1
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024; 282:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Xie Y, Yang Z, Chen W, Zhong C, Li M, Zhang L, Cheng T, Deng Q, Wang H, Ju J, Du Z, Liang H. Splicing factor SRSF1 attenuates cardiomyocytes apoptosis via regulating alternative splicing of Bcl2L12. Cell Biosci 2024; 14:142. [PMID: 39578852 PMCID: PMC11585136 DOI: 10.1186/s13578-024-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) events, triggered by the alterations in serine/arginine splicing factor 1 (SRSF1), a member of the SR protein family, have been implicated in various pathological processes. However, the function and mechanism of SRSF1 in cardiovascular diseases remain unclear. RESULTS In this study, we found that the expression of SRSF1 was significantly down-regulated in the hearts of mice with acute myocardial infarction (AMI) and H9C2 cells exposed to H2O2. Moreover, in vivo experiments utilizing adeno-associated virus serotype 9-mediated SRSF1 overexpression improved cardiac function and reduced infarct size in AMI mice. Mechanistically, we employed RNA-seq assay to identify AS aberrations associated with altered SRSF1 level in cardiomyocytes, and found that SRSF1 regulates the splice switching of Bcl2L12. Further study showed that silencing SRSF1 inhibits the inclusion of exon7 in Bcl2L12. Importantly, the truncated Bcl2L12 lacked the necessary structural elements and failed to interact with p53, thus compromising its ability to suppress apoptosis. CONCLUSIONS Our study unraveled the role of SRSF1 as a splicing factor involved in the regulation of Bcl2L12 splice switching, thereby exerting an anti-apoptotic effect through the p53 pathway, which provides new insights into potential approaches targeting cardiomyocyte apoptosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Yilin Xie
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhenbo Yang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wenxian Chen
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Changsheng Zhong
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengyang Li
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Lei Zhang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Ting Cheng
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Qin Deng
- College of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huifang Wang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jin Ju
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zhimin Du
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau , 999078, China.
| | - Haihai Liang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
3
|
Rosenkranz RE, Vraggalas S, Keller M, Sankaranarayanan S, McNicoll F, Löchli K, Bublak D, Benhamed M, Crespi M, Berberich T, Bazakos C, Feldbrügge M, Schleiff E, Müller-McNicoll M, Zarnack K, Fragkostefanakis S. A plant-specific clade of serine/arginine-rich proteins regulates RNA splicing homeostasis and thermotolerance in tomato. Nucleic Acids Res 2024; 52:11466-11480. [PMID: 39180404 PMCID: PMC11514476 DOI: 10.1093/nar/gkae730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Global warming poses a threat for crops, therefore, the identification of thermotolerance mechanisms is a priority. In plants, the core factors that regulate transcription under heat stress (HS) are well described and include several HS transcription factors (HSFs). Despite the relevance of alternative splicing in HS response and thermotolerance, the core regulators of HS-sensitive alternative splicing have not been identified. In tomato, alternative splicing of HSFA2 is important for acclimation to HS. Here, we show that several members of the serine/arginine-rich family of splicing factors (SRSFs) suppress HSFA2 intron splicing. Individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) combined with RNA-Seq revealed that RS2Z35 and RS2Z36, which make up a plant-specific clade of SR proteins, not only regulate HSFA2 but approximately 50% of RNAs that undergo HS-sensitive alternative splicing, with preferential binding to purine-rich RNA motifs. Single and double CRISPR rs2z mutant lines show a dysregulation of splicing and exhibit lower basal and acquired thermotolerance compared to wild type plants. Our results suggest that RS2Z35 and RS2Z36 have a central role in mitigation of the negative effects of HS on RNA splicing homeostasis, and their emergence might have contributed to the increased capacity of plants to acclimate to high temperatures.
Collapse
Affiliation(s)
- Remus R E Rosenkranz
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Mario Keller
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | | | - François McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniela Bublak
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Frankfurt, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute of Plant Breeding and Genetic Resources, ELGO DEMETER, Thessaloniki, Greece
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Enrico Schleiff
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
- Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2024:10.1038/s41576-024-00774-2. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
6
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Modic M, Adamek M, Ule J. The impact of IDR phosphorylation on the RNA binding profiles of proteins. Trends Genet 2024; 40:580-586. [PMID: 38705823 PMCID: PMC7616821 DOI: 10.1016/j.tig.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Due to their capacity to mediate repetitive protein interactions, intrinsically disordered regions (IDRs) are crucial for the formation of various types of protein-RNA complexes. The functions of IDRs are strongly modulated by post-translational modifications (PTMs). Phosphorylation is the most common and well-studied modification of IDRs, which can alter homomeric or heteromeric interactions of proteins and impact their ability to phase separate. Moreover, phosphorylation can influence the RNA-binding properties of proteins, and recent studies demonstrated its selective impact on the global profiles of protein-RNA binding and regulation. These findings highlight the need for further integrative approaches to understand how signalling remodels protein-RNA networks in cells.
Collapse
Affiliation(s)
- Miha Modic
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| | - Maksimiljan Adamek
- National Institute of Chemistry, Ljubljana, Slovenia; PhD Program 'Biosciences', Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| |
Collapse
|
9
|
Bei M, Xu J. SR proteins in cancer: function, regulation, and small inhibitor. Cell Mol Biol Lett 2024; 29:78. [PMID: 38778254 PMCID: PMC11110342 DOI: 10.1186/s11658-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Alternative splicing of pre-mRNAs is a fundamental step in RNA processing required for gene expression in most metazoans. Serine and arginine-rich proteins (SR proteins) comprise a family of multifunctional proteins that contain an RNA recognition motif (RRM) and the ultra-conserved arginine/serine-rich (RS) domain, and play an important role in precise alternative splicing. Increasing research supports SR proteins as also functioning in other RNA-processing-related mechanisms, such as polyadenylation, degradation, and translation. In addition, SR proteins interact with N6-methyladenosine (m6A) regulators to modulate the methylation of ncRNA and mRNA. Dysregulation of SR proteins causes the disruption of cell differentiation and contributes to cancer progression. Here, we review the distinct biological characteristics of SR proteins and their known functional mechanisms during carcinogenesis. We also summarize the current inhibitors that directly target SR proteins and could ultimately turn SR proteins into actionable therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Mingrong Bei
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China.
| |
Collapse
|
10
|
Fanara S, Schloesser M, Joris M, De Franco S, Vandevenne M, Kerff F, Hanikenne M, Motte P. The Arabidopsis SR45 splicing factor bridges the splicing machinery and the exon-exon junction complex. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2280-2298. [PMID: 38180875 DOI: 10.1093/jxb/erae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
The Arabidopsis splicing factor serine/arginine-rich 45 (SR45) contributes to several biological processes. The sr45-1 loss-of-function mutant exhibits delayed root development, late flowering, unusual numbers of floral organs, shorter siliques with decreased seed sets, narrower leaves and petals, and altered metal distribution. SR45 bears a unique RNA recognition motif (RRM) flanked by one serine/arginine-rich (RS) domain on both sides. Here, we studied the function of each SR45 domains by examining their involvement in: (i) the spatial distribution of SR45; (ii) the establishment of a protein-protein interaction network including spliceosomal and exon-exon junction complex (EJC) components; and (iii) the RNA binding specificity. We report that the endogenous SR45 promoter is active during vegetative and reproductive growth, and that the SR45 protein localizes in the nucleus. We demonstrate that the C-terminal arginine/serine-rich domain is a determinant of nuclear localization. We show that the SR45 RRM domain specifically binds purine-rich RNA motifs via three residues (H101, H141, and Y143), and is also involved in protein-protein interactions. We further show that SR45 bridges both mRNA splicing and surveillance machineries as a partner of EJC core components and peripheral factors, which requires phosphoresidues probably phosphorylated by kinases from both the CLK and SRPK families. Our findings provide insights into the contribution of each SR45 domain to both spliceosome and EJC assemblies.
Collapse
Affiliation(s)
- Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marine Joris
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Simona De Franco
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Marylène Vandevenne
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Frédéric Kerff
- InBioS-Center for Protein Engineering, Laboratory of Crystallography, University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, 4000, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
11
|
Rahimian R, Guruswamy R, Boutej H, Cordeau P, Weng YC, Kriz J. Targeting SRSF3 restores immune mRNA translation in microglia/macrophages following cerebral ischemia. Mol Ther 2024; 32:783-799. [PMID: 38196192 PMCID: PMC10928149 DOI: 10.1016/j.ymthe.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
We recently described a novel ribosome-based regulatory mechanism/checkpoint that controls innate immune gene translation and microglial activation in non-sterile inflammation orchestrated by RNA binding protein SRSF3. Here we describe a role of SRSF3 in the regulation of microglia/macrophage activation phenotypes after experimental stroke. Using a model-system for analysis of the dynamic translational state of microglial ribosomes we show that 24 h after stroke highly upregulated immune mRNAs are not translated resulting in a marked dissociation of mRNA and protein networks in activated microglia/macrophages. Next, microglial activation after stroke was characterized by a robust increase in pSRSF3/SRSF3 expression levels. Targeted knockdown of SRSF3 using intranasal delivery of siRNA 24 h after stroke caused a marked knockdown of endogenous protein. Further analyses revealed that treatment with SRSF3-siRNA alleviated translational arrest of selected genes and induced a transient but significant increase in innate immune signaling and IBA1+ immunoreactivity peaking 5 days after initial injury. Importantly, delayed SRSF3-mediated increase in immune signaling markedly reduced the size of ischemic lesion measured 7 days after stroke. Together, our findings suggest that targeting SRSF3 and immune mRNA translation may open new avenues for molecular/therapeutic reprogramming of innate immune response after ischemic injury.
Collapse
Affiliation(s)
- Reza Rahimian
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1J 2G3, Canada
| | - Revathy Guruswamy
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1J 2G3, Canada
| | - Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1J 2G3, Canada
| | - Pierre Cordeau
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1J 2G3, Canada
| | - Yuan Cheng Weng
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1J 2G3, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1J 2G3, Canada; Faculty of Medicine, Université Laval, Québec, QC G1J 2G3, Canada.
| |
Collapse
|
12
|
Arnold B, Riegger RJ, Okuda EK, Slišković I, Keller M, Bakisoglu C, McNicoll F, Zarnack K, Müller-McNicoll M. hGRAD: A versatile "one-fits-all" system to acutely deplete RNA binding proteins from condensates. J Cell Biol 2024; 223:e202304030. [PMID: 38108808 PMCID: PMC10726014 DOI: 10.1083/jcb.202304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and crossregulation. They are highly abundant and many localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a "one-fits-all" plasmid, and integration into any cell line with endogenously GFP-tagged proteins allows for an inducible, rapid, and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2, and NONO are completely cleared from nuclear speckles and paraspeckles within 2 h. hGRAD works in various cell types, is more efficient than previous methods, and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered transient transcript changes, compensatory mechanisms, and an effect of SRSF5 on transcript stability.
Collapse
Affiliation(s)
- Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ricarda J. Riegger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ellen Kazumi Okuda
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- International Max Planck Research School for Cellular Biophysics, Frankfurt am Main, Germany
| | - Irena Slišković
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Keller
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cem Bakisoglu
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
13
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
14
|
Getmantseva L, Kolosova M, Fede K, Korobeinikova A, Kolosov A, Romanets E, Bakoev F, Romanets T, Yudin V, Keskinov A, Bakoev S. Finding Predictors of Leg Defects in Pigs Using CNV-GWAS. Genes (Basel) 2023; 14:2054. [PMID: 38002997 PMCID: PMC10671522 DOI: 10.3390/genes14112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important areas of modern genome research is the search for meaningful relationships between genetic variants and phenotypes. In the livestock field, there has been research demonstrating the influence of copy number variants (CNVs) on phenotypic variation. Despite the wide range in the number and size of detected CNVs, a significant proportion differ between breeds and their functional effects are underestimated in the pig industry. In this work, we focused on the problem of leg defects in pigs (lumps/growths in the area of the hock joint on the hind legs) and focused on searching for molecular genetic predictors associated with this trait for the selection of breeding stock. The study was conducted on Large White pigs using three CNV calling tools (PennCNV, QuantiSNP and R-GADA) and the CNVRanger association analysis tool (CNV-GWAS). As a result, the analysis identified three candidate CNVRs associated with the formation of limb defects. Subsequent functional analysis suggested that all identified CNVs may act as potential predictors of the hock joint phenotype of pigs. It should be noted that the results obtained indicate that all significant regions are localized in genes (CTH, SRSF11, MAN1A1 and LPIN1) responsible for the metabolism of amino acids, fatty acids, glycerolipids and glycerophospholipids, thereby related to the immune response, liver functions, content intramuscular fat and animal fatness. These results are consistent with previously published studies, according to which a predisposition to the formation of leg defects can be realized through genetic variants associated with the functions of the liver, kidneys and hematological characteristics.
Collapse
Affiliation(s)
- Lyubov Getmantseva
- Federal State Budgetary Educational Institution of Higher Education, Don State Agrarian University, 346493 Persianovsky, Russia; (L.G.); (A.K.)
- Federal State Budgetary Institution, “Center for Strategic Planning and Management of Medical and Biological Health Risks” of the Federal Medical and Biological Agency, 10/1 Pogodinskaya St., 119121 Moscow, Russia; (K.F.); (A.K.)
| | - Maria Kolosova
- Federal State Budgetary Educational Institution of Higher Education, Don State Agrarian University, 346493 Persianovsky, Russia; (L.G.); (A.K.)
| | - Kseniia Fede
- Federal State Budgetary Institution, “Center for Strategic Planning and Management of Medical and Biological Health Risks” of the Federal Medical and Biological Agency, 10/1 Pogodinskaya St., 119121 Moscow, Russia; (K.F.); (A.K.)
| | - Anna Korobeinikova
- Federal State Budgetary Institution, “Center for Strategic Planning and Management of Medical and Biological Health Risks” of the Federal Medical and Biological Agency, 10/1 Pogodinskaya St., 119121 Moscow, Russia; (K.F.); (A.K.)
| | - Anatoly Kolosov
- Federal State Budgetary Educational Institution of Higher Education, Don State Agrarian University, 346493 Persianovsky, Russia; (L.G.); (A.K.)
| | - Elena Romanets
- Federal State Budgetary Educational Institution of Higher Education, Don State Agrarian University, 346493 Persianovsky, Russia; (L.G.); (A.K.)
| | - Faridun Bakoev
- Federal State Budgetary Educational Institution of Higher Education, Don State Agrarian University, 346493 Persianovsky, Russia; (L.G.); (A.K.)
| | - Timofey Romanets
- Federal State Budgetary Educational Institution of Higher Education, Don State Agrarian University, 346493 Persianovsky, Russia; (L.G.); (A.K.)
| | - Vladimir Yudin
- Federal State Budgetary Institution, “Center for Strategic Planning and Management of Medical and Biological Health Risks” of the Federal Medical and Biological Agency, 10/1 Pogodinskaya St., 119121 Moscow, Russia; (K.F.); (A.K.)
| | - Anton Keskinov
- Federal State Budgetary Institution, “Center for Strategic Planning and Management of Medical and Biological Health Risks” of the Federal Medical and Biological Agency, 10/1 Pogodinskaya St., 119121 Moscow, Russia; (K.F.); (A.K.)
| | - Siroj Bakoev
- Federal State Budgetary Institution, “Center for Strategic Planning and Management of Medical and Biological Health Risks” of the Federal Medical and Biological Agency, 10/1 Pogodinskaya St., 119121 Moscow, Russia; (K.F.); (A.K.)
| |
Collapse
|
15
|
Sapir T, Reiner O. HNRNPU's multi-tasking is essential for proper cortical development. Bioessays 2023; 45:e2300039. [PMID: 37439444 DOI: 10.1002/bies.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a nuclear protein that plays a crucial role in various biological functions, such as RNA splicing and chromatin organization. HNRNPU/scaffold attachment factor A (SAF-A) activities are essential for regulating gene expression, DNA replication, genome integrity, and mitotic fidelity. These functions are critical to ensure the robustness of developmental processes, particularly those involved in shaping the human brain. As a result, HNRNPU is associated with various neurodevelopmental disorders (HNRNPU-related neurodevelopmental disorder, HNRNPU-NDD) characterized by developmental delay and intellectual disability. Our research demonstrates that the loss of HNRNPU function results in the death of both neural progenitor cells and post-mitotic neurons, with a higher sensitivity observed in the former. We reported that HNRNPU truncation leads to the dysregulation of gene expression and alternative splicing of genes that converge on several signaling pathways, some of which are likely to be involved in the pathology of HNRNPU-related NDD.
Collapse
Affiliation(s)
- Tamar Sapir
- Weizmann Institute of Science, Molecular Genetics and Molecular Neuroscience, Rehovot, Central, Israel
| | - Orly Reiner
- Weizmann Institute of Science, Molecular Genetics and Molecular Neuroscience, Rehovot, Central, Israel
| |
Collapse
|
16
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
17
|
Hamanaka K, Yamauchi D, Koshimizu E, Watase K, Mogushi K, Ishikawa K, Mizusawa H, Tsuchida N, Uchiyama Y, Fujita A, Misawa K, Mizuguchi T, Miyatake S, Matsumoto N. Genome-wide identification of tandem repeats associated with splicing variation across 49 tissues in humans. Genome Res 2023; 33:435-447. [PMID: 37307504 PMCID: PMC10078293 DOI: 10.1101/gr.277335.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Tandem repeats (TRs) are one of the largest sources of polymorphism, and their length is associated with gene regulation. Although previous studies reported several tandem repeats regulating gene splicing in cis (spl-TRs), no large-scale study has been conducted. In this study, we established a genome-wide catalog of 9537 spl-TRs with a total of 58,290 significant TR-splicing associations across 49 tissues (false discovery rate 5%) by using Genotype-Tissue expression (GTex) Project data. Regression models explaining splicing variation by using spl-TRs and other flanking variants suggest that at least some of the spl-TRs directly modulate splicing. In our catalog, two spl-TRs are known loci for repeat expansion diseases, spinocerebellar ataxia 6 (SCA6) and 12 (SCA12). Splicing alterations by these spl-TRs were compatible with those observed in SCA6 and SCA12. Thus, our comprehensive spl-TR catalog may help elucidate the pathomechanism of genetic diseases.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan;
| |
Collapse
|
18
|
Kim GN, Yu KL, Kim HI, You JC. Investigation of the effect of SRSF9 overexpression on HIV-1 production. BMB Rep 2022; 55:639-644. [PMID: 36330710 PMCID: PMC9813430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 12/29/2022] Open
Abstract
Serine-arginine-rich splicing factors (SRSFs) are members of RNA processing proteins in the serine-arginine-rich (SR) family that could regulate the alternative splicing of the human immunodeficiency virus-1 (HIV-1). Whether SRSF9 has any effect on HIV-1 regulation requires elucidation. Here, we report for the first time the effects and mechanisms of SRSF9 on HIV-1 regulation. The overexpression of SRSF9 inhibits viral production and infectivity in both HEK293T and MT-4 cells. Deletion analysis of SRSF9 determined that the RNA regulation motif domain of SRSF9 is important for anti-HIV-1 effects. Furthermore, overexpression of SRSF9 increases multiple spliced forms of viral mRNA, such as Vpr mRNA. These data suggest that SRSF9 overexpression inhibits HIV-1 production by inducing the imbalanced HIV-1 mRNA splicing that could be exploited further for a novel HIV-1 therapeutic molecule. [BMB Reports 2022; 55(12): 639-644].
Collapse
Affiliation(s)
- Ga-Na Kim
- Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea, Seoul 05505, Korea
| | - Kyung-Lee Yu
- Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea, Seoul 05505, Korea
| | - Hae-In Kim
- Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea, Seoul 05505, Korea
| | - Ji Chang You
- Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea, Seoul 05505, Korea,Corresponding author. Tel: +82-2-3147-8734; Fax: +82-2-3147-9282; E-mail:
| |
Collapse
|
19
|
Zhang Q, Wang J, Zhang X, Deng Y, Li F. A Conserved, Serine-Rich Protein Plays Opposite Roles in N-Mediated Immunity against TMV and N-Triggered Cell Death. Viruses 2022; 15:26. [PMID: 36680066 PMCID: PMC9865399 DOI: 10.3390/v15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Plant nucleotide-binding, leucine-rich, repeat-containing proteins (NLRs) play important roles in plant immunity. NLR expression and function are tightly regulated by multiple mechanisms. In this study, a conserved serine/arginine-rich protein (SR protein) was identified through the yeast one-hybrid screening of a tobacco cDNA library using DNA fragments from the N gene, an NLR that confers immunity to tobacco mosaic virus (TMV). This SR protein showed an interaction with a 3' genomic regulatory sequence (GRS) and has a potential role in regulating the alternative splicing of N. Thus, it was named SR regulator for N, abbreviated SR4N. Further study showed that SR4N plays a positive role in N-mediated cell death but a negative role in N protein accumulation. SR4N also promotes multiple virus replications in co-expression experiments, and this enhancement may not function through RNA silencing suppression, as it did not enhance 35S-GFP expression in co-infiltration experiments. Bioinformatic and molecular studies revealed that SR4N belongs to the SR2Z subtype of the SR protein family, which was conserved in both dicots and monocots, and its roles in repressing viral immunity and triggering cell death were also conserved. Our study revealed new roles for SR2Z family proteins in plant immunity against viruses.
Collapse
Affiliation(s)
| | | | | | | | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Goyal M, Simantov K, Dzikowski R. Beyond splicing: serine-arginine proteins as emerging multifaceted regulators of RNA metabolism in malaria parasites. Curr Opin Microbiol 2022; 70:102201. [PMID: 36087463 DOI: 10.1016/j.mib.2022.102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
The serine-arginine-rich (SR) proteins play an exceptionally important role in eukaryotic gene expression, primarily by regulating constitutive and alternative splicing events. In addition to their primary role as splicing factors, SR proteins have emerged as multifunctional RNA-binding proteins that act as key regulators of almost every step of RNA metabolism. As in higher eukaryotes, Plasmodium parasites encode several SR proteins, which were implicated in pre-mRNA splicing. However, only a few have been characterized and their biological roles remain understudied. Intriguingly, in addition to splicing regulation, unexpected functions of particular SR proteins have been reported in Plasmodium in recent years. Here, we highlight the key characteristics and different noncanonical splicing functions of SR proteins and discuss potential mechanisms, which might be involved in their multifaceted functionality in Plasmodium.
Collapse
Affiliation(s)
- Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
21
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
22
|
Cascarina SM, Ross ED. Expansion and functional analysis of the SR-related protein family across the domains of life. RNA (NEW YORK, N.Y.) 2022; 28:1298-1314. [PMID: 35863866 PMCID: PMC9479744 DOI: 10.1261/rna.079170.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Serine/arginine-rich (SR) proteins comprise a family of proteins that is predominantly found in eukaryotes and plays a prominent role in RNA splicing. A characteristic feature of SR proteins is the presence of an S/R-rich low-complexity domain (RS domain), often in conjunction with spatially distinct RNA recognition motifs (RRMs). To date, 52 human proteins have been classified as SR or SR-related proteins. Here, using an unbiased series of composition criteria together with enrichment for known RNA binding activity, we identified >100 putative SR-related proteins in the human proteome. This method recovers known SR and SR-related proteins with high sensitivity (∼94%), yet identifies a number of additional proteins with many of the hallmark features of true SR-related proteins. Newly identified SR-related proteins display slightly different amino acid compositions yet similar levels of post-translational modification, suggesting that these new SR-related candidates are regulated in vivo and functionally important. Furthermore, candidate SR-related proteins with known RNA-binding activity (but not currently recognized as SR-related proteins) are nevertheless strongly associated with a variety of functions related to mRNA splicing and nuclear speckles. Finally, we applied our SR search method to all available reference proteomes, and provide maps of RS domains and Pfam annotations for all putative SR-related proteins as a resource. Together, these results expand the set of SR-related proteins in humans, and identify the most common functions associated with SR-related proteins across all domains of life.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
23
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|