1
|
Longo M, Bishnu A, Risiglione P, Montava-Garriga L, Cuenco J, Sakamoto K, MacKintosh C, Ganley IG. Opposing roles for AMPK in regulating distinct mitophagy pathways. Mol Cell 2024; 84:4350-4367.e9. [PMID: 39532100 DOI: 10.1016/j.molcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Mitophagy degrades damaged mitochondria, but we show here that it can also target functional mitochondria. This latter scenario occurs during programmed mitophagy and involves the mitophagy receptors NIX and BNIP3. Although AMP-activated protein kinase (AMPK), the energy-sensing protein kinase, can influence damaged-induced mitophagy, its role in programmed mitophagy is unclear. We found that AMPK directly inhibits NIX-dependent mitophagy by triggering 14-3-3-mediated sequestration of ULK1, via ULK1 phosphorylation at two sites: Ser556 and an additional identified site, Ser694. By contrast, AMPK activation increases Parkin phosphorylation and enhances the rate of depolarization-induced mitophagy, independently of ULK1. We show that this happens both in cultured cells and tissues in vivo, using the mito-QC mouse model. Our work unveils a mechanism whereby AMPK activation downregulates mitophagy of functional mitochondria but enhances that of dysfunctional/damaged ones.
Collapse
Affiliation(s)
- Marianna Longo
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Aniketh Bishnu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Pierpaolo Risiglione
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Lambert Montava-Garriga
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carol MacKintosh
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, Scotland.
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.
| |
Collapse
|
2
|
Filippone A, Mannino D, Cucinotta L, Calapai F, Crupi L, Paterniti I, Esposito E. Rebalance of mitophagy by inhibiting LRRK2 improves colon alterations in an MPTP in vivo model. iScience 2024; 27:110980. [PMID: 39635134 PMCID: PMC11615202 DOI: 10.1016/j.isci.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common genetic causes of Parkinson's disease (PD). Studies demonstrated that variants in LRRK2 genetically link intestinal disorders to PD. We aimed to evaluate whether the selective inhibitor of LRRK2, PF-06447475 (PF-475), attenuates the PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in central nervous system (CNS) and in the gastrointestinal system. CD1 mice received four intraperitoneal injections of MPTP (20 mg/kg, total dose of 80 mg/kg) at 2 h intervals (day 1). After 24 h PF-475 was administered intraperitoneally at the doses of 2.5, 5, and 10 mg/kg for seven days. LRRK2 inhibition reduced brain α-synuclein and modulated mitophagy pathway and reduced pro-inflammatory markers and α-synuclein aggregates in colonic tissues through the modulation of mitophagy proteins. LRRK2 inhibition suppressed MPTP-induced enteric dopaminergic neuronal injury and protected tight junction in the colon. Results suggested that PF-475 may attenuate gastrointestinal dysfunction associated to PD.
Collapse
Affiliation(s)
- Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Fabrizio Calapai
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
3
|
Shen M, Chen M, Chen Y, Yu Y. Mitophagy related diagnostic biomarkers for coronary in-stent restenosis identified using machine learning and bioinformatics. Sci Rep 2024; 14:24137. [PMID: 39406802 PMCID: PMC11480419 DOI: 10.1038/s41598-024-74862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Percutaneous coronary intervention (PCI) combined with stent implantation is currently one of the most effective treatments for coronary artery disease (CAD). However, in-stent restenosis (ISR) significantly compromises its long-term efficacy. Mitophagy plays a crucial role in vascular homeostasis, yet its role in ISR remains unclear. This study aims to identify mitophagy-related biomarkers for ISR and explore their underlying molecular mechanisms. Through differential gene expression analysis between ISR and Control samples in the combined dataset, 169 differentially expressed genes (DEGs) were identified. Twenty-three differentially expressed mitophagy-related genes (DEMRGs) were identified by intersecting with mitophagy-related genes (MRGs) from the GeneCards, and functional enrichment analysis indicated their significant involvement in mitophagy-related biological processes. Using Weighted Gene Co-expression Network Analysis (WGCNA) and three machine learning algorithms (Logistic-LASSO, RF, and SVM-RFE), LRRK2, and ANKRD13A were identified as mitophagy-related biomarkers for ISR. The nomogram based on these two genes also exhibited promising diagnostic performance for ISR. Gene Set Enrichment Analysis (GSEA) as well as immune infiltration analyses showed that these two genes were closely associated with immune and inflammatory responses in ISR. Furthermore, potential small molecule compounds with therapeutic implications for ISR were predicted using the connectivity Map (cMAP) database. This study systematically investigated mitophagy-related biomarkers for ISR and their potential biological functions, providing new insights into early diagnosis and precision treatment strategies for ISR.
Collapse
Affiliation(s)
- Ming Shen
- Department of Cardiology, the 926th Hospital of the Joint Logistic Support Force of PLA, Affiliated Hospital of Kunming University of Science and Technology, Kaiyuan, 661600, Yunnan, China.
- Department of Cardiology, the 920th Hospital of the Joint Logistic Support Force of PLA, Kunming, 650032, Yunnan, China.
| | - Meixian Chen
- Department of Cardiology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of the Joint Logistic Support Force of PLA), Fuzhou, 350025, Fujian, China
| | - Yu Chen
- Department of Cardiology, the 920th Hospital of the Joint Logistic Support Force of PLA, Kunming, 650032, Yunnan, China
| | - Yunhua Yu
- Department of Geriatric, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of the Joint Logistic Support Force of PLA), Fuzhou, 350025, Fujian, China.
| |
Collapse
|
4
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
7
|
Kim K, Jang A, Shin H, Ye I, Lee JE, Kim T, Park H, Hong S. Concurrent Optimizations of Efficacy and Blood-Brain Barrier Permeability in New Macrocyclic LRRK2 Inhibitors for Potential Parkinson's Disease Therapeutics. J Med Chem 2024. [PMID: 38684226 DOI: 10.1021/acs.jmedchem.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The elevated activity of leucine-rich repeat kinase 2 (LRRK2) is implicated in the pathogenesis of Parkinson's disease (PD). The quest for effective LRRK2 inhibitors has been impeded by the formidable challenge of crossing the blood-brain barrier (BBB). We leveraged structure-based de novo design and developed robust three-dimensional quantitative structure-activity relationship (3D-QSAR) models to predict BBB permeability, enhancing the likelihood of the inhibitor's brain accessibility. Our strategy involved the synthesis of macrocyclic molecules by linking the two terminal nitrogen atoms of HG-10-102-01 with an alkyl chain ranging from 2 to 4 units, laying the groundwork for innovative LRRK2 inhibitor designs. Through meticulous computational and synthetic optimization of both biochemical efficacy and BBB permeability, 9 out of 14 synthesized candidates demonstrated potent low-nanomolar inhibition and significant BBB penetration. Further assessments of in vitro and in vivo effectiveness, coupled with pharmacological profiling, highlighted 8 as the promising new lead compound for PD therapeutics.
Collapse
Affiliation(s)
- Kewon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Ahyoung Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hochul Shin
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Inhae Ye
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Ji Eun Lee
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Taeho Kim
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
8
|
Pfeifer GP. DNA Damage and Parkinson's Disease. Int J Mol Sci 2024; 25:4187. [PMID: 38673772 PMCID: PMC11050701 DOI: 10.3390/ijms25084187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology underlying most sporadic Parkinson's' disease (PD) cases is unknown. Environmental exposures have been suggested as putative causes of the disease. In cell models and in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms of how these chemicals cause the death of neurons is not understood. Several of these agents are mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction of the respiratory chain, in combination with the presence of redox active dopamine molecules in these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons. Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to well over a megabase. It is predictable that such long genes will contain large numbers of damaged DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II, which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually leading to the death of these cells during a human lifetime.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Singh F, Wilhelm L, Prescott AR, Ostacolo K, Zhao JF, Ogmundsdottir MH, Ganley IG. PINK1 regulated mitophagy is evident in skeletal muscles. AUTOPHAGY REPORTS 2024; 3:2326402. [PMID: 38988500 PMCID: PMC7616148 DOI: 10.1080/27694127.2024.2326402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 07/12/2024]
Abstract
PINK1, mutated in familial forms of Parkinson's disease, initiates mitophagy following mitochondrial depolarization. However, it is difficult to monitor this pathway physiologically in mice as loss of PINK1 does not alter basal mitophagy levels in most tissues. To further characterize this pathway in vivo, we used mito-QC mice in which loss of PINK1 was combined with the mitochondrial-associated POLGD257A mutation. We focused on skeletal muscle as gene expression data indicates that this tissue has the highest PINK1 levels. We found that loss of PINK1 in oxidative hindlimb muscle significantly reduced mitophagy. Of interest, the presence of the POLGD257A mutation, while having a minor effect in most tissues, restored levels of muscle mitophagy caused by the loss of PINK1. Although our observations highlight that multiple mitophagy pathways operate within a single tissue, we identify skeletal muscle as a tissue of choice for the study of PINK1-dependant mitophagy under basal conditions.
Collapse
Affiliation(s)
- Francois Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Department of Physiology, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Lea Wilhelm
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Kevin Ostacolo
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Margret H. Ogmundsdottir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
10
|
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet 2024; 403:293-304. [PMID: 38245249 DOI: 10.1016/s0140-6736(23)01478-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 07/13/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative condition associated with the deposition of aggregated α-synuclein. Insights into the pathogenesis of Parkinson's disease have been derived from genetics and molecular pathology. Biochemical studies, investigation of transplanted neurons in patients with Parkinson's disease, and cell and animal model studies suggest that abnormal aggregation of α-synuclein and spreading of pathology between the gut, brainstem, and higher brain regions probably underlie the development and progression of Parkinson's disease. At a cellular level, abnormal mitochondrial, lysosomal, and endosomal function can be identified in both monogenic and sporadic Parkinson's disease, suggesting multiple potential treatment approaches. Recent work has also highlighted maladaptive immune and inflammatory responses, possibly triggered in the gut, that accelerate the pathogenesis of Parkinson's disease. Although there are currently no disease-modifying treatments for Parkinson's disease, we now have a solid basis for the development of rational neuroprotective therapies that we hope will halt the progression of this disabling neurological condition.
Collapse
Affiliation(s)
- Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK; University College London Movement Disorders Centre, University College London, London, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Carolyn M Sue
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, South Eastern Sydney Local Health District, Sydney, NSW, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA; Neuroscience Research Australia, Randwick, NSW, Australia.
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Williamson MG, Madureira M, McGuinness W, Heon-Roberts R, Mock ED, Naidoo K, Cramb KML, Caiazza MC, Malpartida AB, Lavelle M, Savory K, Humble SW, Patterson R, Davis JB, Connor-Robson N, Ryan BJ, Wade-Martins R. Mitochondrial dysfunction and mitophagy defects in LRRK2-R1441C Parkinson's disease models. Hum Mol Genet 2023; 32:2808-2821. [PMID: 37384414 PMCID: PMC10481106 DOI: 10.1093/hmg/ddad102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of Parkinson's disease (PD). The LRRK2 PD-associated mutations LRRK2G2019S and LRRK2R1441C, located in the kinase domain and in the ROC-COR domain, respectively, have been demonstrated to impair mitochondrial function. Here, we sought to further our understanding of mitochondrial health and mitophagy by integrating data from LRRK2R1441C rat primary cortical and human induced pluripotent stem cell-derived dopamine (iPSC-DA) neuronal cultures as models of PD. We found that LRRK2R1441C neurons exhibit decreased mitochondrial membrane potential, impaired mitochondrial function and decreased basal mitophagy levels. Mitochondrial morphology was altered in LRRK2R1441C iPSC-DA but not in cortical neuronal cultures or aged striatal tissue, indicating a cell-type-specific phenotype. Additionally, LRRK2R1441C but not LRRK2G2019S neurons demonstrated decreased levels of the mitophagy marker pS65Ub in response to mitochondrial damage, which could disrupt degradation of damaged mitochondria. This impaired mitophagy activation and mitochondrial function were not corrected by the LRRK2 inhibitor MLi-2 in LRRK2R1441C iPSC-DA neuronal cultures. Furthermore, we demonstrate LRRK2 interaction with MIRO1, a protein necessary to stabilize and to anchor mitochondria for transport, occurs at mitochondria, in a genotype-independent manner. Despite this, we found that degradation of MIRO1 was impaired in LRRK2R1441C cultures upon induced mitochondrial damage, suggesting a divergent mechanism from the LRRK2G2019S mutation.
Collapse
Affiliation(s)
- Matthew G Williamson
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Marta Madureira
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - William McGuinness
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Elliot D Mock
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Kalina Naidoo
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Kaitlyn M L Cramb
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Maria-Claudia Caiazza
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Ana B Malpartida
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
| | - Martha Lavelle
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Katrina Savory
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Stewart W Humble
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, 20892, USA
| | - Ryan Patterson
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, 20892, USA
| | - John B Davis
- Oxford Drug Discovery Institute, Centre of Medicines Discovery, University of Oxford, NDM Research Building, Old Road Campus, Oxford OX3 7FZ, UK
| | - Natalie Connor-Robson
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
| | - Brent J Ryan
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
13
|
Zhu C, Herbst S, Lewis PA. Leucine-rich repeat kinase 2 at a glance. J Cell Sci 2023; 136:jcs259724. [PMID: 37698513 PMCID: PMC10508695 DOI: 10.1242/jcs.259724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multidomain scaffolding protein with dual guanosine triphosphatase (GTPase) and kinase enzymatic activities, providing this protein with the capacity to regulate a multitude of signalling pathways and act as a key mediator of diverse cellular processes. Much of the interest in LRRK2 derives from mutations in the LRRK2 gene being the most common genetic cause of Parkinson's disease, and from the association of the LRRK2 locus with a number of other human diseases, including inflammatory bowel disease. Therefore, the LRRK2 research field has focused on the link between LRRK2 and pathology, with the aim of uncovering the underlying mechanisms and, ultimately, finding novel therapies and treatments to combat them. From the biochemical and cellular functions of LRRK2, to its relevance to distinct disease mechanisms, this Cell Science at a Glance article and the accompanying poster deliver a snapshot of our current understanding of LRRK2 function, dysfunction and links to disease.
Collapse
Affiliation(s)
- Christiane Zhu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
14
|
Qi R, Sammler E, Gonzalez-Hunt CP, Barraza I, Pena N, Rouanet JP, Naaldijk Y, Goodson S, Fuzzati M, Blandini F, Erickson KI, Weinstein AM, Lutz MW, Kwok JB, Halliday GM, Dzamko N, Padmanabhan S, Alcalay RN, Waters C, Hogarth P, Simuni T, Smith D, Marras C, Tonelli F, Alessi DR, West AB, Shiva S, Hilfiker S, Sanders LH. A blood-based marker of mitochondrial DNA damage in Parkinson's disease. Sci Transl Med 2023; 15:eabo1557. [PMID: 37647388 PMCID: PMC11135133 DOI: 10.1126/scitranslmed.abo1557] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- Rui Qi
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH UK
| | - Claudia P. Gonzalez-Hunt
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Ivana Barraza
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Nicholas Pena
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Jeremy P. Rouanet
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yahaira Naaldijk
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Steven Goodson
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Marie Fuzzati
- IRCCS Mondino Foundation, National Institute of Neurology, Pavia 27100, Italy
| | - Fabio Blandini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL 32804, USA
| | - Andrea M. Weinstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, PA 15213, USA
| | - Michael W. Lutz
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John B. Kwok
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Glenda M. Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Shalini Padmanabhan
- Michael J. Fox Foundation for Parkinson’s Research, Grand Central Station, P.O. Box 4777, New York, NY 10120, USA
| | - Roy N. Alcalay
- Columbia University Irving Medical Center, New York, NY 10032, USA
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Cheryl Waters
- Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Penelope Hogarth
- Departments of Molecular and Medical Genetics and Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Danielle Smith
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH UK
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH UK
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sabine Hilfiker
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Laurie H. Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
15
|
Cardoso Mendes L, Abreu Rosa de Sá A, Alves Marques I, Morère Y, de Oliveira Andrade A. RehaBEElitation: the architecture and organization of a serious game to evaluate motor signs in Parkinson's disease. PeerJ Comput Sci 2023; 9:e1267. [PMID: 37346638 PMCID: PMC10280492 DOI: 10.7717/peerj-cs.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/08/2023] [Indexed: 06/23/2023]
Abstract
Background The use of serious games (SG) has received increasing attention in health care, and can be applied for both rehabilitation and evaluation of motor signs of several diseases, such as Parkinson's disease (PD). However, the use of these instruments in clinical practice is poorly observed, since there is a scarcity of games that, during their development process, simultaneously address issues of usability and architectural design, contributing to the non-satisfaction of the actual needs of professionals and patients. Thus, this study aimed to present the architecture and usability evaluation at the design stage of a serious game, so-called RehaBEElitation, and assess the accessibility of the game. Methods The game was created by a multidisciplinary team with experience in game development and PD, taking into consideration design guidelines for the development of SG. The user must control the movements of a bee in a 3D environment. The game tasks were designed to mimic the following movements found in the gold-standard method tool-Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-for the assessment of individuals with PD: hand opening and closing, hand extension and flexion, hand adduction and abduction, finger tapping, and forearm supination and pronation. The user interacts with the game using a wearable interface device that embeds inertial and tactile sensors. The architecture of RehaBEElitation was detailed using the business process model (BPM) notation and the usability of the architecture was evaluated using the Nielsen-Shneiderman heuristics. Game accessibility was evaluated by comparing the overall scores of each phase between 15 healthy participants and 15 PD patients. The PD group interacted with the game in both the ON and OFF states. Results The system was modularized in order to implement parallel, simultaneous and independent programming at different levels, requiring less computational effort and enabling fluidity between the game and the control of the interface elements in real time. The developed architecture allows the inclusion of new elements for patient status monitoring, extending the functionality of the tool without changing its fundamental characteristics. The heuristic evaluation contemplated all the 14 heuristics proposed by Shneiderman, which enabled the implementation of improvements in the game. The evaluation of accessibility revealed no statistically significant differences (p < 0.05) between groups, except for the healthy group and the PD group in the OFF state of medication during Phase 3 of the game. Conclusions The proposed architecture was presented in order to facilitate the reproduction of the system and extend its application to other scenarios. In the same way, the heuristic evaluation performed can serve as a contribution to the advancement of the SG design for PD. The accessibility evaluation revealed that the game is accessible to individuals with PD.
Collapse
Affiliation(s)
- Luanne Cardoso Mendes
- Centre for Innovation and Technology Assessment in Health (NIATS), Faculty of Electrical Engineering, Federal University of Uberlândia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Laboratoire de Conception, d’Optimisation et de Modélisation des Systèmes (LCOMS), Université de Lorraine, Metz, Moselle, France
| | - Angela Abreu Rosa de Sá
- Assistive Technology Laboratory, Faculty of Electrical Engineering (NTA), Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Isabela Alves Marques
- Centre for Innovation and Technology Assessment in Health (NIATS), Faculty of Electrical Engineering, Federal University of Uberlândia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Laboratoire de Conception, d’Optimisation et de Modélisation des Systèmes (LCOMS), Université de Lorraine, Metz, Moselle, France
| | - Yann Morère
- Laboratoire de Conception, d’Optimisation et de Modélisation des Systèmes (LCOMS), Université de Lorraine, Metz, Moselle, France
| | - Adriano de Oliveira Andrade
- Centre for Innovation and Technology Assessment in Health (NIATS), Faculty of Electrical Engineering, Federal University of Uberlândia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
16
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Ganley IG. Strengthening the link between mitophagy and Parkinson's disease. Brain 2022; 145:4154-4156. [PMID: 36319596 PMCID: PMC9762929 DOI: 10.1093/brain/awac405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 04/11/2024] Open
Abstract
This scientific commentary refers to ‘Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci’ by Soutar et al. (https://doi.org/10.1093/brain/awac325); and ‘DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy’ by Imberechts et al. (https://doi.org/10.1093/brain/awac313).
Collapse
Affiliation(s)
- Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of
Dundee, Dundee, UK
| |
Collapse
|
18
|
Wilhelm LP, Zapata-Muñoz J, Villarejo-Zori B, Pellegrin S, Freire CM, Toye AM, Boya P, Ganley IG. BNIP3L/NIX regulates both mitophagy and pexophagy. EMBO J 2022; 41:e111115. [PMID: 36215693 PMCID: PMC9753467 DOI: 10.15252/embj.2022111115] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/15/2023] Open
Abstract
Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.
Collapse
Affiliation(s)
- Léa P Wilhelm
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Juan Zapata-Muñoz
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Madrid, Spain
| | - Stephanie Pellegrin
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, UK
| | | | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, UK
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Madrid, Spain
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Erekat NS. Autophagy and Its Association with Genetic Mutations in Parkinson Disease. Med Sci Monit 2022; 28:e938519. [PMID: 36366737 PMCID: PMC9664771 DOI: 10.12659/msm.938519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 08/07/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disorder, affecting 0.1-0.2% of the general population. It is a progressive debilitating disorder caused by degeneration of dopaminergic neurons in the substantia nigra pars compacta. It is characterized by motor and non-motor symptoms. Parkinson disease can be caused by mutations in genes that encode proteins involved in the autophagic process, resulting in impaired autophagy. Indeed, autophagy has been implicated in the pathogenesis of Parkinson disease, particularly because its impairment causes the buildup of proteins. Thus, this review aims to provide an overview of Parkinson disease-related genetic mutations and their association with autophagy impairment in Parkinson disease, which can be helpful in improving the understanding of the pathogenesis of Parkinson disease, illustrating the potential therapeutic implications of agents that can enhance autophagy in Parkinson disease. Additionally, we will highlight the essential need for the development of highly sensitive and specific assays for gene-based diagnostic biomarkers. Finally, we will provide an overview on the potential gene-based therapeutic approaches for Parkinson disease, which have been most advanced and are associated with the most common targets being alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2), and glucocerebrosidase (GBA).
Collapse
|
20
|
Tang Q, Li X, Wang J. Tubulin deacetylase NDST3 modulates lysosomal acidification: Implications in neurological diseases. Bioessays 2022; 44:e2200110. [PMID: 36135988 PMCID: PMC9829454 DOI: 10.1002/bies.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N-Deacetylase and N-sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N-sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be critical for activities in neurons, implying that the regulators of these two biological processes, such as the previously known microtubule deacetylases, histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), could play important roles in various NDs. Aberrant NDST3 expression or tubulin acetylation has been observed in an increasing number of NDs, including amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), schizophrenia and bipolar disorder, Alzheimer's disease (AD), and Parkinson's disease (PD), suggesting that NDST3 is a key player in the pathogenesis of NDs and may serve as a target for development of new treatment of NDs.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Asthana J, Shravage BV. Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson’s disease. Front Aging Neurosci 2022; 14:986849. [PMID: 36337696 PMCID: PMC9632658 DOI: 10.3389/fnagi.2022.986849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most popular age-associated neurodegenerative disorder after Alzheimer’s disease. The degeneration of dopaminergic neurons, aggregation of α-synuclein (α-syn), and locomotor defects are the main characteristic features of PD. The main cause of a familial form of PD is associated with a mutation in genes such as SNCA, PINK1, Parkin, DJ-1, LRKK2, and others. Recent advances have uncovered the different underlying mechanisms of PD but the treatment of PD is still unknown due to the unavailability of effective therapies and preventive medicines in the current scenario. The pathophysiology and genetics of PD have been strongly associated with mitochondria in disease etiology. Several studies have investigated a complex molecular mechanism governing the identification and clearance of dysfunctional mitochondria from the cell, a mitochondrial quality control mechanism called mitophagy. Reduced mitophagy and mitochondrial impairment are found in both sporadic and familial PD. Pharmacologically modulating mitophagy and accelerating the removal of defective mitochondria are of common interest in developing a therapy for PD. However, despite the extensive understanding of the mitochondrial quality control pathway and its underlying mechanism, the therapeutic potential of targeting mitophagy modulation and its role in PD remains to be explored. Thus, targeting mitophagy using chemical agents and naturally occurring phytochemicals could be an emerging therapeutic strategy in PD prevention and treatment. We discuss the current research on understanding the role of mitophagy modulators in PD using Drosophila melanogaster as a model. We further explore the contribution of Drosophila in the pathophysiology of PD, and discuss comprehensive genetic analysis in flies and pharmacological drug screening to develop potential therapeutic molecules for PD.
Collapse
Affiliation(s)
- Jyotsna Asthana
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Bhupendra V. Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
- *Correspondence: Bhupendra V. Shravage,
| |
Collapse
|
22
|
Rappe A, McWilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022; 10:978142. [PMID: 36303604 PMCID: PMC9593040 DOI: 10.3389/fcell.2022.978142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2024] Open
Abstract
Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Liu X, Kalogeropulou AF, Domingos S, Makukhin N, Nirujogi RS, Singh F, Shpiro N, Saalfrank A, Sammler E, Ganley IG, Moreira R, Alessi DR, Ciulli A. Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood-Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2. J Am Chem Soc 2022; 144:16930-16952. [PMID: 36007011 PMCID: PMC9501899 DOI: 10.1021/jacs.2c05499] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/20/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC50 values within 15-72 nM, Dmax values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F = 15%) and can penetrate the blood-brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development.
Collapse
Affiliation(s)
- Xingui Liu
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Alexia F. Kalogeropulou
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sofia Domingos
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Nikolai Makukhin
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Raja S. Nirujogi
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Francois Singh
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Natalia Shpiro
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Anton Saalfrank
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Esther Sammler
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ian G. Ganley
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Rui Moreira
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Dario R. Alessi
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alessio Ciulli
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
24
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
25
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
26
|
K A, Mishra A, Singh S. Implications of intracellular protein degradation pathways in Parkinson's disease and therapeutics. J Neurosci Res 2022; 100:1834-1844. [PMID: 35819247 DOI: 10.1002/jnr.25101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) pathology is the most common motor neurodegenerative disease that occurs due to the progressive degeneration of dopaminergic neurons of the nigrostriatal pathway of the brain. The histopathological hallmark of the disease is fibrillary aggregate called Lewy bodies which majorly contain α-synuclein, suggesting the critical implication of diminished protein degradation mechanisms in disease pathogenesis. This α-synuclein-containing Lewy bodies are evident in both experimental models as well as in postmortem PD brain and are speculated to be pathogenic but still, the lineal association between these aggregates and the complexity of disease pathology is not yet well established and needs further attention. However, it has been reported that α-synuclein aggregates have consorted with the declined proteasome and lysosome activities. Therefore, in this review, we reappraise intracellular protein degradation mechanisms during PD pathology. This article focused on the findings of the last two decades suggesting the implications of protein degradation mechanisms in disease pathogenesis and based on shreds of evidence, some of the approaches are also suggested which may be adopted to find out the novel therapeutic targets for the management of PD patients.
Collapse
Affiliation(s)
- Amrutha K
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Long M, Sanchez‐Martinez A, Longo M, Suomi F, Stenlund H, Johansson AI, Ehsan H, Salo VT, Montava‐Garriga L, Naddafi S, Ikonen E, Ganley IG, Whitworth AJ, McWilliams TG. DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion. EMBO J 2022; 41:e109390. [PMID: 35411952 PMCID: PMC9108618 DOI: 10.15252/embj.2021109390] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.
Collapse
Affiliation(s)
- Maeve Long
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
- Present address:
Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | | | - Marianna Longo
- MRC Protein Phosphorylation & Ubiquitylation UnitSchool of Life SciencesThe Sir James Black CentreUniversity of DundeeDundeeUK
| | - Fumi Suomi
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
| | - Hans Stenlund
- Swedish Metabolomics CentreDepartment of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Annika I Johansson
- Swedish Metabolomics CentreDepartment of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Homa Ehsan
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
| | - Veijo T Salo
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
- Department of AnatomyFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Present address:
Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Lambert Montava‐Garriga
- MRC Protein Phosphorylation & Ubiquitylation UnitSchool of Life SciencesThe Sir James Black CentreUniversity of DundeeDundeeUK
- Present address:
Discovery Biology, Discovery SciencesR&D, AstraZenecaCambridgeUK
| | - Seyedehshima Naddafi
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
| | - Elina Ikonen
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
- Department of AnatomyFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Ian G Ganley
- MRC Protein Phosphorylation & Ubiquitylation UnitSchool of Life SciencesThe Sir James Black CentreUniversity of DundeeDundeeUK
| | | | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs UnitFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
- Department of AnatomyFaculty of MedicineBiomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
28
|
Jetto CT, Nambiar A, Manjithaya R. Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Front Cell Dev Biol 2022; 10:837337. [PMID: 35392168 PMCID: PMC8981085 DOI: 10.3389/fcell.2022.837337] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- *Correspondence: Ravi Manjithaya,
| |
Collapse
|
29
|
Rusilowicz-Jones EV, Barone FG, Lopes FM, Stephen E, Mortiboys H, Urbé S, Clague MJ. Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy. Life Sci Alliance 2022; 5:e202101287. [PMID: 34844982 PMCID: PMC8645336 DOI: 10.26508/lsa.202101287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1-PRKN pathway leading to mitophagy. We provide a detailed cell biological characterization of a benzosulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition after mitochondrial depolarization. This includes enhancement of TOMM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson disease patients carrying loss of function PRKN mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1-independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U2OS cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover.
Collapse
Affiliation(s)
- Emma V Rusilowicz-Jones
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Francesco G Barone
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Fernanda Martins Lopes
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Elezabeth Stephen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sylvie Urbé
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael J Clague
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021; 11:antiox11010008. [PMID: 35052512 PMCID: PMC8772787 DOI: 10.3390/antiox11010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.
Collapse
Affiliation(s)
- Stephanie M. Boas
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Kathlene L. Joyce
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
31
|
Liu X, Chen W, Wang C, Liu W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin ameliorates depression/anxiety-like behaviors of Parkinson's disease mouse model and is associated with attenuated STING-IRF3-IFN-β pathway activation and neuroinflammation. Physiol Behav 2021; 241:113593. [PMID: 34536434 DOI: 10.1016/j.physbeh.2021.113593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Depression and anxiety are common neuropsychiatric symptom of Parkinson's disease (PD), reflecting reduced quality of life in patients with PD. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of Silybum marianum (L.) Gaertn, is widely used for the treatment of hepatic diseases. We report here that silibinin shows anti-depressant and anti-anxiety effects on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model mice with PD. All the results of open field test, elevated plus maze test, tail suspension test and forced swimming test demonstrated that silibinin administration significantly attenuated MPTP-induced depression/anxiety. Hematoxylin-eosin (HE) staining and Nissl staining results showed that MPTP injection caused the damage of hippocampal neurons, but this was ameliorated by oral administration of silibinin. Silibinin significantly restored hippocampal levels of 5-hydroxyptramine (5-HT) and noradrenaline (NA), two important neurotransmitters for regulating mood, which decreased in MPTP-injected mice. Neuroinflammation, as reflected by the increased expressions of IL-1β, TNFα and IFN-β, was marked in the hippocampus of MPTP-treated mice, accompanying increased stimulator of interferon genes (STING) and interferon regulatory factor-3 (IRF3). Silibinin administration, however, down-regulated the levels of IL-1β, TNFα and IFN-β, as well as STING and IRF3, protecting MPTP-induced PD model mice. These findings indicate that silibinin has a potential of being further developed as a therapeutic for depression and anxiety in PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Wenhui Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
32
|
LRRK2 along the Golgi and lysosome connection: a jamming situation. Biochem Soc Trans 2021; 49:2063-2072. [PMID: 34495322 PMCID: PMC8589420 DOI: 10.1042/bst20201146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder, clinically characterized by bradykinesia, rigidity, and resting tremor. Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein containing two enzymatic domains. Missense mutations in its coding sequence are amongst the most common causes of familial PD. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence supports a role for LRRK2 in membrane and vesicle trafficking, mainly functioning in the endosome-recycling system, (synaptic) vesicle trafficking, autophagy, and lysosome biology. LRRK2 binds and phosphorylates key regulators of the endomembrane systems and is dynamically localized at the Golgi. The impact of LRRK2 on the Golgi may reverberate throughout the entire endomembrane system and occur in multiple intersecting pathways, including endocytosis, autophagy, and lysosomal function. This would lead to overall dysregulation of cellular homeostasis and protein catabolism, leading to neuronal dysfunction and accumulation of toxic protein species, thus underlying the possible neurotoxic effect of LRRK2 mutations causing PD.
Collapse
|
33
|
Pichla M, Sneyers F, Stopa KB, Bultynck G, Kerkhofs M. Dynamic control of mitochondria-associated membranes by kinases and phosphatases in health and disease. Cell Mol Life Sci 2021; 78:6541-6556. [PMID: 34448890 PMCID: PMC11073381 DOI: 10.1007/s00018-021-03920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Membrane-contact sites are getting more and more credit for their indispensable role in maintenance of cell function and homeostasis. In the last decades, the ER-mitochondrial contact sites in particular received a lot of attention. While our knowledge of ER-mitochondrial contact sites increases steadily, the focus often lies on a static exploration of their functions. However, it is increasingly clear that these contact sites are very dynamic. In this review, we highlight the dynamic nature of ER-mitochondrial contact sites and the role of kinases and phosphatases therein with a focus on recent findings. Phosphorylation events allow for rapid integration of information on the protein level, impacting protein function, localization and interaction at ER-mitochondrial contact sites. To illustrate the importance of these events and to put them in a broader perspective, we connect them to pathologies like diabetes type II, Parkinson's disease and cancer.
Collapse
Affiliation(s)
- Monika Pichla
- Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, Rzeszow, Poland
| | - Flore Sneyers
- Lab for Molecular and Cellular Signalling, Department for Cellular and Molecular Medicine, Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Kinga B Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Geert Bultynck
- Lab for Molecular and Cellular Signalling, Department for Cellular and Molecular Medicine, Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Martijn Kerkhofs
- Lab for Molecular and Cellular Signalling, Department for Cellular and Molecular Medicine, Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Singh F, Prescott AR, Rosewell P, Ball G, Reith AD, Ganley IG. Pharmacological rescue of impaired mitophagy in Parkinson's disease-related LRRK2 G2019S knock-in mice. eLife 2021; 10:e67604. [PMID: 34340748 PMCID: PMC8331189 DOI: 10.7554/elife.67604] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation - key features of the autophagy of mitochondria, known as mitophagy. Here, we investigated the role of LRRK2, a protein kinase frequently mutated in PD, in this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson's disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy.
Collapse
Affiliation(s)
- Francois Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Philippa Rosewell
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Alastair D Reith
- Novel Human Genetics Research Unit, GlaxoSmithKline Pharmaceuticals R&DStevenageUnited Kingdom
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
35
|
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9080918. [PMID: 34440122 PMCID: PMC8389563 DOI: 10.3390/biomedicines9080918] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.
Collapse
|