and dynamics. An ongoing investigation of the various vesicles reveals new properties regarding their generation, release, and resulting extracellular processes. The growth of information about structures and their vesicles progressively extends the knowledge base regarding cell communication and contributes to their clinical applications.
Collapse
Affiliation(s)
- Gabriella Racchetti
- San Raffaele Institute, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, Milan 20132, Italy
- CNR Institute of Neuroscience at the Milano-Bicocca University, Vedano al Lambro, Milan 20854, Italy
| |
Collapse
|
4
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
5
|
Saha B, Acharjee S, Ghosh G, Dasgupta P, Prasad M. Germline protein, Cup, non-cell autonomously limits migratory cell fate in Drosophila oogenesis. PLoS Genet 2023; 19:e1010631. [PMID: 36791149 PMCID: PMC9974129 DOI: 10.1371/journal.pgen.1010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 01/22/2023] [Indexed: 02/16/2023] Open
Abstract
Specification of migratory cell fate from a stationary population is complex and indispensable both for metazoan development as well for the progression of the pathological condition like tumor metastasis. Though this cell fate transformation is widely prevalent, the molecular understanding of this phenomenon remains largely elusive. We have employed the model of border cells (BC) in Drosophila oogenesis and identified germline activity of an RNA binding protein, Cup that limits acquisition of migratory cell fate from the neighbouring follicle epithelial cells. As activation of JAK-STAT in the follicle cells is critical for BC specification, our data suggest that Cup, non-cell autonomously restricts the domain of JAK-STAT by activating Notch in the follicle cells. Employing genetics and Delta endocytosis assay, we demonstrate that Cup regulates Delta recycling in the nurse cells through Rab11GTPase thus facilitating Notch activation in the adjacent follicle cells. Since Notch and JAK-STAT are antagonistic, we propose that germline Cup functions through Notch and JAK-STAT to modulate BC fate specification from their static epithelial progenitors.
Collapse
Affiliation(s)
- Banhisikha Saha
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Sayan Acharjee
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Gaurab Ghosh
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Purbasa Dasgupta
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
6
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Watson J, Ferguson HR, Brady RM, Ferguson J, Fullwood P, Mo H, Bexley KH, Knight D, Howell G, Schwartz JM, Smith MP, Francavilla C. Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival. Nat Commun 2022; 13:6589. [PMID: 36329028 DOI: 10.1101/2021.01.17.427038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/19/2022] [Indexed: 05/26/2023] Open
Abstract
Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Harriet R Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, M20 4GJ, UK
| | - Jennifer Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Hanyi Mo
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Katherine H Bexley
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - David Knight
- Bio-MS Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Gareth Howell
- Flow Cytometry Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Michael P Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, M139PT, Manchester, UK.
| |
Collapse
|
8
|
Watson J, Ferguson HR, Brady RM, Ferguson J, Fullwood P, Mo H, Bexley KH, Knight D, Howell G, Schwartz JM, Smith MP, Francavilla C. Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival. Nat Commun 2022; 13:6589. [PMID: 36329028 PMCID: PMC9633600 DOI: 10.1038/s41467-022-34298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Harriet R Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, M20 4GJ, UK
| | - Jennifer Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Hanyi Mo
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Katherine H Bexley
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - David Knight
- Bio-MS Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Gareth Howell
- Flow Cytometry Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Michael P Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, M139PT, Manchester, UK.
| |
Collapse
|
9
|
Priya A, Datta S. Monitoring Endosomal Cargo Retrieval to the Trans-Golgi Network by Microscopic and Biochemical Approaches. Methods Mol Biol 2022; 2473:213-236. [PMID: 35819769 DOI: 10.1007/978-1-0716-2209-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The endosomal recycling pathway plays a crucial role in diverse physiologically important biological processes such as cell-to-cell signaling, nutrient uptake, immune response, and autophagy. A selective subset of these recycling cargoes, mostly transmembrane proteins, is retrieved from endosomes to the trans-Golgi network (TGN) by a retrograde transport process. Endosome-to-TGN retrograde trafficking is crucial for maintaining cellular homeostasis and signaling by preventing proteins and lipids from degradation in the lysosome. Many of the membrane sorting machinery, such as the retromer complex and sorting nexins (SNXs) are involved in endosomal retrieval and recycling of various transmembrane proteins. Recent technological advances in the resolution of light microscopy and unbiased analytical approaches in quantitative image analysis enable us to explore and understand the regulation of membrane trafficking pathways in greater detail. In this chapter, we describe quantitative imaging-based methods for analyzing the roles of proteins involved in the retrograde trafficking in retromer dependent or independent fashion, using cation-independent mannose-6-phosphate receptor (CIM6PR) as an example.
Collapse
Affiliation(s)
- Amulya Priya
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
10
|
Johannes L. The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery-The GL-Lect Hypothesis. Molecules 2021; 26:3299. [PMID: 34072622 PMCID: PMC8198588 DOI: 10.3390/molecules26113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Lipid membranes are common to all forms of life. While being stable barriers that delimitate the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most abundant fundamental fabrics of membranes-lipids and complex sugars-are produced through elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas of membrane glycobiology research and its application to biomedicine. For this Special Issue on Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study endocytic functions of glycosylated proteins and lipids according to the GlycoLipid-Lectin (GL-Lect) hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy and tumor targeting. It will be pointed out how the chemical biologist's view on lipids, sugars, and proteins synergizes with biophysics and modeling to "look" into the membrane for atomistic scale insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
11
|
Chemical Manipulation of the Endosome Trafficking Machinery: Implications for Oligonucleotide Delivery. Biomedicines 2021; 9:biomedicines9050512. [PMID: 34063104 PMCID: PMC8148136 DOI: 10.3390/biomedicines9050512] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs), siRNA and splice switching oligonucleotides (SSOs) all have immense potential as therapeutic agents, potential that is now being validated as oligonucleotides enter the clinic. However, progress in oligonucleotide-based therapeutics has been limited by the difficulty in delivering these complex molecules to their sites of action in the cytosol or nucleus of cells within specific tissues. There are two aspects to the delivery problem. The first is that most types of oligonucleotides have poor uptake into non-hepatic tissues. The second is that much of the oligonucleotide that is taken up by cells is entrapped in endosomes where it is pharmacologically inert. It has become increasingly recognized that endosomal trapping is a key constraint on oligonucleotide therapeutics. Thus, many approaches have been devised to address this problem, primarily ones based on various nanoparticle technologies. However, recently an alternative approach has emerged that employs small molecules to manipulate intracellular trafficking processes so as to enhance oligonucleotide actions. This review presents the current status of this chemical biology approach to oligonucleotide delivery and seeks to point out possible paths for future development.
Collapse
|