1
|
Motz RN, Anderson JK, Nolan EM. Re-evaluation of the C-Glucosyltransferase IroB Illuminates Its Ability to C-Glucosylate Non-native Triscatecholate Enterobactin Mimics. Biochemistry 2024. [PMID: 39718537 DOI: 10.1021/acs.biochem.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The pathogen-associated C-glucosyltransferase IroB is involved in the biosynthesis of salmochelins, C-glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including Salmonella enterica and Escherichia coli. Here, we reassess the ability of IroB to C-glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB. Time course analyses and steady-state kinetic studies, which were performed under conditions that provide enhanced activity relative to prior studies, inform the substrate selectivity and catalytic efficiencies of this enzyme. We extend these findings to the preparation of a siderophore-antibiotic conjugate composed of monoglucosylated TC and ampicillin (MGT-Amp). Examination of its antibacterial activity and receptor specificity demonstrates that MGT-Amp targets pathogenicity because it shows specificty for the pathogen-associated outer membrane receptor IroN. Overall, our findings extend the biochemical characterization of IroB and its substrate scope and illustrate the ability to leverage a bacterial C-glucosyltransferase for non-native chemoenzymatic transformations along with potential applications of salmochelin mimics.
Collapse
Affiliation(s)
- Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaden K Anderson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2024; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Xin K, Wu Y, Ikram AU, Jing Y, Liu S, Zhang Y, Chen J. Salicylic acid cooperates with different small molecules to control biotic and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 304:154406. [PMID: 39700900 DOI: 10.1016/j.jplph.2024.154406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Salicylic acid (SA) is a phytohormone that plays a critical role in plant growth, development, and response to unfavorable conditions. Over the past three decades, researches on SA have deeply elucidated the mechanism of its function in plants tolerance to infection by biotrophic and hemibiotrophic pathogens. Recent studies have found that SA also plays an important role in regulating plants response to abiotic stress. It is emerging as a strong tool for alleviating adverse effects of biotic and abiotic stresses in crop plants. During SA-mediated stress responses, many small molecules participate in the SA modification or signaling, which play important regulatory roles. The cooperations of small molecules in SA pathway remain least discussed, especially in terms of SA-induced abiotic stress tolerance. This review provides an overview of the recent studies about SA and its relationship with different small molecules and highlights the critical functions of small molecules in SA-mediated plant stress responses.
Collapse
Affiliation(s)
- Kexing Xin
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yining Wu
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yanping Jing
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yawen Zhang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Yu L, He K, Wu Y, Hao K, Wang Y, Yao J, Zhao Y, Yu Q, Shen Y, Chen M, Xu K, Zhang X, Zhang L. UGT708S6 from Dendrobium catenatum, catalyzes the formation of flavonoid C-glycosides. BMC Biotechnol 2024; 24:94. [PMID: 39563265 DOI: 10.1186/s12896-024-00923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Dendrobium catenatum is a perennial herb of the genus Dendrobium orchidaceae. It has been known as "Golden Grass, Soft Gold" since ancient times with effects of strengthening the body, benefiting the stomach, generating body fluid, nourishing Yin and clearing internal heat. The flowers of D. catenatum have anti-oxidation, immune regulation and other biological activities. The composition analysis of flowers showed that flavonoid glycosides were significantly accumulated in floral tissue. However, in the flowers of D. catenatum, there was only one case of the UDP-glycosyltransferase (UGT) responsible for the glycosylation of flavonoids has been reported. RESULT In this study, a new UGT (named UGT708S6) was cloned from D. catenatum flowers rich in O-glycosides and C-glycosides, and its function and biochemical properties were characterized. Through homology comparison and molecular docking, we identified the key amino acid residues affecting the catalytic function of UGT708S6. The glycosyltransferase UGT708S6 was characterized and demonstrated C-glycosyltransferase (CGT) activity in vitro assay using phloretin and 2-hydroxynaringenin as sugar acceptors. The catalytic promiscuity assay revealed that UGT708S6 has a clear sugar donor preference, and displayed O-glycosyltransferase (OGT) activity towards luteolin, naringenin and liquiritigenin. Furthermore, the catalytic characteristics of UGT708S6 were explored, shedding light on the structural basis of substrate promiscuity and the catalytic mechanism involved in the formation of flavonoid C-glycosides. R271 was a key amino acid residue site that sustained the catalytic reaction. The smaller binding pocket resulted in the production of new O-glycosides and the reduction of C-glycosides. This highlighted the importance of the binding pocket in determining whether C-glycosides or O-glycosides were produced. CONCLUSIONS The findings suggest that UGT708S6 holds promise as a new glycosyltransferase for synthesizing flavonoid glycosides and offer valuable insights for further understanding the catalytic mechanisms of flavonoid glycosyltransferases.
Collapse
Affiliation(s)
- Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Navy Special Medical Centre, Second Military Medical University, Shanghai, 200433, China
| | - Kun He
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Qiaoxian Yu
- Zhejiang Senyu Co., Ltd, Jinhua, Zhejiang, 312000, China
| | - Yanghui Shen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, 322300, China
| | - Mengxuan Chen
- Shanghai Analytical Applications Center, Shimadzu (China) Co., LTD, Shanghai, 200030, China
| | - Ke Xu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Putkaradze N, Dato L, Kırtel O, Hansen J, Welner DH. Enzymatic glycosylation of aloesone performed by plant UDP-dependent glycosyltransferases. Glycobiology 2024; 34:cwae050. [PMID: 38995933 PMCID: PMC11273223 DOI: 10.1093/glycob/cwae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/14/2024] Open
Abstract
Aloesone is a bioactive natural product and biosynthetic precursor of rare glucosides found in rhubarb and some aloe plants including Aloe vera. This study aimed to investigate biocatalytic aloesone glycosylation and more than 400 uridine diphosphate-dependent glycosyltransferase (UGT) candidates, including multifunctional and promiscuous enzymes from a variety of plant species were assayed. As a result, 137 selective aloesone UGTs were discovered, including four from the natural producer rhubarb. Rhubarb UGT72B49 was further studied and its catalytic constants (kcat = 0.00092 ± 0.00003 s-1, KM = 30 ± 2.5 μM) as well as temperature and pH optima (50 °C and pH 7, respectively) were determined. We further aimed to find an efficient aloesone glycosylating enzyme with potential application for biocatalytic production of the glucoside. We discovered UGT71C1 from Arabidopsis thaliana as an efficient aloesone UGT showing a 167-fold higher catalytic efficiency compared to that of UGT72B49. Interestingly, sequence analysis of all the 137 newly identified aloesone UGTs showed that they belong to different phylogenetic groups, with the highest representation in groups B, D, E, F and L. Finally, our study indicates that aloesone C-glycosylation is highly specific and rare, since it was not possible to achieve in an efficient manner with any of the 422 UGTs assayed, including multifunctional GTs and 28 known C-UGTs.
Collapse
Affiliation(s)
- Natalia Putkaradze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| | - Laura Dato
- River Stone Biotech ISG, Fruebjergvej 3, Copenhagen DK-2100, Denmark
| | - Onur Kırtel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| | - Jørgen Hansen
- River Stone Biotech ISG, Fruebjergvej 3, Copenhagen DK-2100, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| |
Collapse
|
6
|
Harding-Larsen D, Madsen CD, Teze D, Kittilä T, Langhorn MR, Gharabli H, Hobusch M, Otalvaro FM, Kırtel O, Bidart GN, Mazurenko S, Travnik E, Welner DH. GASP: A Pan-Specific Predictor of Family 1 Glycosyltransferase Acceptor Specificity Enabled by a Pipeline for Substrate Feature Generation and Large-Scale Experimental Screening. ACS OMEGA 2024; 9:27278-27288. [PMID: 38947828 PMCID: PMC11209901 DOI: 10.1021/acsomega.4c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
Glycosylation represents a major chemical challenge; while it is one of the most common reactions in Nature, conventional chemistry struggles with stereochemistry, regioselectivity, and solubility issues. In contrast, family 1 glycosyltransferase (GT1) enzymes can glycosylate virtually any given nucleophilic group with perfect control over stereochemistry and regioselectivity. However, the appropriate catalyst for a given reaction needs to be identified among the tens of thousands of available sequences. Here, we present the glycosyltransferase acceptor specificity predictor (GASP) model, a data-driven approach to the identification of reactive GT1:acceptor pairs. We trained a random forest-based acceptor predictor on literature data and validated it on independent in-house generated data on 1001 GT1:acceptor pairs, obtaining an AUROC of 0.79 and a balanced accuracy of 72%. The performance was stable even in the case of completely new GT1s and acceptors not present in the training data set, highlighting the pan-specificity of GASP. Moreover, the model is capable of parsing all known GT1 sequences, as well as all chemicals, the latter through a pipeline for the generation of 153 chemical features for a given molecule taking the CID or SMILES as input (freely available at https://github.com/degnbol/GASP). To investigate the power of GASP, the model prediction probability scores were compared to GT1 substrate conversion yields from a newly published data set, with the top 50% of GASP predictions corresponding to reactions with >50% synthetic yields. The model was also tested in two comparative case studies: glycosylation of the antihelminth drug niclosamide and the plant defensive compound DIBOA. In the first study, the model achieved an 83% hit rate, outperforming a hit rate of 53% from a random selection assay. In the second case study, the hit rate of GASP was 50%, and while being lower than the hit rate of 83% using expert-selected enzymes, it provides a reasonable performance for the cases when an expert opinion is unavailable. The hierarchal importance of the generated chemical features was investigated by negative feature selection, revealing properties related to cyclization and atom hybridization status to be the most important characteristics for accurate prediction. Our study provides a GT1:acceptor predictor which can be trained on other data sets enabled by the automated feature generation pipelines. We also release the new in-house generated data set used for testing of GASP to facilitate the future development of GT1 activity predictors and their robust benchmarking.
Collapse
Affiliation(s)
- David Harding-Larsen
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Christian Degnbol Madsen
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
- The
University of Melbourne Faculty of Science, Melbourne Integrative
Genomics, University of Melbourne, Building 184, Royal Parade, Parkville
3010, Melbourne, VIC 3052, Australia
| | - David Teze
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Tiia Kittilä
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | | | - Hani Gharabli
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Mandy Hobusch
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Felipe Mejia Otalvaro
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Onur Kırtel
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Gonzalo Nahuel Bidart
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Stanislav Mazurenko
- Department
of Experimental Biology and RECETOX, Faculty of Science, Masarykova Univerzita, Kamenice 5/A4, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Evelyn Travnik
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Ditte Hededam Welner
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| |
Collapse
|
7
|
Du T, Wang Y, Xie H, Liang D, Gao S. Fragmentation Patterns of Phenolic C-Glycosides in Mass Spectrometry Analysis. Molecules 2024; 29:2953. [PMID: 38998905 PMCID: PMC11243344 DOI: 10.3390/molecules29132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Many phenolic C-glycosides possess nutritional benefits and pharmacological efficacies. However, the MS/MS fragmentation pattern of phenolic C-glycosides analysis is understudied. This paper aims to determine the MS/MS fragmentation patterns of phenolic C-glycosides. METHOD Ten compounds with different sugar moieties, aglycones, and substitutes were analyzed to determine the impact of these structural features on MS/MS fragmentation using UPLC-QTOF-MS analysis. RESULTS The results showed that water loss followed by RDA reaction and alpha cleavage in the C-C bonded sugar moieties are the major fragmentation pathways. Additionally, the sugar cleavage was not affected by the skeleton and the substitute of the aglycones. These results suggested that the fragmentation patterns of phenolic C-glycosides differ from those in the O-glycosides, where the O-C glycosidic bond is the most cleavage-liable bond in MS/MS analysis. CONCLUSIONS These MS/MS fragmentation patterns can be used for the identification of C-glycosides from dietary components and herbal medicine as well as developing robust methods using MRM methods to quantify C-glycosides.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Yang Wang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Huan Xie
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| |
Collapse
|
8
|
Marsan CB, Lee SG, Nguyen A, Gordillo Sierra AR, Coleman SM, Brooks SM, Alper HS. Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside. Metab Eng 2024; 83:1-11. [PMID: 38447910 DOI: 10.1016/j.ymben.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host Yarrowia lipolytica has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of E. coli bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.
Collapse
Affiliation(s)
- Celeste B Marsan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sung Gyung Lee
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ankim Nguyen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Angela R Gordillo Sierra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA; Interdisciplinary Life Sciences Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Furlanetto V, Kalyani DC, Kostelac A, Puc J, Haltrich D, Hällberg BM, Divne C. Structural and Functional Characterization of a Gene Cluster Responsible for Deglycosylation of C-glucosyl Flavonoids and Xanthonoids by Deinococcus aerius. J Mol Biol 2024; 436:168547. [PMID: 38508304 DOI: 10.1016/j.jmb.2024.168547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+β subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2β2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).
Collapse
Affiliation(s)
- Valentina Furlanetto
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Dayanand C Kalyani
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Anja Kostelac
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria; Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Jolanta Puc
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| |
Collapse
|
10
|
Bitter J, Pfeiffer M, Borg AJE, Kuhlmann K, Pavkov-Keller T, Sánchez-Murcia PA, Nidetzky B. Enzymatic β-elimination in natural product O- and C-glycoside deglycosylation. Nat Commun 2023; 14:7123. [PMID: 37932298 PMCID: PMC10628242 DOI: 10.1038/s41467-023-42750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Biological degradation of natural product glycosides involves, alongside hydrolysis, β-elimination for glycosidic bond cleavage. Here, we discover an O-glycoside β-eliminase (OGE) from Agrobacterium tumefaciens that converts the C3-oxidized O-β-D-glucoside of phloretin (a plant-derived flavonoid) into the aglycone and the 2-hydroxy-3-keto-glycal elimination product. While unrelated in sequence, OGE is structurally homologous to, and shows effectively the same Mn2+ active site as, the C-glycoside deglycosylating enzyme (CGE) from a human intestinal bacterium implicated in β-elimination of 3-keto C-β-D-glucosides. We show that CGE catalyzes β-elimination of 3-keto O- and C-β-D-glucosides while OGE is specific for the O-glycoside substrate. Substrate comparisons and mutagenesis for CGE uncover positioning of aglycone for protonic assistance by the enzyme as critically important for C-glycoside cleavage. Collectively, our study suggests convergent evolution of active site for β-elimination of 3-keto O-β-D-glucosides. C-Glycoside cleavage is a specialized feature of this active site which is elicited by substrate through finely tuned enzyme-aglycone interactions.
Collapse
Affiliation(s)
- Johannes Bitter
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria
| | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Pedro A Sánchez-Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingstalstraße 6/III, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.
| |
Collapse
|
11
|
Gharabli H, Della Gala V, Welner DH. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv 2023; 67:108182. [PMID: 37268151 DOI: 10.1016/j.biotechadv.2023.108182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Glycosyltransferases catalyse the transfer of a glycosyl moiety from a donor to an acceptor. Members of this enzyme class are ubiquitous throughout all kingdoms of life and are involved in the biosynthesis of countless types of glycosides. Family 1 glycosyltransferases, also referred to as uridine diphosphate-dependent glycosyltransferases (UGTs), glycosylate small molecules such as secondary metabolites and xenobiotics. In plants, UGTs are recognised for their multiple functionalities ranging from roles in growth regulation and development, in protection against pathogens and abiotic stresses and in adaptation to changing environments. In this study, we review UGT-mediated glycosylation of phytohormones, endogenous secondary metabolites, and xenobiotics and contextualise the role this chemical modification plays in the response to biotic and abiotic stresses and plant fitness. Here, the potential advantages and drawbacks of altering the expression patterns of specific UGTs along with the heterologous expression of UGTs across plant species to improve stress tolerance in plants are discussed. We conclude that UGT-based genetic modification of plants could potentially enhance agricultural efficiency and take part in controlling the biological activity of xenobiotics in bioremediation strategies. However, more knowledge of the intricate interplay between UGTs in plants is needed to unlock the full potential of UGTs in crop resistance.
Collapse
Affiliation(s)
- Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Valeria Della Gala
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
12
|
Sirirungruang S, Barnum CR, Tang SN, Shih PM. Plant glycosyltransferases for expanding bioactive glycoside diversity. Nat Prod Rep 2023. [PMID: 36853278 DOI: 10.1039/d2np00077f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Glycosylation is a successful strategy to alter the pharmacological properties of small molecules, and it has emerged as a unique approach to expand the chemical space of natural products that can be explored in drug discovery. Traditionally, most glycosylation events have been carried out chemically, often requiring many protection and deprotection steps to achieve a target molecule. Enzymatic glycosylation by glycosyltransferases could provide an alternative strategy for producing new glycosides. In particular, the glycosyltransferase family has greatly expanded in plants, representing a rich enzymatic resource to mine and expand the diversity of glycosides with novel bioactive properties. This article highlights previous and prospective uses for plant glycosyltransferases in generating bioactive glycosides and altering their pharmacological properties.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Collin R Barnum
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Sophia N Tang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
13
|
Li T, Borg AJE, Krammer L, Breinbauer R, Nidetzky B. Reaction intensification for biocatalytic production of polyphenolic natural product di-C-β-glucosides. Biotechnol Bioeng 2023; 120:1506-1520. [PMID: 36787984 DOI: 10.1002/bit.28354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Polyphenolic aglycones featuring two sugars individually attached via C-glycosidic linkage (di-C-glycosides) represent a rare class of plant natural products with unique physicochemical properties and biological activities. Natural scarcity of such di-C-glycosides limits their use-inspired exploration as pharmaceutical ingredients. Here, we show a biocatalytic process technology for reaction-intensified production of the di-C-β-glucosides of two representative phenol substrates, phloretin (a natural flavonoid) and phenyl-trihydroxyacetophenone (a phenolic synthon for synthesis), from sucrose. The synthesis proceeds via an iterative two-fold C-glycosylation of the respective aglycone, supplied as inclusion complex with 2-hydroxypropyl β-cyclodextrin for enhanced water solubility of up to 50 mmol/L, catalyzed by a kumquat di-C-glycosyltransferase (di-CGT), and it uses UDP-Glc provided in situ from sucrose by a soybean sucrose synthase, with catalytic amounts (≤3 mol%) of UDP added. Time course analysis reveals the second C-glycosylation as rate-limiting (0.4-0.5 mmol/L/min) for the di-C-glucoside production. With internal supply from sucrose keeping the UDP-Glc at a constant steady-state concentration (≥50% of the UDP added) during the reaction, the di-C-glycosylation is driven to completion (≥95% yield). Contrary to the mono-C-glucoside intermediate which is stable, the di-C-glucoside requires the addition of reducing agent (10 mmol/L 2-mercaptoethanol) to prevent its decomposition during the synthesis. Both di-C-glucosides are isolated from the reaction mixtures in excellent purity (≥95%), and their expected structures are confirmed by NMR. Collectively, this study demonstrates efficient glycosyltransferase cascade reaction for flexible use in natural product di-C-β-glucoside synthesis from expedient substrates.
Collapse
Affiliation(s)
- Tuo Li
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| |
Collapse
|
14
|
Franceus J, Lormans J, Desmet T. Building mutational bridges between carbohydrate-active enzymes. Curr Opin Biotechnol 2022; 78:102804. [PMID: 36156353 DOI: 10.1016/j.copbio.2022.102804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
The commercial value of specialty carbohydrates and glycosylated compounds has sparked considerable interest in the synthetic potential of carbohydrate-active enzymes (CAZymes). Protein engineering methods have proven to be highly successful in expanding the range of glycosylation reactions that these enzymes can perform efficiently and cost-effectively. The past few years have witnessed meaningful progress in this area, largely due to a sharper focus on the understanding of structure-function relationships and mechanistic intricacies. Here, we summarize recent studies that demonstrate how protein engineers have become much better at traversing the fitness landscape of CAZymes through mutational bridges that connect the different activity types.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jolien Lormans
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
16
|
Chen Z, Sato S, Geng Y, Zhang J, Liu HW. Identification of the Early Steps in Herbicidin Biosynthesis Reveals an Atypical Mechanism of C-Glycosylation. J Am Chem Soc 2022; 144:15653-15661. [PMID: 35981300 DOI: 10.1021/jacs.2c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herbicidins are adenosine-derived nucleoside antibiotics with an unusual tricyclic core structure. Deletion of the genes responsible for formation of the tricyclic skeleton in Streptomyces sp. L-9-10 reveals the in vivo importance of Her4, Her5, and Her6 in the early stages of herbicidin biosynthesis. In vitro characterization of Her4 and Her5 demonstrates their involvement in an initial, two-stage C-C coupling reaction that results in net C5'-glycosylation of ADP/ATP by UDP/TDP-glucuronic acid. Biochemical analyses and intermediate trapping experiments imply a noncanonical mechanism of C-glycosylation reminiscent of NAD-dependent S-adenosylhomocysteine (SAH)-hydrolase catalysis. Structural characterization of the isolated metabolites suggests possible reactions catalyzed by Her6 and Her7. An overall herbicidin biosynthetic pathway is proposed based on these observations.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shusuke Sato
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Tan Y, Yang J, Jiang Y, Sun S, Wei X, Wang R, Bu J, Li D, Kang L, Chen T, Guo J, Cui G, Tang J, Huang L. Identification and characterization of two Isatis indigotica O-methyltransferases methylating C-glycosylflavonoids. HORTICULTURE RESEARCH 2022; 9:uhac140. [PMID: 36072835 PMCID: PMC9437721 DOI: 10.1093/hr/uhac140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Isatis indigotica accumulates several active substances, including C-glycosylflavonoids, which have important pharmacological activities and health benefits. However, enzymes catalyzing the methylation step of C-glycosylflavonoids in I. indigotica remain unknown. In this study, three O-methyltransferases (OMTs) were identified from I. indigotica that have the capacity for O-methylation of the C-glycosylflavonoid isoorientin. The Type II OMTs IiOMT1 and IiOMT2 efficiently catalyze isoorientin to form isoscoparin, and decorate one of the aromatic vicinal hydroxyl groups on flavones and methylate the C6, C8, and 3'-hydroxyl positions to form oroxylin A, wogonin, and chrysoeriol, respectively. However, the Type I OMT IiOMT3 exhibited broader substrate promiscuity and methylated the C7 and 3'-hydroxyl positions of flavonoids. Further site-directed mutagenesis studies demonstrated that five amino acids of IiOMT1/IiOMT2 (D121/D100, D173/D149, A174/A150R, N200/N176, and D248/D233) were critical residues for their catalytic activity. Additionally, only transient overexpression of Type II OMTs IiOMT1 and IiOMT2 in Nicotiana benthamiana significantly increased isoscoparin accumulation, indicating that the Type II OMTs IiOMT1 and IiOMT2 could catalyze the methylation step of C-glycosylflavonoid, isoorientin at the 3'-hydroxyl position. This study provides insights into the biosynthesis of methylated C-glycosylflavonoids, and IiOMTs could be promising catalysts in the synthesis of bioactive compounds.
Collapse
Affiliation(s)
- Yuping Tan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yinyin Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shufu Sun
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Wei
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ruishan Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | |
Collapse
|
18
|
Huang J, She Y, Yue J, Chen Y, Li Y, Li J, Hu Y, Yang D, Chen J, Yang L, Liu Z, Wu R, Jin P, Duan L. Exploring the catalytic function and active sites of a novel C-glycosyltransferase from Anemarrhena asphodeloides. Synth Syst Biotechnol 2022; 7:621-630. [PMID: 35198747 PMCID: PMC8841362 DOI: 10.1016/j.synbio.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Anemarrhena asphodeloides is an immensely popular medicinal herb in China, which contains an abundant of mangiferin. As an important bioactive xanthone C-glycoside, mangiferin possesses a variety of pharmacological activities and is derived from the cyclization reaction of a benzophenone C-glycoside (maclurin). Biosynthetically, C-glycosyltransferases are critical for the formation of benzophenone C-glycosides. However, the benzophenone C-glycosyltransferases from Anemarrhena asphodeloides have not been discovered. Herein, a promiscuous C-glycosyltransferase (AaCGT) was identified from Anemarrhena asphodeloides. It was able to catalyze efficiently mono-C-glycosylation of benzophenone, together with di-C-glycosylation of dihydrochalcone. It also exhibited the weak O-glycosylation or potent S-glycosylation capacities toward 12 other types of flavonoid scaffolds and a simple aromatic compound with –SH group. Homology modeling and mutagenesis experiments revealed that the glycosylation reaction of AaCGT was initiated by the conserved residue H23 as the catalytic base. Three critical residues H356, W359 and D380 were involved in the recognition of sugar donor through hydrogen-bonding interactions. In particular, the double mutant of F94W/L378M led to an unexpected enzymatic conversion of mono-C- to di-C-glycosylation. This study highlights the important value of AaCGT as a potential biocatalyst for efficiently synthesizing high-value C-glycosides.
Collapse
Affiliation(s)
- Jia Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yaru She
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jingyang Yue
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yidu Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jing Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yonger Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiabo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Lu Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Corresponding author.
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
- Corresponding author.
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Corresponding author.
| |
Collapse
|
19
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
20
|
Bao YO, Zhang M, Qiao X, Ye M. Functional characterization of a C-glycosyltransferase from Pueraria lobata with dual-substrate selectivity. Chem Commun (Camb) 2022; 58:12337-12340. [DOI: 10.1039/d2cc04279g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported a C-glycosyltransferase PlCGT with dual-substrate selectivity. An Asn16–Asp124 dyad may mediate the SN2-like mechanism in the C-glycosylation.
Collapse
Affiliation(s)
- Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
21
|
Chen D, Fan S, Yang Z, Dai J. Biocatalytic Application of a Membrane‐Bound Coumarin C‐Glucosyltransferase in the Synthesis of Coumarin and Benzofuran C‐Glucosides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| |
Collapse
|
22
|
Kurze E, Wüst M, Liao J, McGraphery K, Hoffmann T, Song C, Schwab W. Structure-function relationship of terpenoid glycosyltransferases from plants. Nat Prod Rep 2021; 39:389-409. [PMID: 34486004 DOI: 10.1039/d1np00038a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Collapse
Affiliation(s)
- Elisabeth Kurze
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Matthias Wüst
- Chair of Food Chemistry, Institute of Nutritional and Food Sciences, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany.
| | - Jieren Liao
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Kate McGraphery
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Thomas Hoffmann
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| | - Wilfried Schwab
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany. .,State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
23
|
Role of Glycoproteins during Fruit Ripening and Seed Development. Cells 2021; 10:cells10082095. [PMID: 34440864 PMCID: PMC8392644 DOI: 10.3390/cells10082095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023] Open
Abstract
Approximately thirty percent of the proteins synthesized in animal or plant cells travel through the secretory pathway. Seventy to eighty percent of those proteins are glycosylated. Thus, glycosylation is an important protein modification that is related to many cellular processes, such as differentiation, recognition, development, signal transduction, and immune response. Additionally, glycosylation affects protein folding, solubility, stability, biogenesis, and activity. Specifically, in plants, glycosylation has recently been related to the fruit ripening process. This review aims to provide valuable information and discuss the available literature focused on three principal topics: (I) glycosylations as a key posttranslational modification in development in plants, (II) experimental and bioinformatics tools to analyze glycosylations, and (III) a literature review related to glycosylations in fruit ripening. Based on these three topics, we propose that it is necessary to increase the number of studies related to posttranslational modifications, specifically protein glycosylation because the specific role of glycosylation in the posttranslational process and how this process affects normal fruit development and ripening remain unclear to date.
Collapse
|
24
|
Mendoza F, Jaña GA. The inverting mechanism of the metal ion-independent LanGT2: the first step to understand the glycosylation of natural product antibiotic precursors through QM/MM simulations. Org Biomol Chem 2021; 19:5888-5898. [PMID: 34132308 DOI: 10.1039/d1ob00544h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glycosyltransferases (GTs) from the GT1 family are responsible for the glycosylation of various important organic structures such as terpenes, steroids and peptide antibiotics, making it one of the most intensely studied families of GTs. The target of our study, LanGT2, is a member of the GT1 family that uses an inverting mechanism for transferring olivose from TDP-olivose, the donor substrate, to the natural product tetrangulol (Tet), the precursor of the antibiotic landomycin A. X-ray crystallography in conjunction with mutagenesis experiments has revealed the catalytic significance of 3 amino acids (Ser10, Ser219 and Asp137), suggesting Asp137 as the base catalyst. In the absence of X-ray structures that include the acceptor substrate Tet, in silico experiments and MD simulations that have modeled ternary complexes propose that Asp137 could recruit a water molecule to facilitate the nucleophilic activation of Tet, since the distance between Asp137 and the nucleophile is too long to directly deprotonate the nucleophilic moiety. So far, there is no computational evidence regarding the precise mechanism by which LanGT2 catalyzes the transfer of olivose, which raises questions such as: is a water-assisted mechanism possible? and how does this metal ion-independent GT stabilize the growing negative charge of the diphosphate leaving group? In this work, the QM/MM approach was used to unravel the catalytic mechanism of LanGT2, and to identify the role of crucial catalytic amino acids at a molecular level. Our calculations show that the minimum energy path (MEP) describes an SN2-like mechanism, identifying an oxocarbenium ion-like TS in which the olivosyl moiety adopts a 4H3 conformation. Interactions established between the diphosphate group of TDP and Ser10, Ser219, Arg220 and His283 are key to stabilize the development of charge on the leaving group. Our work also suggests that a water-mediated proton transfer mechanism is feasible, in which the water molecule is key to stabilize the phenolate ion-like nucleophile in the TS. This is the first computational insight into the inverting mechanism of an antibiotic natural product GT, and its implications may serve to guide the design of new biocatalysts for natural product glycodiversification.
Collapse
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Gonzalo A Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| |
Collapse
|
25
|
Liu H, Tegl G, Nidetzky B. Glycosyltransferase Co‐Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the
C
‐Glucoside Nothofagin with Efficient Reuse of Enzymes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Gregor Tegl
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology (acib) Petersgasse 14 8010 Graz Austria
| |
Collapse
|
26
|
Abstract
Tolyporphins, relatively new members of the pigments of life family found in a cyanobacterium, differ in the chromophores, pyrroline substituents, and stereochemistry, yet likely all derive from uroporphyrinogen III.
Collapse
|
27
|
Abstract
Cascade reactions have been described as efficient and universal tools, and are of substantial interest in synthetic organic chemistry. This review article provides an overview of the novel and recent achievements in enzyme cascade processes catalyzed by multi-enzymatic or chemoenzymatic systems. The examples here selected collect the advances related to the application of the sequential use of enzymes in natural or genetically modified combination; second, the important combination of enzymes and metal complex systems, and finally we described the application of biocatalytic biohybrid systems on in situ catalytic solid-phase as a novel strategy. Examples of efficient and interesting enzymatic catalytic cascade processes in organic chemistry, in the production of important industrial products, such as the designing of novel biosensors or bio-chemocatalytic systems for medicinal chemistry application, are discussed
Collapse
|
28
|
Putkaradze N, Teze D, Fredslund F, Welner DH. Natural product C-glycosyltransferases - a scarcely characterised enzymatic activity with biotechnological potential. Nat Prod Rep 2020; 38:432-443. [PMID: 33005913 DOI: 10.1039/d0np00040j] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to 2020C-Glycosyltransferases are enzymes that catalyse the transfer of sugar molecules to carbon atoms in substituted aromatic rings of a variety of natural products. The resulting β-C-glycosidic bond is more stable in vivo than most O-glycosidic bonds, hence offering an attractive modulation of a variety of compounds with multiple biological activities. While C-glycosylated natural products have been known for centuries, our knowledge of corresponding C-glycosyltransferases is scarce. Here, we discuss commonalities and differences in the known C-glycosyltransferases, review attempts to leverage them as synthetic biocatalysts, and discuss current challenges and limitations in their research and application.
Collapse
Affiliation(s)
- Natalia Putkaradze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|