1
|
Zhang J, Zhao H, Wang F, Zhou J, Li M, Li H, Ren M, Wang L, Ren Q, Zhong X, Jiang X, Zhang Z. Asiaticoside alleviates lipopolysaccharide-induced acute lung injury by blocking Sema4D/CD72 and inhibiting mitochondrial dysfunction in RAW264.7 cell and mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7573-7587. [PMID: 38664244 PMCID: PMC11450039 DOI: 10.1007/s00210-024-03091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI) is a common disease with complex pathogenesis. However, the treatment is mainly symptomatic with limited clinical options. Asiaticoside (AS), a Chinese herbal extract, has protective effects against LPS-induced ALI in mice and inhibits nitric oxide and prostaglandin E2 synthesis; however, the specific mechanism of AS in the prevention and treatment of LPS-induced ALI needs further study. Sema4D/CD72 pathway, mitochondrial dysfunction, and miRNA-21 are closely associated with inflammation. Therefore, the present study aimed to explore whether AS exerts its therapeutic effect on ALI by influencing Sema4D/CD72 pathway and mitochondrial dysfunction, restoring the balance of inflammatory factors, and influencing miRNA-21 expression. Cell and animal experiments were performed to investigate the effect of AS on ALI. Lipopolysaccharide (LPS) was used to establish the ALI model. CCK8 and flow cytometry were used to detect the cell viability and apoptosis rate. HE staining and wet-to-dry weight ratio (W/D) of lung tissue were determined. The expressions of Sema4D, CD72, NF-κB p65, Bax, Bcl2, and caspase 3 in RAW264.7 cells and lung tissues were detected by western blot, and the levels of IL-10 and IL-1β induced by LPS in supernatant of RAW264.7 cells and BALF were measured by ELISA. And the expression of miRNA-21 in cells and lung tissues was detected by fluorescence quantitative PCR. The result shows that AS treatment suppressed LPS-induced cell damage and lung injury in mice. AS treatment could alleviate the pathological changes such as inflammatory infiltration and histopathological changes in the lungs caused by LPS, and reduce the ratio of W/D. AS significantly alleviated the decrease of mitochondrial membrane potential induced by LPS, inhibited the increase of ROS production, and reduced the expression of mitochondrial fission proteins Drp1 and Fis1. The high-dose AS group significantly downregulated the expression of Sema4D, CD72, phosphorylated NF-κB p65, and apoptosis-related proteins, decreased the pro-inflammatory factor IL-1β, and enhanced the level of anti-inflammatory factor IL-10. In addition, AS promoted miRNA-21 expression. These effects inhibited apoptosis and restored the balance between anti- and pro-inflammatory factors. This represents the inaugural report elucidating the mechanism by which AS inhibits the Sema4D/CD72 signaling pathway. These findings offer novel insights into the potential application of AS in both preventing and treating ALI.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, China
| | - Hao Zhao
- Department of Pharmacy, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiping Ren
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingyi Ren
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, China.
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Chatterjee P, Stevens HY, Kippner LE, Bowles-Welch AC, Drissi H, Mautner K, Yeago C, Gibson G, Roy K. Single-cell transcriptome and crosstalk analysis reveals immune alterations and key pathways in the bone marrow of knee OA patients. iScience 2024; 27:110827. [PMID: 39310769 PMCID: PMC11416684 DOI: 10.1016/j.isci.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Knee osteoarthritis (OA) is a significant medical and economic burden. To understand systemic immune effects, we performed deep exploration of bone marrow aspirate concentrates (BMACs) from knee-OA patients via single-cell RNA sequencing and proteomic analyses from a randomized clinical trial (MILES: NCT03818737). We found significant cellular and immune alterations in the bone marrow, specifically in MSCs, T cells and NK cells, along with changes in intra-tissue cellular crosstalk during OA progression. Unlike previous studies focusing on injury sites or peripheral blood, our probe into the bone marrow-an inflammation and immune regulation hub-highlights remote organ impact of OA, identifying cell types and pathways for potential therapeutic targeting. Our findings highlight increased cellular senescence and inflammatory pathways, revealing key upstream genes, transcription factors, and ligands. Additionally, we identified significant enrichment in key biological pathways like PI3-AKT-mTOR signaling and IFN responses, showing their potentially crucial role in OA onset and progression.
Collapse
Affiliation(s)
- Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Linda E. Kippner
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Mautner
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carolyn Yeago
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Cui K, Tang X, Yang B, Fan M, Hu A, Wu P, Yang F, Lin J, Kong H, Lu X, Yu S, Xu Y, Liang X. Sema4D Knockout Attenuates Choroidal Neovascularization by Inhibiting M2 Macrophage Polarization Via Regulation of the RhoA/ROCK Pathway. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38913005 PMCID: PMC11204059 DOI: 10.1167/iovs.65.6.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose The aim of this study was to elucidate the role of Sema4D in the pathogenesis of senescence-associated choroidal neovascularization (CNV) and to explore its underlying mechanisms. Methods In this study, we utilized a model of laser-induced CNV in both young (3 months old) and old (18 months old) mice, including those with or without Sema4D knockout. The expression and localization of Sema4D in CNV were assessed using PCR, Western blot, and immunostaining. Subsequently, the morphological and imaging examinations were used to evaluate the size of CNV and vascular leakage. Finally, the expression of M2 markers, senescence-related markers, and molecules involved in the RhoA/ROCK pathway was detected. Results We found that Sema4D was predominantly expressed in macrophages within CNV lesions, and both the mRNA and protein levels of Sema4D progressively increased following laser photocoagulation, a trend more pronounced in old mice. Moreover, Sema4D knockout markedly inhibited M2 polarization in senescent macrophages and reduced the size and leakage of CNV, particularly in aged mice. Mechanistically, aging was found to upregulate RhoA/ROCK signaling, and knockout of Sema4D effectively suppressed the activation of this pathway, with more significant effects observed in aged mice. Conclusions Our findings revealed that the deletion of Sema4D markedly inhibited M2 macrophage polarization through the suppression of the RhoA/ROCK pathway, ultimately leading to the attenuation of senescence-associated CNV. These data indicate that targeting Sema4D could offer a promising approach for gene editing therapy in patients with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haolin Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Jiang X, Otterdal K, Chung BK, Maucourant C, Rønneberg JD, Zimmer CL, Øgaard J, Boichuk Y, Holm S, Geanon D, Schneditz G, Bergquist A, Björkström NK, Melum E. Cholangiocytes Modulate CD100 Expression in the Liver and Facilitate Pathogenic T-Helper 17 Cell Differentiation. Gastroenterology 2024; 166:667-679. [PMID: 37995866 DOI: 10.1053/j.gastro.2023.11.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND & AIMS Chronic inflammation surrounding bile ducts contributes to the disease pathogenesis of most cholangiopathies. Poor efficacy of immunosuppression in these conditions suggests biliary-specific pathologic principles. Here we performed biliary niche specific functional interpretation of a causal mutation (CD100 K849T) of primary sclerosing cholangitis (PSC) to understand related pathogenic mechanisms. METHODS Biopsy specimens of explanted livers and endoscopy-guided sampling were used to assess the CD100 expression by spatial transcriptomics, immune imaging, and high-dimensional flow cytometry. To model pathogenic cholangiocyte-immune cell interaction, splenocytes from mutation-specific mice were cocultured with cholangiocytes. Pathogenic pathways were pinpointed by RNA sequencing analysis of cocultured cells and cross-validated in patient materials. RESULTS CD100 is mainly expressed by immune cells in the liver and shows a unique pattern around PSC bile ducts with RNA-level colocalization but poor detection at the protein level. This appears to be due to CD100 cleavage as soluble CD100 is increased. Immunophenotyping suggests biliary-infiltrating T cells as the major source of soluble CD100, which is further supported by reduced surface CD100 on T cells and increased metalloproteinases in cholangiocytes after coculturing. Pathogenic T cells that adhered to cholangiocytes up-regulated genes in the T-helper 17 cell differentiation pathway, and the CD100 mutation boosted this process. Consistently, T-helper 17 cells dominate biliary-resident CD4 T cells in patients. CONCLUSIONS CD100 exerts its functional impact through cholangiocyte-immune cell cross talk and underscores an active, proinflammatory role of cholangiocytes that can be relevant to novel treatment approaches.
Collapse
Affiliation(s)
- Xiaojun Jiang
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Brian K Chung
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jørgen D Rønneberg
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Øgaard
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Yuliia Boichuk
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Daniel Geanon
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Georg Schneditz
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Annika Bergquist
- Department of Gastroenterology and Hepatology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Mraz V, Funch AB, Jee MH, Gadsbøll ASØ, Weber JF, Yeung K, Lohmann RKD, Hawkes A, Ødum N, Woetmann A, McKay D, Witherden D, Geisler C, Bonefeld CM. CD100 boosts the inflammatory response in the challenge phase of allergic contact dermatitis in mice. Contact Dermatitis 2023; 89:442-452. [PMID: 37700557 DOI: 10.1111/cod.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1β and decreased recruitment of neutrophils to the epidermis. CONCLUSION Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.
Collapse
Affiliation(s)
- Veronika Mraz
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders B Funch
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Mia H Jee
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Ø Gadsbøll
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Julie F Weber
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Kelvin Yeung
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Rebecca K D Lohmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Alana Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Dianne McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Zeng S, Zhang Z, Ye C, Wang J, Jing C, Li L. Mediating immunosuppressive functions: a new perspective on the complex immunological properties of SEMA4D in the tumor microenvironment. Front Oncol 2023; 13:1171926. [PMID: 37287907 PMCID: PMC10242174 DOI: 10.3389/fonc.2023.1171926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Semaphorin 4D (SEMA4D) is considered a new antitumor target closely related to immune cells. However, understanding the role of SEMA4D in the tumor microenvironment (TME) is limited. In this study, we explored the expression and immune cell infiltration patterns of SEMA4D using multiple bioinformatics datasets and analyzed the relationship between SEMA4D expression with immune checkpoints, tumor mutational load (TMB), microsatellite instability (MSI) and immune function. We detected that SEMA4D is overexpressed in many tumors types, widely enriched in immune cells, and closely associated with TILs, MSI, TMB, as well as T-cell exhaustion-associated immune checkpoints, and thus can broadly affect the immune microenvironment. We further verified the overexpression of SEMA4D in tumor and its distribution in TME by immunohistochemistry, RT-qPCR and flow cytometry, and confirmed that decreased expression of SEMA4D can lead to recovery of T cell exhaustion. In conlusion, this study provides a more comprehensive perspective of SEMA4D regulation of tumor immunity, which provide a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Shujie Zeng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zihao Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
Lin Z, Xiong S, Lin Y, Li Z, Xie D, Lin X, Chen X, Lin X. Impact of leptin or melatonin on Sema4D overexpression-related bone metabolism. J Orthop Surg Res 2023; 18:285. [PMID: 37031174 PMCID: PMC10082985 DOI: 10.1186/s13018-023-03740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
PURPOSE The current study aims to investigate the regulatory impact of leptin or melatonin on bone metabolism as well as the underlying mechanism in conjunction with Sema4D (monoclonal antibody to semaphorin 4D). METHODS Rats were used to create the osteoporosis model utilizing the OVX (OVariectomize) technique. Rat tibial specimens from each side were collected for three-dimensional reconstruction and Micro-CT scanning examination. The Hematoxylin-osinstaining (HE) staining technique was used to determine the pathological condition of bone tissues. The ELISA (Enzyme-Linked Immunosorbent Assay) assay was used to measure the amount of estradiol present in the serum. In the current study, there were six groups: control, OVX, OVX + NL (no load group), OVX + Sema4D, OVX + Sema4D + leptin, and OVX + Sema4D + MT (melatonin). Rats were given injections of the Sema4D or leptin overexpressing vectors via the tail vein in accordance with the aforementioned classification. By using a high-resolution micro-CT technology, 3D bone structure was discovered. The activity of tartrate-resistant acid phosphatase-5b (TRAP-5b) and bone-derived alkaline phosphatase (BALP) in serum was assessed using an ELISA. The number of osteoclasts in the metaphysis of the upper tibia was determined using TRAP (tartrate-resistant acid phosphatase) staining. Immunohistochemistry was used to find leptin and bone morphogenetic protein-2 (BMP-2) expressions in bone tissue. RESULTS The BV/TV (Bone volume/Tissue volume), Tb.N (Trabecular number), BMD (Bone Mineral Density), and BMC (Bone Mineral Content) levels were significantly higher in the OVX + Sema4D + leptin and OVX + Sema4D + MT groups compared to OVX + NL, while Tb.Sp (Trabecular separation) levels were significantly lower. In contrast to the OVX group, the bone trabeculae in the OVX + Sema4D + leptin and OVX + Sema4D + MT groups had a relatively complete structure and tended to be organized closely. The amount of bone trabeculae grew drastically, whereas the proportion of TRAP-positive osteoclasts declined dramatically. BMP-2 and leptin were also elevated, while BALP and TRAP-5b activity was reduced. CONCLUSION Leptin or melatonin improved Sema4d's role in trabecular bone microstructure, bone production, and repairment of trabecular bone loss in osteoporosis rats.
Collapse
Affiliation(s)
- Zhenen Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China.
| | - Shengren Xiong
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Yu Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Zhaohui Li
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Dan Xie
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Xuchao Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Xuesheng Chen
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Xueyi Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| |
Collapse
|
8
|
Li Y, Liang H, Zhang C, Qiu Y, Wang D, Wang H, Chen A, Hong C, Wang L, Wang H, Hu B. Ophthalmic Solution of Smart Supramolecular Peptides to Capture Semaphorin 4D against Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203351. [PMID: 36437109 PMCID: PMC9875641 DOI: 10.1002/advs.202203351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working age population. Intravitreal injection of anti-VEGF antibody is widely used in clinical practice. However, about 27% of patients show poor response to anti-VEGF therapy and about 50% of these patients continue to have macular thickening. Frequent intravitreal injections of antibody may increase the chance of endophthalmitis and cause visual loss or even blindness once happened. Therefore, there is a greatly urgent need for novel noninvasive target to treat DR clinically. Here, the formulation of a smart supramolecular peptide (SSP) eye drop for DR treatment that is effective via specifically identifying and capturing soluble semaphorin 4D (sSema4D), a strongly pro-angiogenesis and exudates factor, is reported. The SSP nanostructures encapsulate sSema4D so that all biological effects mediated by three receptors of sSema4D are inhibited, thereby significantly alleviating pathological retinal angiogenesis and exudates in DR. Moreover, it is found that combination of SSPs eye drop and anti-VEGF injection shows better therapeutic effect over anti-VEGF treatment alone. Overall, SSP eye drop provide an alternative and effective method for noninvasive treatment for DR.
Collapse
Affiliation(s)
- Ya‐Nan Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hong‐Wen Liang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Chun‐Lin Zhang
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yan‐Mei Qiu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - David Wang
- Neurovascular DivisionDepartment of NeurologyBarrow Neurological InstituteSaint Joseph's Hospital and Medical CenterPhoenixAZ85013USA
| | - Hai‐Ling Wang
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - An‐Qi Chen
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Can‐Dong Hong
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lei Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Bo Hu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
9
|
Zeng Y, Wang L, Liu L, Wang M, Yan L, Ye L, Song D, Huang D. The Potential Immunomodulatory Roles of Semaphorin 4D in Human Periapical Lesions. J Endod 2023; 49:62-68. [PMID: 36257402 DOI: 10.1016/j.joen.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Semaphorin 4D (SEMA4D) is an important immunoregulator in the development of inflammatory diseases. Currently, the role of SEMA4D in human apical periodontitis remains unclear. This study aims to investigate the expression of SEMA4D and its potential immunomodulatory roles in apical periodontitis. METHODS A total of 31 periapical tissues and 6 healthy gingival tissues were used in this experiment. Hematoxylin-eosin staining, immunohistochemical staining, and multiplex immunofluorescence staining were performed for histologic examination and immunochemical analysis. For data processing, the number of SEMA4D+, CD4+, CD8+, and CD20+ cells was analyzed by QuPath. In addition, the colocalization of SEMA4D with CD4, CD8, and CD20 was detected. RESULTS Radicular cysts (RCs) (n = 18) and periapical granulomas (PGs) (n = 13) were identified by histologic evaluation. The number of SEMA4D+ cells in PGs was significantly greater than that in RCs (P < .05). T-cell and B-cell infiltration did not differ significantly between RCs and PGs. An increased number of CD20+ cells was observed in both types of apical periodontitis compared to CD8+ cells and CD4+ cells. Additionally, the presence of SEMA4D/CD4 and SEMA4D/CD20 double-positive cells was also markedly higher in PGs than in RCs. CONCLUSION The expression of SEMA4D and related immune cells showed different characteristics between RCs and PGs. The disparate expression patterns indicated the possible different pathologic states of the 2 types of periapical lesions. This study provides a new perspective on the description of the comprehensive microenvironment of periapical lesions.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mudan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Wang L, Song Y, Yi X, Wu C, Guo Q, Zhou X, Song D, Zhang L, Huang D. Semaphorin 7A accelerates the inflammatory osteolysis of periapical lesions. J Endod 2022; 48:641-649.e2. [PMID: 35218761 DOI: 10.1016/j.joen.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Semaphorin 7A (SEMA7A), the only member of the class VII semaphorin, has been considered as a potent immunomodulatory regulator, whose function in periapical lesions remains unclear. In our previous study, we found that SEMA7A was upregulated in human periapical periodontitis and might be involved in the immune response and tissue destruction of periapical lesions. In this research, we aimed to further explore the specifical regulatory role of SEMA7A as well as its regulatory mechanisms in the inflammatory progression of periapical lesions. METHODS Human periodontal ligament cells (hPDLCs) were collected from intact, caries-free, and healthy third molars and stimulated with recombinant human SEMA7A (rhSEMA7A). Real-time quantitative polymerase chain reaction (RT-qPCR), western blot and enzyme-linked immunosorbent assay (ELISA) were used to detect the mRNA and protein levels of inflammatory cytokines and matrix metalloproteinases (MMPs) in hPDLCs. 20 C57BL/6 mice were randomly divided into 4 groups: healthy control group, pulp exposure group, pulp exposure and saline treatment group and pulp exposure and rhSEMA7A treatment group. 20 μL sterile saline or 20 μL 200 ng/μL rhSEMA7A were injected respectively into the buccal mucosa around the root apex at day 0, 7, and 14. Mandibular tissues were collected at day 21. Micro-CT and immunohistochemical (IHC) staining were used to identify the bone destruction and inflammatory infiltration in periapical areas. Finally, AKT inhibitor (LY294002) was used to pretreat hPDLCs before rhSEMA7A stimulation to determine the role of AKT signaling activation in this process. RESULTS After treatment with rhSEMA7A, the mRNA and protein levels of interleukin (IL)-1β, IL-18, COX-2, MMP-1, and MMP-3 were remarkably upregulated in hPDLCs. In in vivo experiments, compared with other three groups, the treatment of rhSEMA7A would aggravate the osteolysis of alveolar bone and promote the infiltration of immune cells into the apex area accompanying with the increasing expression level of IL-1β, IL-18, matrix metalloproteinase (MMP)-1 and MMP-3. Furthermore, we found that the pro-inflammatory role of SEMA7A could be inhibited by the application of AKT inhibitor (LY294002). CONCLUSION SEMA7A likely aggravates the inflammatory reaction and bone destruction of existing periapical lesions. The pro-inflammatory role of SEMA7A in hPDLCs could partially be mediated through the ATK signaling transduction pathway.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry & Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Song
- Chengdu Second People's Hospital, Department of Stomatology, China
| | - Xiaowei Yi
- Department of Endodontics, Affiliated Stomatology Hospital, Nanchang University, Nanchang, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry & Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry & Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry & Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|