1
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Salivary secretory leukocyte protease inhibitor levels in patients with stage 3 grade C periodontitis: a comparative cross-sectional study. Sci Rep 2022; 12:21267. [PMID: 36481656 PMCID: PMC9732338 DOI: 10.1038/s41598-022-24295-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is an anti-protease that protects mucosal tissue integrity owing to its anti-microbial and immunomodulatory properties. This study aimed to investigate SLPI levels in periodontal diseases, and analyze the potential correlation with clinical periodontal parameters. Whole saliva samples were obtained from healthy (n = 24), gingivitis (n = 24) and patients with stage 3 grade C periodontitis (n = 24). SLPI was measured by ELISA and normalized by total protein. Receiver operating characteristics (ROC) curve was used for estimating the area under the curve (AUC). The normalized SLPI levels were significantly reduced in periodontitis compared with gingivitis (4.84-fold) or health (1.83-fold) and negatively correlated with periodontal parameters. The ROC curves showed a good predictor value of the SLPI for differentiation of periodontitis versus health or gingivitis (AUC ≥ 0.80). This study demonstrates that the levels of SLPI are high in periodontal health, further elevated in gingivitis, but eventually decreased in severe periodontitis beyond the former two states. This observation may have broader implications in the context of inflammatory diseases affecting the oral mucosa, as it shows that the bacterial burden is disturbing the homeostatic balances of anti-microbial and anti-protease factors in the oral cavity.
Collapse
|
3
|
Sasaki M, Shimoyama Y, Kodama Y, Ishikawa T. Tryptophanyl tRNA Synthetase from Human Macrophages Infected by Porphyromonas gingivalis Induces a Proinflammatory Response Associated with Atherosclerosis. Pathogens 2021; 10:1648. [PMID: 34959604 PMCID: PMC8708850 DOI: 10.3390/pathogens10121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis is the most common microorganism associated with adult periodontal disease, causing inflammation around the subgingival lesion. In this study, we investigated tryptophanyl tRNA synthase (WRS) production by THP-1 cells infected with P. gingivalis. Cytokine production, leukocyte adhesion molecules, and low-density lipoprotein receptor (LDLR) expressions in cultured cells were examined. WRS was detected in THP-1 cell culture supernatants stimulated with P. gingivalis from 1 to 24 h, and apparent production was observed after 4 h. No change in WRS mRNA expression was observed from 1 to 6 h in THP-1 cells, whereas its expression was significantly increased 12 h after stimulation with P. gingivalis. Lactate dehydrogenase (LDH) activity was observed from 4 to 24 h. The TNF-α, IL-6, IL-8, and CXCL2 levels of THP-1 cells were upregulated after treatment with recombinant WRS (rWRS) and were significantly reduced when THP-1 cells were treated with C29. The MCP-1, ICAM-1, and VCAM-1 levels in human umbilical vein endothelial cells were upregulated following treatment with rWRS, and TAK242 suppressed these effects. Additionally, unmodified LDLR, macrophage scavenger receptor A, and lectin-like oxidized LDLRs were upregulated in THP-1 cells treated with rWRS. These results suggest that WRS from macrophages infected with P. gingivalis is associated with atherosclerosis.
Collapse
Affiliation(s)
- Minoru Sasaki
- Department of Microbiology, Division of Molecular Microbiology, Iwate Medical University, Morioka 028-3694, Japan; (Y.S.); (Y.K.); (T.I.)
| | | | | | | |
Collapse
|
4
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
5
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Bikker FJ, Nascimento GG, Nazmi K, Silbereisen A, Belibasakis GN, Kaman WE, Lopez R, Bostanci N. Salivary Total Protease Activity Based on a Broad-Spectrum Fluorescence Resonance Energy Transfer Approach to Monitor Induction and Resolution of Gingival Inflammation. Mol Diagn Ther 2020; 23:667-676. [PMID: 31372941 PMCID: PMC6775538 DOI: 10.1007/s40291-019-00421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Salivary total protease and chitinase activities were measured by a broad-spectrum fluorescence resonance energy transfer approach as predictors of induction and resolution of gingival inflammation in healthy individuals by applying an experimental human gingivitis model. METHODS Dental biofilm accumulated (21 days, Induction Phase) by omitting oral hygiene practices followed by a 2-week Resolution Phase to restore gingival health in an experimental gingivitis study. Plaque accumulation, as assessed by the Turesky Modification of the Quigley-Hein Plaque Index (TQHPI), and gingival inflammation, assessed using the Modified Gingival Index (MGI), scores were recorded and unstimulated saliva was collected weekly. Saliva was analysed for total protein, albumin, total protease activity and chitinase activity (n = 18). RESULTS The TQHPI and MGI scores, as well as total protease activity, increased until day 21. After re-establishment of oral hygiene, gingival inflammation levels returned to values similar to baseline (day 0). Levels of protease activity decreased significantly, but not to baseline values. Furthermore, 'fast' responders, who responded immediately to plaque, exhibited significantly higher proteolytic activity throughout the experimental course than 'slow' responders, who showed a lagged inflammatory response. CONCLUSION The results indicate that differential inflammatory responses encompass inherent variations in total salivary proteolytic activities, which could be further utilised in contemporary diagnostic, prognostic and treatment modalities for periodontal diseases.
Collapse
Affiliation(s)
- Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
| | - Gustavo G Nascimento
- Section of Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wendy E Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rodrigo Lopez
- Section of Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Tabatabaei F, Moharamzadeh K, Tayebi L. Three-Dimensional In Vitro Oral Mucosa Models of Fungal and Bacterial Infections. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:443-460. [PMID: 32131719 DOI: 10.1089/ten.teb.2020.0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is the target tissue for many microorganisms involved in periodontitis and other infectious diseases affecting the oral cavity. Three-dimensional (3D) in vitro and ex vivo oral mucosa equivalents have been used for oral disease modeling and investigation of the mechanisms of oral bacterial and fungal infections. This review was conducted to analyze different studies using 3D oral mucosa models for the evaluation of the interactions of different microorganisms with oral mucosa. In this study, based on our inclusion criteria, 43 articles were selected and analyzed. Different types of 3D oral mucosa models of bacterial and fungal infections were discussed in terms of the biological system used, culture conditions, method of infection, and the biological endpoints assessed in each study. The critical analysis revealed some contradictory reports in this field of research in the literature. Challenges in recovering bacteria from oral mucosa models were further discussed, suggesting possible future directions in microbiomics, including the use of oral mucosa-on-a-chip. The potential use of these 3D tissue models for the evaluation of the effects of antiseptic agents on bacteria and oral mucosa was also addressed. This review concluded that there were many aspects that would require optimization and standardization with regard to using oral mucosal models for infection by microorganisms. Using new technologies-such as microfluidics and bioreactors-could help to reproduce some of the physiologically relevant conditions and further simulate the clinical situation. Impact statement Tissue-engineered or commercial models of the oral mucosa are very useful for the study of diseases that involve the interaction of microorganisms and oral epithelium. In this review, challenges in recovering bacteria from oral mucosa models, the potential use of these three-dimensional tissue models for the evaluation of the effects of antiseptic agents, and future directions in microbiomics are discussed.
Collapse
Affiliation(s)
- Fahimeh Tabatabaei
- School of Dentistry, Marquette University, Milwaukee, Wisconsin.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Afacan B, Öztürk VÖ, Emingil G, Köse T, Bostanci N. Alarm anti-protease trappin-2 negatively correlates with proinflammatory cytokines in patients with periodontitis. J Periodontol 2019; 89:58-66. [PMID: 28777039 DOI: 10.1902/jop.2017.170245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Trappin-2 is a potent biologically active serine protease inhibitor with anti-inflammatory properties that has also been characterized as an "alarm anti-protease." Although the importance of trappin-2 in several chronic infections has been demonstrated, its potential involvement in periodontitis remains undefined. This study aims to investigate salivary levels of trappin-2 and interleukin (IL)-1β in periodontally healthy individuals and patients with gingivitis or generalized chronic periodontitis (CP) or aggressive periodontitis (GAgP). METHODS Whole unstimulated saliva samples were collected from 80 systemically healthy and non-smoking individuals before full-mouth periodontal examination. Trappin-2 and IL-1β were analyzed by enzyme-linked immunosorbent assay and reported as nanograms per milligram after calibration for total protein levels. RESULTS Correlation analysis revealed negative association between trappin-2 and IL-1β levels. Trappin-2 also showed strong negative correlation with clinical periodontal parameters, in contrast to IL-1β, which showed positive correlation. Trappin-2 levels were significantly lower in individuals with CP and GAgP, but not gingivitis, compared with healthy individuals. Reduced salivary concentrations of trappin-2 had high sensitivity and specificity to distinguish health from periodontitis. CONCLUSIONS Trappin-2 is abundant in the saliva of individuals with healthy periodontium in line with its role as an "anti-alarm" protease. Decreased salivary trappin-2 and increased IL-1β levels in individuals with periodontitis, compared with healthy individuals, may implicate a potential antiprotease/proinflammatory cytokine imbalance, resulting in impaired host protective capacity.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Veli Özgen Öztürk
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Nagihan Bostanci
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Francis N, Ayodele BA, O'Brien-Simpson NM, Birchmeier W, Pike RN, Pagel CN, Mackie EJ. Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cell Microbiol 2018; 20:e12891. [PMID: 30009515 DOI: 10.1111/cmi.12891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/13/2018] [Accepted: 07/06/2018] [Indexed: 01/10/2023]
Abstract
Chronic periodontitis is characterised by gingival inflammation and alveolar bone loss. A major aetiological agent is Porphyromonas gingivalis, which secretes proteases that activate protease-activated receptor 2 (PAR2 ). PAR2 expressed on oral keratinocytes is activated by proteases released by P. gingivalis, inducing secretion of interleukin 6 (IL-6), and global knockout of PAR2 prevents bone loss and inflammation in a periodontal disease model in mice. To test the hypothesis that PAR2 expressed on gingival keratinocytes is required for periodontal disease pathology, keratinocyte-specific PAR2 -null mice were generated using K14-Cre targeted deletion of the PAR2 gene (F2rl1). These mice were subjected to a model of periodontitis involving placement of a ligature around a tooth, combined with P. gingivalis infection ("Lig + Inf"). The intervention caused a significant 44% decrease in alveolar bone volume (assessed by microcomputed tomography) in wildtype (K14-Cre:F2rl1wt/wt ), but not littermate keratinocyte-specific PAR2 -null (K14-Cre:F2rl1fl/fl ) mice. Keratinocyte-specific ablation of PAR2 prevented the significant Lig + Inf-induced increase (2.8-fold) in the number of osteoclasts in alveolar bone and the significant up-regulation (2.4-4-fold) of the inflammatory markers IL-6, IL-1β, interferon-γ, myeloperoxidase, and CD11b in gingival tissue. These data suggest that PAR2 expressed on oral epithelial cells is a critical regulator of periodontitis-induced bone loss and will help in designing novel therapies with which to treat the disease.
Collapse
Affiliation(s)
- Nidhish Francis
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Babatunde A Ayodele
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Robert N Pike
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
10
|
Bengtsson T, Zhang B, Selegård R, Wiman E, Aili D, Khalaf H. Dual action of bacteriocin PLNC8 αβ through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation. Pathog Dis 2018; 75:3866614. [PMID: 28605543 PMCID: PMC5808647 DOI: 10.1093/femspd/ftx064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/09/2017] [Indexed: 12/04/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 αβ. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 αβ enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 αβ efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 αβ displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 αβ in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.
Collapse
Affiliation(s)
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Selegård
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden.,Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Emanuel Wiman
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Hazem Khalaf
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
11
|
Jang JY, Baek KJ, Choi Y, Ji S. Relatively low invasive capacity of Porphyromonas gingivalis strains into human gingival fibroblasts in vitro. Arch Oral Biol 2017; 83:265-271. [DOI: 10.1016/j.archoralbio.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/28/2023]
|
12
|
Bloch S, Thurnheer T, Murakami Y, Belibasakis GN, Schäffer C. Behavior of two Tannerella forsythia strains and their cell surface mutants in multispecies oral biofilms. Mol Oral Microbiol 2017; 32:404-418. [PMID: 28382776 PMCID: PMC5600126 DOI: 10.1111/omi.12182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S-layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony-forming unit counts and quantitative real-time polymerase chain reaction, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes in the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S-layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S-layer in the positioning of this species within the biofilm, its co-localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and the immune system, from within or beyond the biofilm.
Collapse
Affiliation(s)
- Susanne Bloch
- Department of NanoBiotechnologyNanoGlycobiology unitUniversität für Bodenkultur ViennaViennaAustria
| | - Thomas Thurnheer
- Division of Oral Microbiology and ImmunologyInstitute of Oral BiologyCenter of Dental MedicineUniversity of ZürichZürichSwitzerland
| | - Yukitaka Murakami
- Department of Oral MicrobiologyAsahi University School of DentistryMizuhoGifuJapan
| | - Georgios N. Belibasakis
- Division of Cariology and EndodonticsDepartment of Dental MedicineKarolinska InstituteHuddingeSweden
| | - Christina Schäffer
- Department of NanoBiotechnologyNanoGlycobiology unitUniversität für Bodenkultur ViennaViennaAustria
| |
Collapse
|
13
|
Isermann B. Homeostatic effects of coagulation protease-dependent signaling and protease activated receptors. J Thromb Haemost 2017; 15:1273-1284. [PMID: 28671351 DOI: 10.1111/jth.13721] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A homeostatic function of the coagulation system in regard to hemostasis is well established. Homeostasis of blood coagulation depends partially on protease activated receptor (PAR)-signaling. Beyond coagulation proteases, numerous other soluble and cell-bound proteases convey cellular effects via PAR signaling. As we learn more about the mechanisms underlying cell-, tissue-, and context-specific PAR signaling, we concurrently gain new insights into physiological and pathophysiological functions of PARs. In this regard, regulation of cell and tissue homeostasis by PAR signaling is an evolving scheme. Akin to the control of blood clotting per se (the fibrin-platelet interaction) coagulation proteases coordinately regulate cell- and tissue-specific functions. This review summarizes recent insights into homeostatic regulation through PAR signaling, focusing on blood coagulation proteases. Considering the common use of drugs altering coagulation protease activity through either broad or targeted inhibitory activities, and the advent of PAR modulating drugs, an in-depth understanding of the mechanisms through which coagulation proteases and PAR signaling regulate not only hemostasis, but also cell and tissue homeostasis is required.
Collapse
Affiliation(s)
- B Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Rovai ES, Holzhausen M. The Role of Proteinase-Activated Receptors 1 and 2 in the Regulation of Periodontal Tissue Metabolism and Disease. J Immunol Res 2017; 2017:5193572. [PMID: 28503577 PMCID: PMC5414592 DOI: 10.1155/2017/5193572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/13/2017] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Proteinase-activated receptors 1 (PAR1) and 2 (PAR2) are the most highly expressed members of the PAR family in the periodontium. These receptors regulate periodontal inflammatory and repair processes through their activation by endogenous and bacterial enzymes. PAR1 is expressed by the periodontal cells such as human gingival fibroblasts, gingival epithelial cells, periodontal ligament cells, osteoblasts, and monocytic cells and can be activated by thrombin, matrix metalloproteinase 1 (MMP-1), MMP-13, fibrin, and gingipains from Porphyromonas gingivalis. PAR2 is expressed by neutrophils, osteoblasts, oral epithelial cells, and human gingival fibroblasts, and its possible activators in the periodontium are gingipains, neutrophil proteinase 3, and mast cell tryptase. The mechanisms through which PARs can respond to periodontal enzymes and result in appropriate immune responses have until recently been poorly understood. This review discusses recent findings that are beginning to identify a cardinal role for PAR1 and PAR2 on periodontal tissue metabolism.
Collapse
MESH Headings
- Adhesins, Bacterial/metabolism
- Animals
- Cells, Cultured
- Cysteine Endopeptidases/metabolism
- Epithelial Cells
- Fibroblasts
- Gene Expression Regulation
- Gingipain Cysteine Endopeptidases
- Gingiva/cytology
- Gingiva/metabolism
- Humans
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 1/metabolism
- Mice
- Periodontitis/genetics
- Periodontitis/metabolism
- Periodontitis/physiopathology
- Periodontium/metabolism
- Porphyromonas gingivalis
- Receptor, PAR-1/agonists
- Receptor, PAR-1/antagonists & inhibitors
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptors, Proteinase-Activated/agonists
- Receptors, Proteinase-Activated/antagonists & inhibitors
- Receptors, Proteinase-Activated/genetics
- Receptors, Proteinase-Activated/metabolism
Collapse
Affiliation(s)
- E. S. Rovai
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - M. Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Palm E, Demirel I, Bengtsson T, Khalaf H. The role of toll-like and protease-activated receptors and associated intracellular signaling in Porphyromonas gingivalis-infected gingival fibroblasts. APMIS 2017; 125:157-169. [PMID: 28120492 DOI: 10.1111/apm.12645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis, which is considered a keystone agent in periodontitis, has evolved elaborate mechanisms to grow and survive in a hostile milieu. The gingival fibroblast is the major cell type in the gingiva and is considered to be important in the periodontitis-associated inflammation. As a part of the innate immune response, they produce cytokines such as CXCL8 and interleukin (IL)-6 which are believed to contribute to the destruction of the tooth-supporting tissues. This study investigates how the expression of protease-activated receptors (PAR1, PAR2) and toll-like receptors (TLR2, TLR4) changes with P. gingivalis exposure and how silencing of one receptor affects the expression of the other receptors. The importance of protein kinase C (PKC) and p38 in the regulation of CXCL8 and IL-6 was also examined. Receptors were knockdown with small-interfering RNA. PKC or p38 was blocked prior to stimulation with P. gingivalis. Fibroblasts were able to compensate for PAR1 knockdown with increased expression of PAR2. PKC and p38 were involved in the regulation of P. gingivalis-induced CXCL8 and IL-6. Our results indicate that PAR1 and PAR2 could be implicated in periodontitis and that PKC and P38 play a role in the inflammatory response in P. gingivalis-infected gingival fibroblasts.
Collapse
Affiliation(s)
- Eleonor Palm
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Torbjörn Bengtsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
16
|
Wilensky A, Potempa J, Houri-Haddad Y, Shapira L. Vaccination with recombinant RgpA peptide protects against Porphyromonas gingivalis-induced bone loss. J Periodontal Res 2016; 52:285-291. [PMID: 27282938 DOI: 10.1111/jre.12393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Following Porphyromonas gingivalis infection in mice, the efficacy of vaccination by recombinant and native RgpA in modulating the early local anti-inflammatory and immune responses and periodontal bone loss were examined. MATERIAL AND METHODS Using the subcutaneous chamber model, exudates were analyzed for cytokines after treatment with native RgpA and adjuvant (test), or adjuvant and saline alone (controls). Mice were also immunized with recombinant RgpA after being orally infected with P. gingivalis. After 6 wk, serum was examined for anti-P. gingivalis IgG1 and IgG2a titers and for alveolar bone resorption. RESULTS Immunization with native RgpA shifted the immune response toward an anti-inflammatory response as demonstrated by decreased proinflammatory cytokine IL-1β production and greater anti-inflammatory cytokine IL-4 in chamber exudates. Systemically, immunization with recombinant RgpA peptide prevented alveolar bone loss by 50%, similar to immunization with heat-killed whole bacteria. Furthermore, recombinant RgpA shifted the humoral response toward high IgG1 and low IgG2a titers, representing an in vivo anti-inflammatory response. CONCLUSIONS The present study demonstrates the potential of RgpA to shift the early local immune response toward an anti-inflammatory response while vaccination with recRgpA protected against P. gingivalis-induced periodontitis.
Collapse
Affiliation(s)
- A Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Y Houri-Haddad
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - L Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7:53. [PMID: 26903954 PMCID: PMC4746253 DOI: 10.3389/fmicb.2016.00053] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Sunway Campus Subang Jaya, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Bao K, Papadimitropoulos A, Akgül B, Belibasakis GN, Bostanci N. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system. Virulence 2015; 6:265-73. [PMID: 25587671 PMCID: PMC4601317 DOI: 10.4161/21505594.2014.978721] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontal infection involves a complex interplay between oral biofilms, gingival tissues and cells of the immune system in a dynamic microenvironment. A humanized in vitro model that reduces the need for experimental animal models, while recapitulating key biological events in a periodontal pocket, would constitute a technical advancement in the study of periodontal disease. The aim of this study was to use a dynamic perfusion bioreactor in order to develop a gingival epithelial-fibroblast-monocyte organotypic co-culture on collagen sponges. An 11 species subgingival biofilm was used to challenge the generated tissue in the bioreactor for a period of 24 h. The histological and scanning electron microscopy analysis displayed an epithelial-like layer on the surface of the collagen sponge, supported by the underlying ingrowth of gingival fibroblasts, while monocytic cells were also found within the sponge mass. Bacterial quantification of the biofilm showed that in the presence of the organotypic tissue, the growth of selected biofilm species, especially Campylobacter rectus, Actinomyces oris, Streptococcus anginosus, Veillonella dispar, and Porphyromonas gingivalis, was suppressed, indicating a potential antimicrobial effect by the tissue. Multiplex immunoassay analysis of cytokine secretion showed that interleukin (IL)-1 β, IL-2, IL-4, and tumor necrosis factor (TNF)-α levels in cell culture supernatants were significantly up-regulated in presence of the biofilm, indicating a positive inflammatory response of the organotypic tissue to the biofilm challenge. In conclusion, this novel host-biofilm interaction organotypic model might resemble the periodontal pocket and have an important impact on the study of periodontal infections, by minimizing the need for the use of experimental animal models.
Collapse
Affiliation(s)
- Kai Bao
- a Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich ; Zürich , Switzerland
| | | | | | | | | |
Collapse
|
19
|
Bao K, Belibasakis GN, Thurnheer T, Aduse-Opoku J, Curtis MA, Bostanci N. Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol 2014; 14:258. [PMID: 25270662 PMCID: PMC4189655 DOI: 10.1186/s12866-014-0258-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023] Open
Abstract
Background Periodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 “subgingival” bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition. Results Following 64 h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant. Conclusions The gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola.
Collapse
|
20
|
Evaluation on potential contributions of protease activated receptors related mediators in allergic inflammation. Mediators Inflamm 2014; 2014:829068. [PMID: 24876677 PMCID: PMC4021743 DOI: 10.1155/2014/829068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.
Collapse
|
21
|
Wilensky A, Polak D, Houri-Haddad Y, Shapira L. The role of RgpA in the pathogenicity of Porphyromonas gingivalis in the murine periodontitis model. J Clin Periodontol 2013; 40:924-32. [PMID: 23909600 DOI: 10.1111/jcpe.12139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
AIM To investigate the in vivo role of gingipains in Porphyromonas gingivalis' virulence, and suggest a possible host mechanisms through which the bacteria cause alveolar bone loss. MATERIALS AND METHODS Mice were orally infected with P. gingivalis wild type, or the gingipains mutants (RgpA⁻, Kgp⁻, RgpA⁻/Kgp⁻). Mice were analysed for alveolar bone loss using micro-computed tomography. The molecular effects of the proteases were evaluated using the subcutaneous chamber model. Mice were infected with P. gingivalis wild type or mutants. Exudates were analysed for cytokine and leukocytes levels, in vivo phagocytosis, P. gingivalis survival and serum anti-P. gingivalis IgG titres. RESULTS Only RgpA-expressing bacteria induced significantly alveolar bone loss, and suppressed phagocytosis resulting in increased survival of P. gingivalis in the chamber exudates. In addition, RgpA-expressing bacteria induced higher levels of leukocytes and cytokines 2 h post-infection, and reduced levels of serum anti-P. gingivalis IgG titres 7 days post-infection. CONCLUSIONS Our findings showed that elimination of RgpA from P. gingivalis diminished inflammation, but augmented phagocytosis and antibody titres, coincidental with reduced alveolar bone loss. These findings support the hypothesis that RgpA is a critical virulence factor in the pathogenesis of experimental periodontitis in mice.
Collapse
Affiliation(s)
- Asaf Wilensky
- Department of Periodontology, School of Dental Medicine, Hebrew University and Hadassah, Jesusalem, Israel
| | | | | | | |
Collapse
|
22
|
Totaro MC, Cattani P, Ria F, Tolusso B, Gremese E, Fedele AL, D'Onghia S, Marchetti S, Di Sante G, Canestri S, Ferraccioli G. Porphyromonas gingivalis and the pathogenesis of rheumatoid arthritis: analysis of various compartments including the synovial tissue. Arthritis Res Ther 2013; 15:R66. [PMID: 23777892 PMCID: PMC4060366 DOI: 10.1186/ar4243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 06/18/2013] [Indexed: 01/02/2023] Open
Abstract
Introduction We evaluated the presence of Porphyromonas gingivalis (Pg) DNA in the synovial tissue through synovial biopsy and in other compartments of rheumatoid arthritis (RA) patients in comparison with patients affected by other arthritides. Possible links with clinical, immunologic and genetic features were assessed. Methods Peripheral blood (PB), sub-gingival dental plaque, synovial fluid (SF) and synovial tissue samples were collected from 69 patients with active knee arthritis (32 with RA and 37 with other arthritides, of which 14 had undifferentiated peripheral inflammatory arthritis - UPIA). Demographic, clinical, laboratory and immunological data were recorded. The presence of Pg DNA was evaluated through PCR. The HLA-DR haplotype was assessed for 45 patients with RA and UPIA. Results No differences arose in the positivity for Pg DNA in the sub-gingival plaque, PB and SF samples between RA and the cohort of other arthritides. Full PB samples showed a higher positivity for Pg DNA than plasma samples (11.8% vs. 1.5%, P = 0.04). Patients with RA showed a higher positivity for Pg DNA in the synovial tissue compared to controls (33.3% vs. 5.9%, P <0.01). UPIA and RA patients carrying the HLA DRB1*04 allele showed a higher positivity for Pg DNA in the synovial tissue compared to patients negative for the allele (57.1% vs. 16.7%, P = 0.04). RA patients positive for Pg DNA in the sub-gingival plaque had a lower disease duration and a higher peripheral blood leucocyte and neutrophil count. The presence of Pg DNA did not influence disease activity, disease disability or positivity for autoantibodies. Conclusions The presence of Pg DNA in the synovial tissue of RA patients suggests a pathogenic role of the bacterium. The higher positivity of Pg DNA in full peripheral blood and synovial tissue samples compared to plasma and synovial fluid suggests a possible intracellular localization of Pg, in particular in patients positive for HLA-DR4.
Collapse
|
23
|
Peyyala R, Ebersole JL. Multispecies biofilms and host responses: "discriminating the trees from the forest". Cytokine 2012; 61:15-25. [PMID: 23141757 DOI: 10.1016/j.cyto.2012.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/28/2012] [Accepted: 10/04/2012] [Indexed: 02/07/2023]
Abstract
Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the three-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into these processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms.
Collapse
Affiliation(s)
- R Peyyala
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, United States
| | | |
Collapse
|
24
|
Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 2012; 333:1-9. [PMID: 22530835 DOI: 10.1111/j.1574-6968.2012.02579.x] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis, an inflammatory disease that destroys the tissues supporting the tooth, eventually leading to tooth loss. Porphyromonas gingivalis has can locally invade periodontal tissues and evade the host defence mechanisms. In doing so, it utilizes a panel of virulence factors that cause deregulation of the innate immune and inflammatory responses. The present review discusses the invasive and evasive strategies of P. gingivalis and the role of its major virulence factors in these, namely lipopolysaccharide, capsule, gingipains and fimbriae. Moreover, the role of P. gingivalis as a 'keystone' biofilm species in orchestrating a host response, is highlighted.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
25
|
Rutger Persson G. Rheumatoid arthritis and periodontitis - inflammatory and infectious connections. Review of the literature. J Oral Microbiol 2012; 4:JOM-4-11829. [PMID: 22347541 PMCID: PMC3280043 DOI: 10.3402/jom.v4i0.11829] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 12/20/2022] Open
Abstract
An association between oral disease/periodontitis and rheumatoid arthritis (RA) has been considered since the early 1820s. The early treatment was tooth eradication. Epidemiological studies suggest that the prevalence of RA and periodontitis may be similar and about 5% of the population are aged 50 years or older. RA is considered as an autoimmune disease whereas periodontitis has an infectious etiology with a complex inflammatory response. Both diseases are chronic and may present with bursts of disease activity. Association studies have suggested odds ratios of having RA and periodontitis varying from 1.8:1 (95% CI: 1.0–3.2, NS) to 8:1 (95% CI: 2.9–22.1, p<0.001). Genetic factors are driving the host responses in both RA and periodontitis. Tumor necrosis factor-α, a proinflammatory cytokine, regulates a cascade of inflammatory events in both RA and periodontitis. Porphyromonas gingivalis is a common pathogen in periodontal infection. P. gingivalis has also been identified in synovial fluid. The specific abilities of P. gingivalis to citrullinate host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains can induce autoimmune responses in RA through development of anticyclic citrullinated peptide antibodies. In addition, P. gingivalis carries heat shock proteins (HSPs) that may also trigger autoimmune responses in subjects with RA. Data suggest that periodontal therapies combined with routine RA treatments further improve RA status.
Collapse
Affiliation(s)
- G Rutger Persson
- Department of Periodontics and Department of Oral Medicine, University of Washington, Seattle, WA, USA; Oral Health Sciences, University of Kristianstad, Kristianstad, Sweden; and Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Fagundes JAG, Monoo LD, Euzébio Alves VT, Pannuti CM, Cortelli SC, Cortelli JR, Holzhausen M. Porphyromonas Gingivalisis Associated With Protease-Activated Receptor-2 Upregulation in Chronic Periodontitis. J Periodontol 2011; 82:1596-601. [DOI: 10.1902/jop.2011.110073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 2010; 54:15-44. [PMID: 20712631 DOI: 10.1111/j.1600-0757.2010.00377.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|