1
|
Jana S, Banerjee S, Baidya SK, Ghosh B, Jha T, Adhikari N. A combined ligand-based and structure-based in silico molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors. J Biomol Struct Dyn 2025; 43:2423-2439. [PMID: 38165455 DOI: 10.1080/07391102.2023.2298394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024]
Abstract
Human meprin β is a Zn2+-containing multidomain metalloprotease enzyme that belongs to the astacin family of the metzincin endopeptidase superfamily. Meprin β, with its diverse tissue expression pattern and wide substrate specificity, plays a significant role in various biological processes, including regulation of IL-6R pathways, lung fibrosis, collagen deposition, cellular migration, neurotoxic amyloid β levels, and inflammation. Again, meprin β is involved in Alzheimer's disease, hyperkeratosis, glomerulonephritis, diabetic kidney injury, inflammatory bowel disease, and cancer. Despite a crucial role in diverse disease processes, no such promising inhibitors of meprin β are marketed to date. Thus, it is an unmet requirement to find novel promising meprin β inhibitors that hold promise as potential therapeutics. In this study, a series of arylsulfonamide and tertiary amine-based hydroxamate derivatives as meprin β inhibitors has been analyzed through ligand-based and structure-based in silico approaches to pinpoint their structural and physiochemical requirements crucial for exerting higher inhibitory potential. This study identified different crucial structural features such as arylcarboxylic acid, sulfonamide, and arylsulfonamide moieties, as well as hydrogen bond donor and hydrophobicity, inevitable for exerting higher meprin β inhibition, providing valuable insight for their further future development.
Collapse
Affiliation(s)
- Sandeep Jana
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
2
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Eltaib L, Alzain AA. Discovery of dual-target natural inhibitors of meprins α and β metalloproteases for inflammation regulation: pharmacophore modelling, molecular docking, ADME prediction, and molecular dynamics studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-23. [PMID: 37955603 DOI: 10.1080/1062936x.2023.2277425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Meprins, zinc-dependent metalloproteinases belonging to the metzincin family, have been associated with various inflammatory diseases due to their abnormal expression and activity. In this study, we utilized pharmacophore modelling to identify crucial features for discovering potential dual inhibitors targeting meprins α and β. We screened four pharmacophoric features against a library of 270,540 natural compounds from the Zinc database, resulting in 84,092 matching compounds. Molecular docking was then performed on these compounds, targeting the active sites of meprins α and β. Docking results revealed six compounds capable of interacting with both isoforms, with binding affinities ranging from -10.0 to -10.5 kcal/mol and -6.9 to -9.9 kcal/mol for meprin α and β, respectively. Among these compounds, ZINC000008790788 and ZINC000095099469 displayed superior docking scores and MM-GBSA binding free energy compared to reference ligands. Furthermore, these two compounds exhibited acceptable predicted pharmacokinetic properties and stable interactions with meprins α and β during molecular dynamics simulations. This study presents a comprehensive approach for identifying potential dual inhibitors of meprin α and β, offering insights into the development of therapeutic interventions for inflammatory diseases associated with meprin dysregulation.
Collapse
Affiliation(s)
- L Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
4
|
Bülck C, Nyström EE, Koudelka T, Mannbar-Frahm M, Andresen G, Radhouani M, Tran F, Scharfenberg F, Schrell F, Armbrust F, Dahlke E, Zhao B, Vervaeke A, Theilig F, Rosenstiel P, Starkl P, Rosshart SP, Fickenscher H, Tholey A, Hansson GC, Becker-Pauly C. Proteolytic processing of galectin-3 by meprin metalloproteases is crucial for host-microbiome homeostasis. SCIENCE ADVANCES 2023; 9:eadf4055. [PMID: 37000885 PMCID: PMC10065446 DOI: 10.1126/sciadv.adf4055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The metalloproteases meprin α and meprin β are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin β form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/β heterodimers. Galectin-3-deficient and meprin α/β double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/β heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/β heterodimers may play a key role in colon host-microbiome homeostasis.
Collapse
Affiliation(s)
- Cynthia Bülck
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | | | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, 24188 Kiel, Germany
| | - Michael Mannbar-Frahm
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Gerrit Andresen
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Mariem Radhouani
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | | | | - Fred Armbrust
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Eileen Dahlke
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | - Bei Zhao
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alex Vervaeke
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Philipp Starkl
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan P. Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Helmut Fickenscher
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, 24188 Kiel, Germany
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | |
Collapse
|
5
|
Bayly-Jones C, Lupton CJ, Fritz C, Venugopal H, Ramsbeck D, Wermann M, Jäger C, de Marco A, Schilling S, Schlenzig D, Whisstock JC. Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor. Nat Commun 2022; 13:6178. [PMID: 36261433 PMCID: PMC9581967 DOI: 10.1038/s41467-022-33893-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The zinc-dependent metalloprotease meprin α is predominantly expressed in the brush border membrane of proximal tubules in the kidney and enterocytes in the small intestine and colon. In normal tissue homeostasis meprin α performs key roles in inflammation, immunity, and extracellular matrix remodelling. Dysregulated meprin α is associated with acute kidney injury, sepsis, urinary tract infection, metastatic colorectal carcinoma, and inflammatory bowel disease. Accordingly, meprin α is the target of drug discovery programs. In contrast to meprin β, meprin α is secreted into the extracellular space, whereupon it oligomerises to form giant assemblies and is the largest extracellular protease identified to date (~6 MDa). Here, using cryo-electron microscopy, we determine the high-resolution structure of the zymogen and mature form of meprin α, as well as the structure of the active form in complex with a prototype small molecule inhibitor and human fetuin-B. Our data reveal that meprin α forms a giant, flexible, left-handed helical assembly of roughly 22 nm in diameter. We find that oligomerisation improves proteolytic and thermal stability but does not impact substrate specificity or enzymatic activity. Furthermore, structural comparison with meprin β reveal unique features of the active site of meprin α, and helical assembly more broadly.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Claudia Fritz
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, 3800, VIC, Australia
| | - Daniel Ramsbeck
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Michael Wermann
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | | | - Alex de Marco
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Stephan Schilling
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
- Hochschule Anhalt, University of Applied Sciences, Köthen, Germany
| | - Dagmar Schlenzig
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany.
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.
- EMBL Australia, Monash University, Melbourne, VIC, 3800, Australia.
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
6
|
Regulation of meprin metalloproteases in mucosal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119158. [PMID: 34626680 DOI: 10.1016/j.bbamcr.2021.119158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Mucus is covering the entire epithelium of the gastrointestinal tract (GIT), building the interface for the symbiosis between microorganisms and their host. Hence, a disrupted mucosal barrier or alterations of proper mucus composition, including the gut microbiota, can cause severe infection and inflammation. Meprin metalloproteases are well-known to cleave various pro-inflammatory molecules, contributing to the onset and progression of pathological conditions including sepsis, pulmonary hypertension or inflammatory bowel disease (IBD). Moreover, meprins have an impact on migration and infiltration of immune cells like monocytes or leukocytes during intestinal inflammation by cleaving tight junction proteins or cell adhesion molecules, thereby disrupting epithelial cell barrier and promoting transendothelial cell migration. Interestingly, both meprin α and meprin β are susceptibility genes for IBD. However, both genes are significantly downregulated in inflamed intestinal tissue in contrast to healthy donors. Therefore, a detailed understanding of the underlying molecular mechanisms is the basis for developing new and effective therapies against manifold pathologies like IBD. This review focuses on the regulation of meprin metalloproteases and its impact on physiological and pathological conditions related to mucosal homeostasis.
Collapse
|
7
|
Structure and Dynamics of Meprin β in Complex with a Hydroxamate-Based Inhibitor. Int J Mol Sci 2021; 22:ijms22115651. [PMID: 34073350 PMCID: PMC8197800 DOI: 10.3390/ijms22115651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
The astacin protease Meprin β represents an emerging target for drug development due to its potential involvement in disorders such as acute and chronic kidney injury and fibrosis. Here, we elaborate on the structural basis of inhibition by a specific Meprin β inhibitor. Our analysis of the crystal structure suggests different binding modes of the inhibitor to the active site. This flexibility is caused, at least in part, by movement of the C-terminal region of the protease domain (CTD). The CTD movement narrows the active site cleft upon inhibitor binding. Compared with other astacin proteases, among these the highly homologous isoenzyme Meprin α, differences in the subsites account for the unique selectivity of the inhibitor. Although the inhibitor shows substantial flexibility in orientation within the active site, the structural data as well as binding analyses, including molecular dynamics simulations, support a contribution of electrostatic interactions, presumably by arginine residues, to binding and specificity. Collectively, the results presented here and previously support an induced fit and substantial movement of the CTD upon ligand binding and, possibly, during catalysis. To the best of our knowledge, we here present the first structure of a Meprin β holoenzyme containing a zinc ion and a specific inhibitor bound to the active site. The structural data will guide rational drug design and the discovery of highly potent Meprin inhibitors.
Collapse
|
8
|
Bond JS. To be there when the picture is being painted. J Biol Chem 2020; 295:15957-15973. [PMID: 33219166 DOI: 10.1074/jbc.x120.016150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is nothing quite like the excitement of discovery in science-of finding something no one else knew and seeing a story unfold. One has to be part of an emerging picture to feel the elation. These moments in a lifetime are few and far between, but they fuel enthusiasm and keep one going. They are embedded in struggles and joys of everyday life, years of establishing what Louis Pasteur called "the prepared mind," working with mentors, trainees, and colleagues, failures and successes. This article recalls 1) how I got to be a biochemist; 2) my contributions as an educator and researcher, especially regarding meprin metalloproteases; and 3) my participation in communities of science. Perhaps my reflections will help an aspiring scientist see how fulfilling a career in science can be.
Collapse
Affiliation(s)
- Judith S Bond
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Abstract
A crucial step for tumor cell extravasation and metastasis is the migration through the extracellular matrix, which requires proteolytic activity. Hence, proteases, particularly matrix metalloproteases (MMPs), have been discussed as therapeutic targets and their inhibition should diminish tumor growth and metastasis. The metalloproteases meprin α and meprin β are highly abundant on intestinal enterocytes and their expression was associated with different stages of colorectal cancer. Due to their ability to cleave extracellular matrix (ECM) components, they were suggested as pro-tumorigenic enzymes. Additionally, both meprins were shown to have pro-inflammatory activity by cleaving cytokines and their receptors, which correlates with chronic intestinal inflammation and associated conditions. On the other hand, meprin β was identified as an essential enzyme for the detachment and renewal of the intestinal mucus, important to prevent bacterial overgrowth and infection. Considering this, it is hard to estimate whether high activity of meprins is generally detrimental or if these enzymes have also protective functions in certain cancer types. For instance, for colorectal cancer, patients with high meprin β expression in tumor tissue exhibit a better survival prognosis, which is completely different to prostate cancer. This demonstrates that the very same enzyme may have contrary effects on tumor initiation and growth, depending on its tissue and subcellular localization. Hence, precise knowledge about proteolytic enzymes is required to design the most efficient therapeutic options for cancer treatment. In this review, we summarize the current findings on meprins' functions, expression, and cancer-associated variants with possible implications for tumor progression and metastasis.
Collapse
|
10
|
Schäffler H, Li W, Helm O, Krüger S, Böger C, Peters F, Röcken C, Sebens S, Lucius R, Becker-Pauly C, Arnold P. The cancer-associated meprin β variant G32R provides an additional activation site and promotes cancer cell invasion. J Cell Sci 2019; 132:jcs.220665. [PMID: 31076514 DOI: 10.1242/jcs.220665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
The extracellular metalloprotease meprin β is expressed as a homodimer and is primarily membrane bound. Meprin β can be released from the cell surface by its known sheddases ADAM10 and ADAM17. Activation of pro-meprin β at the cell surface prevents its shedding, thereby stabilizing its proteolytic activity at the plasma membrane. We show that a single amino acid exchange variant (G32R) of meprin β, identified in endometrium cancer, is more active against a peptide substrate and the IL-6 receptor than wild-type meprin β. We demonstrate that the change to an arginine residue at position 32 represents an additional activation site used by furin-like proteases in the Golgi, which consequently leads to reduced shedding by ADAM17. We investigated this meprin β G32R variant to assess cell proliferation, invasion through a collagen IV matrix and outgrowth from tumor spheroids. We found that increased meprin β G32R activity at the cell surface reduces cell proliferation, but increases cell invasion.
Collapse
Affiliation(s)
| | - Wenjia Li
- Anatomical Institute, Otto-Hahn Platz 8, 24118 Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Sandra Krüger
- Dept. of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3/14, 24105 Kiel, Germany
| | - Christine Böger
- Dept. of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3/14, 24105 Kiel, Germany
| | - Florian Peters
- Biochemical Institute, Otto-Hahn Platz 9, 24118 Kiel, Germany
| | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3/14, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Ralph Lucius
- Anatomical Institute, Otto-Hahn Platz 8, 24118 Kiel, Germany
| | | | - Philipp Arnold
- Anatomical Institute, Otto-Hahn Platz 8, 24118 Kiel, Germany
| |
Collapse
|
11
|
Abstract
The Journal of Biological Chemistry (JBC) has been a major vehicle for disseminating and recording the discovery and characterization of proteolytic enzymes. The pace of discovery in the protease field accelerated during the 1971-2010 period that Dr. Herb Tabor served as the JBC's editor-in-chief. When he began his tenure, the fine structure and kinetics of only a few proteases were known; now thousands of proteases have been characterized, and over 600 genes for proteases have been identified in the human genome. In this review, besides reflecting on Dr. Tabor's invaluable contributions to the JBC and the American Society for Biochemistry and Molecular Biology (ASBMB), I endeavor to provide an overview of the extensive history of protease research, highlighting a few discoveries and roles of proteases in vivo In addition, metalloproteinases, particularly meprins of the astacin family, will be discussed with regard to structural characteristics, regulation, mechanisms of action, and roles in health and disease. Proteases and protein degradation play crucial roles in living systems, and I briefly address future directions in this highly diverse and thriving research area.
Collapse
Affiliation(s)
- Judith S Bond
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
12
|
Peters F, Scharfenberg F, Colmorgen C, Armbrust F, Wichert R, Arnold P, Potempa B, Potempa J, Pietrzik CU, Häsler R, Rosenstiel P, Becker-Pauly C. Tethering soluble meprin α in an enzyme complex to the cell surface affects IBD-associated genes. FASEB J 2019; 33:7490-7504. [PMID: 30916990 DOI: 10.1096/fj.201802391r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biologic activity of proteases is mainly characterized by the substrate specificity, tissue distribution, and cellular localization. The human metalloproteases meprin α and meprin β share 41% sequence identity and exhibit a similar cleavage specificity with a preference for negatively charged amino acids. However, shedding of meprin α by furin on the secretory pathway makes it a secreted enzyme in comparison with the membrane-bound meprin β. In this study, we identified human meprin α and meprin β as forming covalently linked membrane-tethered heterodimers in the early endoplasmic reticulum, thereby preventing furin-mediated secretion of meprin α. Within this newly formed enzyme complex, meprin α was able to be activated on the cell surface and detected by cleavage of a novel specific fluorogenic peptide substrate. However, the known meprin β substrates amyloid precursor protein and CD99 were not shed by membrane-tethered meprin α. On the other hand, being linked to meprin α, activation of or substrate cleavage by meprin β on the cell surface was not altered. Interestingly, proteolytic activity of both proteases was increased in the heteromeric complex, indicating an increased proteolytic potential at the plasma membrane. Because meprins are susceptibility genes for inflammatory bowel disease (IBD), and to investigate the physiologic impact of the enzyme complex, we performed transcriptome analyses of intestinal mucosa from meprin-knockout mice. Comparison of the transcriptional gene analysis data with gene analyses of IBD patients revealed that different gene subsets were dysregulated if meprin α was expressed alone or in the enzyme complex, demonstrating the physiologic and pathophysiological relevance of the meprin heterodimer formation.-Peters, F., Scharfenberg, F., Colmorgen, C., Armbrust, F., Wichert, R., Arnold, P., Potempa, B., Potempa, J., Pietrzik, C. U., Häsler, R., Rosenstiel, P., Becker-Pauly, C. Tethering soluble meprin α in an enzyme complex to the cell surface affects IBD-associated genes.
Collapse
Affiliation(s)
- Florian Peters
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Cynthia Colmorgen
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Fred Armbrust
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Rielana Wichert
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | | | - Barbara Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of Mainz, Mainz, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Wichert R, Ermund A, Schmidt S, Schweinlin M, Ksiazek M, Arnold P, Knittler K, Wilkens F, Potempa B, Rabe B, Stirnberg M, Lucius R, Bartsch JW, Nikolaus S, Falk-Paulsen M, Rosenstiel P, Metzger M, Rose-John S, Potempa J, Hansson GC, Dempsey PJ, Becker-Pauly C. Mucus Detachment by Host Metalloprotease Meprin β Requires Shedding of Its Inactive Pro-form, which Is Abrogated by the Pathogenic Protease RgpB. Cell Rep 2017; 21:2090-2103. [PMID: 29166602 DOI: 10.1016/j.celrep.2017.10.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
The host metalloprotease meprin β is required for mucin 2 (MUC2) cleavage, which drives intestinal mucus detachment and prevents bacterial overgrowth. To gain access to the cleavage site in MUC2, meprin β must be proteolytically shed from epithelial cells. Hence, regulation of meprin β shedding and activation is important for physiological and pathophysiological conditions. Here, we demonstrate that meprin β activation and shedding are mutually exclusive events. Employing ex vivo small intestinal organoid and cell culture experiments, we found that ADAM-mediated shedding is restricted to the inactive pro-form of meprin β and is completely inhibited upon its conversion to the active form at the cell surface. This strict regulation of meprin β activity can be overridden by pathogens, as demonstrated for the bacterial protease Arg-gingipain (RgpB). This secreted cysteine protease potently converts membrane-bound meprin β into its active form, impairing meprin β shedding and its function as a mucus-detaching protease.
Collapse
Affiliation(s)
- Rielana Wichert
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | | | | | - Barbara Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Björn Rabe
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | - Ralph Lucius
- Anatomical Institute, University of Kiel, Kiel, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Susanna Nikolaus
- I. Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marco Metzger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Translational Center "Regenerative Therapies for Oncology and Musculoskeletal Diseases" - Würzburg Branch, Würzburg, Germany
| | | | - Jan Potempa
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, USA
| | | |
Collapse
|
14
|
Arnold P, Schmidt F, Prox J, Zunke F, Pietrzik C, Lucius R, Becker-Pauly C. Calcium negatively regulates meprin β activity and attenuates substrate cleavage. FASEB J 2015; 29:3549-57. [DOI: 10.1096/fj.15-272310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
|
15
|
Herzog C, Marisiddaiah R, Haun RS, Kaushal GP. Basement membrane protein nidogen-1 is a target of meprin β in cisplatin nephrotoxicity. Toxicol Lett 2015; 236:110-6. [PMID: 25957482 DOI: 10.1016/j.toxlet.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 01/08/2023]
Abstract
Meprins are oligomeric metalloproteinases that are abundantly expressed in the brush-border membranes of renal proximal tubules. During acute kidney injury (AKI) induced by cisplatin or ischemia-reperfusion, membrane-bound meprins are shed and their localization is altered from the apical membranes toward the basolateral surface of the proximal tubules. Meprins are capable of cleaving basement membrane proteins in vitro, however, it is not known whether meprins are able to degrade extracellular matrix proteins under pathophysiological conditions in vivo. The present study demonstrates that a basement membrane protein, nidogen-1, is cleaved and excreted in the urine of mice subjected to cisplatin-induced nephrotoxicity, a model of AKI. Cleaved nidogen-1 was not detected in the urine of untreated mice, but during the progression of cisplatin nephrotoxicity, the excretion of cleaved nidogen-1 increased in a time-dependent manner. The meprin inhibitor actinonin markedly prevented urinary excretion of the cleaved nidogen-1. In addition, meprin β-deficient mice, but not meprin α-deficient mice, subjected to cisplatin nephrotoxicity significantly suppressed excretion of cleaved nidogen-1, further suggesting that meprin β is involved in the cleavage of nidogen-1. These studies provide strong evidence for a pathophysiological link between meprin β and urinary excretion of cleaved nidogen-1 during cisplatin-induced AKI.
Collapse
Affiliation(s)
- Christian Herzog
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR 72205, USA
| | - Raju Marisiddaiah
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR 72205, USA
| | - Randy S Haun
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Little Rock, AR 72205, USA
| | - Gur P Kaushal
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Biochemistry, Little Rock, AR 72205, USA.
| |
Collapse
|
16
|
The metalloproteases meprin α and meprin β: unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem J 2013; 450:253-64. [PMID: 23410038 PMCID: PMC3573791 DOI: 10.1042/bj20121751] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The metalloproteases meprin α and meprin β exhibit structural and functional features that are unique among all extracellular proteases. Although meprins were discovered more than 30 years ago, their precise substrates and physiological roles have been elusive. Both enzymes were originally found to be highly expressed in kidney and intestine, which focused research on these particular tissues and associated pathologies. Only recently it has become evident that meprins exhibit a much broader expression pattern, implicating functions in angiogenesis, cancer, inflammation, fibrosis and neurodegenerative diseases. Different animal models, as well as proteomics approaches for the identification of protease substrates, have helped to reveal more precise molecular signalling events mediated by meprin activity, such as activation and release of pro-inflammatory cytokines. APP (amyloid precursor protein) is cleaved by meprin β in vivo, reminiscent of the β-secretase BACE1 (β-site APP-cleaving enzyme 1). The subsequent release of Aβ (amyloid β) peptides is thought to be the major cause of the neurodegenerative Alzheimer's disease. On the other hand, ADAM10 (a disintegrin and metalloprotease domain 10), which is the constitutive α-secretase, was shown to be activated by meprin β, which is itself shed from the cell surface by ADAM10. In skin, both meprins are overexpressed in fibrotic tumours, characterized by massive accumulation of fibrillar collagens. Indeed, procollagen III is processed to its mature form by meprin α and meprin β, an essential step in collagen fibril assembly. The recently solved crystal structure of meprin β and the unique cleavage specificity of these proteases identified by proteomics will help to generate specific inhibitors that could be used as therapeutics to target meprins under certain pathological conditions.
Collapse
|
17
|
Kaushal GP, Haun RS, Herzog C, Shah SV. Meprin A metalloproteinase and its role in acute kidney injury. Am J Physiol Renal Physiol 2013; 304:F1150-8. [PMID: 23427141 DOI: 10.1152/ajprenal.00014.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meprin A, composed of α- and β-subunits, is a membrane-associated neutral metalloendoprotease that belongs to the astacin family of zinc endopeptidases. It was first discovered as an azocasein and benzoyl-l-tyrosyl-p-aminobenzoic acid hydrolase in the brush-border membranes of proximal tubules and intestines. Meprin isoforms are now found to be widely distributed in various organs (kidney, intestines, leukocytes, skin, bladder, and a variety of cancer cells) and are capable of hydrolyzing and processing a large number of substrates, including extracellular matrix proteins, cytokines, adherens junction proteins, hormones, bioactive peptides, and cell surface proteins. The ability of meprin A to cleave various substrates sheds new light on the functional properties of this enzyme, including matrix remodeling, inflammation, and cell-cell and cell-matrix processes. Following ischemia-reperfusion (IR)- and cisplatin-induced acute kidney injury (AKI), meprin A is redistributed toward the basolateral plasma membrane, and the cleaved form of meprin A is excreted in the urine. These studies suggest that altered localization and shedding of meprin A in places other than the apical membranes may be deleterious in vivo in acute tubular injury. These studies also provide new insight into the importance of a sheddase involved in the release of membrane-associated meprin A under pathological conditions. Meprin A is injurious to the kidney during AKI, as meprin A-knockout mice and meprin inhibition provide protective roles and improve renal function. Meprin A, therefore, plays an important role in AKI and potentially is a unique target for therapeutic intervention during AKI.
Collapse
Affiliation(s)
- Gur P Kaushal
- Central Arkansas Veterans Healthcare System, 4300 West 7th St., 111D/LR, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
18
|
Minder P, Bayha E, Becker-Pauly C, Sterchi EE. Meprinα transactivates the epidermal growth factor receptor (EGFR) via ligand shedding, thereby enhancing colorectal cancer cell proliferation and migration. J Biol Chem 2012; 287:35201-35211. [PMID: 22923609 DOI: 10.1074/jbc.m112.368910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.
Collapse
Affiliation(s)
- Petra Minder
- Institute of Biochemistry and Molecular Medicine,University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Elke Bayha
- Institute of Biochemistry and Molecular Medicine,University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Christian-Albrechts-University, Rudolf-Hoeber-Strasse 1, 24118 Kiel, Germany
| | - Erwin E Sterchi
- Institute of Biochemistry and Molecular Medicine,University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
19
|
Becker-Pauly C, Barré O, Schilling O, Auf dem Keller U, Ohler A, Broder C, Schütte A, Kappelhoff R, Stöcker W, Overall CM. Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol Cell Proteomics 2011; 10:M111.009233. [PMID: 21693781 PMCID: PMC3186203 DOI: 10.1074/mcp.m111.009233] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, meprin α, meprin β, and LAST_MAM proteases exhibit a strong preference for aspartate in the peptide (P)1′ position because of a conserved positively charged residue in the active cleft subsite (S)1′. This unparalleled specificity has not been found for other families of extracellular proteases. Interestingly, cleavage specificity is also strongly influenced by proline in P2′ or P3′ leading to a rare example of subsite cooperativity. This specificity characterizes the astacins as unique contributors to extracellular proteolysis that is corroborated by known cleavage sites in procollagen I+III, VEGF (vascular endothelial growth factor)-A, IL (interleukin)-1β, and pro-kallikrein 7. Indeed, cleavage sites in VEGF-A and pro-kallikrein 7 identified by terminal amine isotopic labeling of substrates matched those reported by Edman degradation. Moreover, the novel substrate FGF-19 was validated biochemically and shown to exhibit altered biological activity after meprin processing.
Collapse
Affiliation(s)
- Christoph Becker-Pauly
- Cell and Matrix Biology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schütte A, Hedrich J, Stöcker W, Becker-Pauly C. Let it flow: Morpholino knockdown in zebrafish embryos reveals a pro-angiogenic effect of the metalloprotease meprin alpha2. PLoS One 2010; 5:e8835. [PMID: 20098618 PMCID: PMC2809112 DOI: 10.1371/journal.pone.0008835] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/04/2010] [Indexed: 02/06/2023] Open
Abstract
Background Meprin metalloproteases are thought to be involved in basic physiological functions such as cell proliferation and tissue differentiation. However, the specific functions of these enzymes are still ambiguous, although a variety of growth factors and structural proteins have been identified as meprin substrates. The discovery of meprins α1, α2 and β in teleost fish provided the basis for uncovering their physiological functions by gene silencing in vivo. Methodology/Principal Findings A Morpholino knockdown in zebrafish embryos targeting meprin α1 and β mRNA caused defects in general tissue differentiation. But meprin α2 morphants were affected more specifically and showed severe failures in the formation of the vascular system provoking the hypothesis of a pro-angiogenic effect. The blood circulation was largely diminished resulting in erythrocyte accumulation. These phenotypes mimic a previously described VEGF-A morphant, revealing a possible role of meprin α in VEGF-A activation. Indeed, human recombinant meprin α processed the vascular endothelial growth factor-A (VEGF-A) specifically, revealing the same cleavage products detectable for VEGF from zebrafish whole lysate. Conclusions/Significance Our results demonstrate that meprin metalloproteases are important for cell differentiation and proliferation already during embryogenesis, predominantly by the activation of growth factors. Thus, we conclude that meprins play a significant role in VEGF-A processing, subsequently regulating angiogenesis. Therefore, meprin α might be a new therapeutic target in cardiovascular diseases or in tumor growth inhibition.
Collapse
Affiliation(s)
- André Schütte
- Institute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Jana Hedrich
- Institute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Walter Stöcker
- Institute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Becker-Pauly
- Institute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
21
|
Sterchi EE, Stöcker W, Bond JS. Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Aspects Med 2008; 29:309-28. [PMID: 18783725 PMCID: PMC2650038 DOI: 10.1016/j.mam.2008.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 12/13/2022]
Abstract
The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.
Collapse
Affiliation(s)
- Erwin E. Sterchi
- Institute of Biochemistry and Molecular Biology, University of Berne, CH-3012 Berne Switzerland. e-mail:
| | - Walter Stöcker
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, D-55099 Mainz, Germany. e-mail:
| | - Judith S. Bond
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey PA, USA 17033-0850. e-mail:
| |
Collapse
|
22
|
Ambort D, Stalder D, Lottaz D, Huguenin M, Oneda B, Heller M, Sterchi EE. A novel 2D-based approach to the discovery of candidate substrates for the metalloendopeptidase meprin. FEBS J 2008; 275:4490-509. [PMID: 18671728 DOI: 10.1111/j.1742-4658.2008.06592.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past, protease-substrate finding proved to be rather haphazard and was executed by in vitro cleavage assays using singly selected targets. In the present study, we report the first protease proteomic approach applied to meprin, an astacin-like metalloendopeptidase, to determine physiological substrates in a cell-based system of Madin-Darby canine kidney epithelial cells. A simple 2D IEF/SDS/PAGE-based image analysis procedure was designed to find candidate substrates in conditioned media of Madin-Darby canine kidney cells expressing meprin in zymogen or in active form. The method enabled the discovery of hitherto unknown meprin substrates with shortened (non-trypsin-generated) N- and C-terminally truncated cleavage products in peptide fragments upon LC-MS/MS analysis. Of 22 (17 nonredundant) candidate substrates identified, the proteolytic processing of vinculin, lysyl oxidase, collagen type V and annexin A1 was analysed by means of immunoblotting validation experiments. The classification of substrates into functional groups may propose new functions for meprins in the regulation of cell homeostasis and the extracellular environment, and in innate immunity, respectively.
Collapse
Affiliation(s)
- Daniel Ambort
- Institute of Biochemistry and Molecular Medicine, University of Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Oneda B, Lods N, Lottaz D, Becker-Pauly C, Stöcker W, Pippin J, Huguenin M, Ambort D, Marti HP, Sterchi EE. Metalloprotease meprin beta in rat kidney: glomerular localization and differential expression in glomerulonephritis. PLoS One 2008; 3:e2278. [PMID: 18509531 PMCID: PMC2386549 DOI: 10.1371/journal.pone.0002278] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/17/2008] [Indexed: 01/06/2023] Open
Abstract
Meprin (EC 3.4.24.18) is an oligomeric metalloendopeptidase found in microvillar membranes of kidney proximal tubular epithelial cells. Here, we present the first report on the expression of meprin beta in rat glomerular epithelial cells and suggest a potential involvement in experimental glomerular disease. We detected meprin beta in glomeruli of immunostained rat kidney sections on the protein level and by quantitative RT-PCR of laser-capture microdissected glomeruli on the mRNA level. Using immuno-gold staining we identified the membrane of podocyte foot processes as the main site of meprin beta expression. The glomerular meprin beta expression pattern was altered in anti-Thy 1.1 and passive Heymann nephritis (PHN). In addition, the meprin beta staining pattern in the latter was reminiscent of immunostaining with the sheep anti-Fx1A antiserum, commonly used in PHN induction. Using Western blot and immunoprecipitation assays we demonstrated that meprin beta is recognized by Fx1A antiserum and may therefore represent an auto-antigen in PHN. In anti-Thy 1.1 glomerulonephritis we observed a striking redistribution of meprin beta in tubular epithelial cells from the apical to the basolateral side and the cytosol. This might point to an involvement of meprin beta in this form of glomerulonephritis.
Collapse
Affiliation(s)
- Beatrice Oneda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Nadège Lods
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel Lottaz
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Walter Stöcker
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - Jeffrey Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| | - Maya Huguenin
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel Ambort
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Hans-Peter Marti
- Division of Nephrology/Hypertension, Inselspital, University of Bern, Bern, Switzerland
| | - Erwin E. Sterchi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Schütte A, Lottaz D, Sterchi EE, Stöcker W, Becker-Pauly C. Two alpha subunits and one beta subunit of meprin zinc-endopeptidases are differentially expressed in the zebrafish Danio rerio. Biol Chem 2007; 388:523-31. [PMID: 17516848 DOI: 10.1515/bc.2007.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Meprins are members of the astacin family of metalloproteases expressed in epithelial tissues, intestinal leukocytes and certain cancer cells. In mammals, there are two homologous subunits, which form complex glycosylated disulfide-bonded homo- and heterooligomers. Both human meprin alpha and meprin beta cleave several basement membrane components, suggesting a role in epithelial differentiation and cell migration. There is also evidence that meprin beta is involved in immune defence owing to its capability of activating interleukin-1beta and the diminished mobility of intestinal leukocytes in meprin beta-knockout mice. Here we show for the first time by reverse transcription PCR, immunoblotting and immunofluorescence analyses that meprins are expressed not only in mammals, but also in the zebrafish Danio rerio. In contrast to the human, mouse and rat enzymes, zebrafish meprins are encoded by three genes, corresponding to two homologous alpha subunits and one beta subunit. Observations at both the mRNA and protein level indicate a broad distribution of meprins in zebrafish. However, there are strikingly different expression patterns of the three subunits, which is consistent with meprin expression in mammals. Hence, D. rerio appears to be a suitable model to gain insight into the basic physiological functions of meprin metalloproteases.
Collapse
Affiliation(s)
- Andre Schütte
- 1Institute of Zoology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, Mainz, Germany
| | | | | | | | | |
Collapse
|
25
|
Becker-Pauly C, Höwel M, Walker T, Vlad A, Aufenvenne K, Oji V, Lottaz D, Sterchi EE, Debela M, Magdolen V, Traupe H, Stöcker W. The alpha and beta subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation. J Invest Dermatol 2007; 127:1115-25. [PMID: 17195012 DOI: 10.1038/sj.jid.5700675] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The zinc endopeptidase meprin (EC 3.4.24.18) is expressed in brush border membranes of intestine and kidney tubules, intestinal leukocytes, and certain cancer cells, suggesting a role in epithelial differentiation and cell migration. Here we show by RT-PCR and immunoblotting that meprin is also expressed in human skin. As visualized by immunohistochemistry, the two meprin subunits are localized in separate cell layers of the human epidermis. Meprin alpha is expressed in the stratum basale, whereas meprin beta is found in cells of the stratum granulosum just beneath the stratum corneum. In hyperproliferative epidermis such as in psoriasis vulgaris, meprin alpha showed a marked shift of expression from the basal to the uppermost layers of the epidermis. The expression patterns suggest distinct functions for the two subunits in skin. This assumption is supported by diverse effects of recombinant meprin alpha and beta on human adult low-calcium high-temperature keratinocytes. Here, beta induced a dramatic change in cell morphology and reduced the cell number, indicating a function in terminal differentiation, whereas meprin alpha did not affect cell viability, and may play a role in basal keratinocyte proliferation.
Collapse
Affiliation(s)
- Christoph Becker-Pauly
- Institute of Zoology, Johannes Gutenberg University, Johannes von Müller-Weg 6, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kruse MN, Becker C, Lottaz D, Köhler D, Yiallouros I, Krell HW, Sterchi EE, Stöcker W. Human meprin alpha and beta homo-oligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J 2004; 378:383-9. [PMID: 14594449 PMCID: PMC1223953 DOI: 10.1042/bj20031163] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 10/20/2003] [Accepted: 10/31/2003] [Indexed: 11/17/2022]
Abstract
Meprin is a zinc endopeptidase of the astacin family, which is expressed as a membrane-bound or secreted protein in mammalian epithelial cells, in intestinal leucocytes and in certain cancer cells. There are two types of meprin subunits, alpha and beta, which form disulphide-bonded homo- and hetero-oligomers. Here we report on the cleavage of matrix proteins by hmeprin (human meprin) alpha and beta homo-oligomers, and on the interactions of these enzymes with inhibitors. Despite their completely different cleavage specificities, both hmeprin alpha and beta are able to hydrolyse basement membrane components such as collagen IV, nidogen-1 and fibronectin. However, they are inactive against intact collagen I. Hence the matrix-cleaving activity of hmeprin resembles that of gelatinases rather than collagenases. Hmeprin is inhibited by hydroxamic acid derivatives such as batimastat, galardin and Pro-Leu-Gly-hydroxamate, by TAPI-0 (tumour necrosis factor alpha protease inhibitor-0) and TAPI-2, and by thiol-based compounds such as captopril. Therapeutic targets for these inhibitors are MMPs (matrix metalloproteases), TACE (tumour necrosis factor alpha-converting enzyme) and angiotensin-converting enzyme respectively. The most effective inhibitor of hmeprin alpha in the present study was the naturally occurring hydroxamate actinonin ( K(i)=20 nM). The marked variance in the cleavage specificities of hmeprin alpha and beta is reflected by their interaction with the TACE inhibitor Ro 32-7315, whose affinity for the beta subunit (IC50=1.6 mM) is weaker by three orders of magnitude than that for the alpha subunit ( K(i)=1.6 microM). MMP inhibitors such as the pyrimidine-2,4,6-trione derivative Ro 28-2653 that are more specific for gelatinases do not bind to hmeprin, presumably due to the subtle differences in the mode of zinc binding and active-site structure between the astacins and the MMPs.
Collapse
Affiliation(s)
- Markus-N Kruse
- Institute of Zoophysiology, University of Münster, Hindenburgplatz 55, D-48143 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hahn D, Pischitzis A, Roesmann S, Hansen MK, Leuenberger B, Luginbuehl U, Sterchi EE. Phorbol 12-myristate 13-acetate-induced ectodomain shedding and phosphorylation of the human meprinbeta metalloprotease. J Biol Chem 2003; 278:42829-39. [PMID: 12941954 DOI: 10.1074/jbc.m211169200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Shedding of proteins localized at the cell surface is an important regulatory step in the function of many of these proteins. Human meprin (N-benzoyl-l-tyrosyl-p-aminobenzoic acid hydrolase, PPH, EC 3.4.24.18) a zinc-metalloendopeptidase of the astacin family is an oligomeric protein complex of alpha- and beta-subunits and is expressed abundantly in the intestine and kidney as well as in leukocytes of the lamina propria and in cancer cells. In transfected cells intracellular proteolytic removal of the membrane anchor results in the secretion of the meprin alpha-subunit. In rats and mice, the beta-subunit exists in a membrane-anchored form. In contrast, human meprinbeta is constitutively converted into a secretable form. We now show that phorbol 12-myristate 13-acetate (PMA) stimulates an increased release of hmeprinbeta from transfected COS-1 cells, whereas hmeprinalpha secretion is not influenced. This stimulatory effect is inhibited by the protein kinase C (PKC) inhibitor staurosporine, suggesting that activation of PKC mediates PMA-induced hmeprinbeta shedding. The use of different protease inhibitors shows that two different metalloprotease activities are responsible for the constitutive and the PMA-stimulated hmeprinbeta shedding. We identified tumor necrosis factor alpha-converting enzyme (TACE or ADAM17) as the protease that mediates the PMA-induced release. We also demonstrate that hmeprinbeta is phosphorylated by PMA treatment on Ser687 within a PKC consensus sequence in the cytosolic domain of the protein. This phosphorylation of hmeprinbeta is not, however, implicated in the enhanced secretion by PMA treatment.
Collapse
Affiliation(s)
- Dagmar Hahn
- Institute of Biochemistry and Molecular Biology and Department of Pediatrics, Berne University, 3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Leuenberger B, Hahn D, Pischitzis A, Hansen MK, Sterchi EE. Human meprin beta: O-linked glycans in the intervening region of the type I membrane protein protect the C-terminal region from proteolytic cleavage and diminish its secretion. Biochem J 2003; 369:659-65. [PMID: 12387727 PMCID: PMC1223113 DOI: 10.1042/bj20021398] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 10/17/2002] [Accepted: 10/21/2002] [Indexed: 12/19/2022]
Abstract
Human meprin (hmeprin; N -benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase; EC 3.4.24.18) is a member of the astacin family of zinc metalloendopeptidases. The major site of expression is the brush border membrane of small intestinal and kidney epithelial cells. The enzyme is a type I integral membrane protein composed of two distinct subunits, alpha and beta, which are linked by disulphide bridges. The enzyme complex is attached to the plasma membrane only via the beta-subunit. The alpha-subunit is cleaved in the endoplasmic reticulum in a constitutive manner to remove the C-terminal membrane anchor which leads to secretion of the protein. While the beta-subunit of hmeprin remains largely attached to the brush-border membrane some proteolytic processing occurs intracellularly as well as at the cell surface and results in the release of this subunit from the cell. In the present paper, we report that the beta-subunit bears multiple O-linked sugar residues in the intervening domain. In contrast, the alpha-subunit does not contain O-linked oligosaccharides. Our results show that the O-linked carbohydrate side chains in hmeprinbeta are clustered around a 13 amino acid sequence that contains the main cleavage site for proteolytic processing of the subunit. Prevention of O-glycosylation by specific inhibitors leads to enhanced proteolytic processing and the consequence is an increased release of hmeprinbeta into the culture medium.
Collapse
Affiliation(s)
- Boris Leuenberger
- Institute of Biochemistry and Molecular Biology and Department of Pediatrics, Faculty of Medicine, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Rösmann S, Hahn D, Lottaz D, Kruse MN, Stöcker W, Sterchi EE. Activation of human meprin-alpha in a cell culture model of colorectal cancer is triggered by the plasminogen-activating system. J Biol Chem 2002; 277:40650-8. [PMID: 12189145 DOI: 10.1074/jbc.m206203200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of latent proenzymes is an important mechanism for the regulation of localized proteolytic activity. Human meprin-alpha, an astacin-like zinc metalloprotease expressed in normal colon epithelial cells, is secreted as a zymogen into the intestinal lumen. Here, meprin is activated after propeptide cleavage by trypsin. In contrast, colorectal cancer cells secrete meprin-alpha in a non-polarized way, leading to accumulation and increased activity of meprin-alpha in the tumor stroma. We have analyzed the activation mechanism of promeprin-alpha in colorectal cancer using a co-culture model of the intestinal mucosa composed of colorectal adenocarcinoma cells (Caco-2) cultivated on filter supports and intestinal fibroblasts grown in the companion dish. We provide evidence that meprin-alpha is activated by plasmin and show that the presence of plasminogen in the basolateral compartment of the co-cultures is sufficient for promeprin-alpha activation. Analysis of the plasminogen-activating system in the co-cultures revealed that plasminogen activators produced and secreted by fibroblasts converted plasminogen to active plasmin, which in turn generated active meprin-alpha. This activation mechanism offers an explanation for the observed meprin-alpha activity in the tumor stroma, a prerequisite for a potential role of this protease in colorectal cancer.
Collapse
Affiliation(s)
- Sandra Rösmann
- Institute of Biochemistry and Molecular Biology, Department of Pediatrics, University of Berne, Bühlstrasse 28, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Pischitzis A, Hahn D, Leuenberger B, Sterchi EE. N-Benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase beta (human meprinbeta). A 13-amino-acid sequence is required for proteolyticprocessing and subsequent secretion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:421-9. [PMID: 10215852 DOI: 10.1046/j.1432-1327.1999.00268.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-Benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase or human meprin (PPH) is a brush-border membrane enzyme of small intestinal epithelial cells. It is a type I integral membrane protein composed of two disulphide-bridged subunits (alpha and beta). PPH and its homologous counterparts in rodents belong to the astacin family of zinc-metalloendopeptidases. Although the amino-acid sequence of the beta subunits is 80-90% identical in these three species, processing is different. Expression of PPHbeta in simian virus 40-transformed African green monkey kidney cells (COS-1) and Madin Darby canine kidney (MDCK) cells results in its cell surface localization and secretion, whereas mouse meprinbeta is only found at the plasma membrane. To investigate proteolytic processing of PPHbeta and to identify the cleavage site, different C-terminal domains of wild-type PPHbeta were exchanged with the homologous domains of mouse meprinbeta. We identified a 13-amino-acid sequence (QIQLTPAPSVQDL) necessary for cleavage and subsequent secretion of PPHbeta. Using brefeldin A, the site of processing was identified as being after passage through the Golgi compartment. Proteolytic processing of PPHbeta thus provides a means for secretion of alphabeta heterodimers.
Collapse
Affiliation(s)
- A Pischitzis
- Institute of Biochemistry and Molecular Biology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
31
|
Lottaz D, Hahn D, Müller S, Müller C, Sterchi EE. Secretion of human meprin from intestinal epithelial cells depends on differential expression of the alpha and beta subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:496-504. [PMID: 9914532 DOI: 10.1046/j.1432-1327.1999.00071.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human meprin (N-benzoyl-l-tyrosyl-p-aminobenzoic acid hydrolase, EC 3.4.24.18), an astacin-type metalloprotease, is expressed by intestinal epithelial cells as a dimeric protein complex of alpha and beta subunits. In transfected cells, intracellular proteolytic removal of the membrane anchor from the alpha subunit results in its secretion, while the beta subunit and alpha/beta heterodimers are retained at the cell membrane. We investigated the consequence of differential intracellular processing of alpha and beta subunits in the human small and large intestine using subunit-specific immunohistochemistry, in situ hybridization and biosynthetic studies in organ culture. In the ileum, both subunits localize to the brush-border membrane of villus enterocytes. In contrast, the beta subunit is not expressed in the colon, which leads to the secretion of the alpha subunit. We conclude that differential expression of meprin alpha and beta subunits is a unique means of targeting the proteolytic activity of the alpha subunit either to the brush-border membrane in the ileum or to the lumen in the colon, suggesting dual functions of cell-associated and luminal meprin. Meprin alpha and beta subunits are also coexpressed in distinct lamina propria leukocytes, suggesting an additional role for this protease in leukocyte function in the intestinal mucosa.
Collapse
Affiliation(s)
- D Lottaz
- Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Eldering JA, Grünberg J, Hahn D, Croes HJ, Fransen JA, Sterchi EE. Polarised expression of human intestinal N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (human meprin) alpha and beta subunits in Madin-Darby canine kidney cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:920-32. [PMID: 9288916 DOI: 10.1111/j.1432-1033.1997.00920.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-Benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (PPH, human meprin), is a peptidase found in the microvillus membrane of human small intestinal epithelial cells. PPH belongs to the astacin family of zinc-metalloendopeptidases and is a protein complex composed of two glycosylated subunits, alpha and beta. The present report describes the cloning of the complete beta subunit and the remaining N2-terminal end of the alpha subunit for analysis of their primary structures in addition to the examination of their biogenesis in transfected cell cultures. The complete open reading frame of the PPH beta cDNA translates into 700 amino acid residues compared with 746 residues for the PPH alpha cDNA. The primary structure of beta and alpha subunits are 44% identical and 61% similar. As predicted from their primary structure, the two subunits of PPH have identical modular structures; starting at the N2-terminus both contain a signal peptide, a propeptide, a protease domain containing the astacin signature, a meprin A5 protein tyrosine phospatase mu (MAM) and a meprin and TRAF homology domain (MATH) domain, an epidermal growth factor(EGF)-like domain, a putative transmembrane anchor domain and a short cytosolic tail. Pulse/chase labelling and immuno-Gold electronmicroscopy of recombinant PPH beta and alpha subunits expressed in transfected Madin-Darby canine kidney (MDCK) cells show that post-translational processing and transport of the two subunits are very different. When expressed alone, the beta subunit acquired complex glycan residues, readily formed homodimers and was transported to the plasma membrane. Small amounts of PPH beta were found in the culture medium. In contrast, the cell-bound alpha subunit, when expressed alone, remained primarily in the high-mannose form, was aggregated and not expressed at the cell surface. However, the bulk of mostly endo-beta-N-acetylglucosaminidase H-resistant alpha subunit was found in the filtered culture medium. The proteolytic event that leads to the formation of this soluble transport-competent form occurs in the endoplasmic reticulum (ER). Coexpression of the alpha subunit with the beta subunit allowed the localisation of the alpha subunit to the plasma membrane. These studies indicate that assembly of the two subunits of PPH is required for the localisation of the alpha subunit to the plasma membrane. In contrast to rodent meprin, both PPH subunits are apically secreted from MDCK cells.
Collapse
Affiliation(s)
- J A Eldering
- Institute of Biochemistry and Molecular Biology, and Department of Pediatrics, University of Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Hahn D, Lottaz D, Sterchi EE. C-cytosolic and transmembrane domains of the N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase alpha subunit (human meprin alpha) are essential for its retention in the endoplasmic reticulum and C-terminal processing. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:933-41. [PMID: 9288917 DOI: 10.1111/j.1432-1033.1997.00933.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (PPH, human meprin) is a member of the astacin family of Zn-metalloendopeptidases and is highly expressed in the microvillus membrane of human small intestinal epithelial cells. It is a type I transmembrane protein consisting of differentially processed glycosylated alpha and beta subunits. Biosynthesis experiments using transfected, metabolically labelled simian virus 40 (SV40) transformed african green monkey kidney cells (COS-1) and Madin Darby canine kidney (MDCK) cells, have previously shown that PPH alpha was retained in the endoplasmic reticulum (ER) and that for subsequent secretion removal of the alpha-tail was necessary [Grünberg, J., Dumermuth, E., Eldering, J. A. & Sterchi, E. E. (1993) FEBS Lett. 335, 376-379]. We proposed an involvement of the alpha-tail in ER retention. To investigate the possible role of the transmembrane and/or the C-terminal domain of the alpha-subunit, tailswitch mutants were constructed in which these domains were exchanged between the alpha and beta subunits. Biosynthesis and post-translational processing of these mutants were investigated in transiently transfected COS-1 cells. The beta/alpha tailswitch mutant, in which the transmembrane and C-cytosolic parts of PPH beta were substituted by the corresponding parts of the PPH alpha subunit, was transported much slower compared with the wild-type PPH beta subunit. In addition, fusion of the alpha-tail to a C-terminally truncated secretory form of PPH alpha leads to its retention in the ER. This mutant, but not the secretory form, coimmunoprecipitated with calnexin, indicating an involvement of this molecular chaperone in retaining PPH alpha in the ER. The alpha/beta tailswitch mutant, in which the transmembrane domain and the C-cytosolic part of PPH alpha were substituted by the corresponding parts of PPH beta, was processed less efficiently in comparison with PPH alpha, resulting in a lower secretion rate. Taken together these data suggest a role of the alpha-tail in mediating association with ER-resident machinery, facilitating C-terminal processing.
Collapse
Affiliation(s)
- D Hahn
- Institute of Biochemistry and Molecular Biology and Department of Pediatrics, Faculty of Medicine, University of Berne, Switzerland.
| | | | | |
Collapse
|
34
|
Chestukhin A, Muradov K, Litovchick L, Shaltiel S. The cleavage of protein kinase A by the kinase-splitting membranal proteinase is reproduced by meprin beta. J Biol Chem 1996; 271:30272-80. [PMID: 8939981 DOI: 10.1074/jbc.271.47.30272] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Kinase-Splitting Membranal Proteinase (KSMP) is a metallo-endoproteinase that clips off the carboxyl terminus tail of the catalytic (C) subunit of protein kinase A to yield a truncated, catalytically inactive protein (C'). Here we report (a) a new procedure for the purification of KSMP, yielding a major protein band in SDS-polyacrylamide gel electrophoresis that correlates with the characteristic KSMP activity; (b) the sequence of tryptic peptides obtained from this band, suggesting an identity between this protein and meprin beta; (c) the immuno-detection by specific anti-peptide antibodies of both the alpha and the beta subunits of meprin in KSMP preparations; (d) the stable expression of meprin beta in a mammalian cell line (293) to establish a clone that constitutively expresses the full-length precursor of meprin beta; and (e) the optimalization of the proteolytic activation of this precursor to obtain an enzyme exhibiting the specific KSMP cleavage, suggesting that KSMP is either derived from, or identical with, the meprin beta gene product. It is hoped that these results will shed light on the possible physiological role of KSMP and the way it may affect protein kinase A-mediated processes.
Collapse
Affiliation(s)
- A Chestukhin
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
35
|
Cabello J, Ruano MJ, Cabezas JA, Hueso P. Cocaine exposure induces changes in the ganglioside content of rat liver. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:817-9. [PMID: 7710696 DOI: 10.1515/bchm3.1994.375.12.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During cocaine exposure, the liver undergoes significant morphological and biochemical changes. We report here changes in the ganglioside pattern of rat liver after repeated administration (over 5 hours, one injection per hour) of a moderate dose of cocaine (10 mg/kg body weight). Cocaine exposure results in an accumulation of more complex gangliosides (GM1, GD1a, GD1b, GT1b and GQ1b) and a reduction of precursors (GM3, GM2, GD3 and GD2). Our results suggest that ganglioside biosynthesis could be affected by an alteration of vesicular transport from cis- to trans-Golgi cisternae produced either by cocaine itself or by some product of cocaine metabolism.
Collapse
Affiliation(s)
- J Cabello
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
36
|
Spencer-Dene B, Thorogood P, Nair S, Kenny AJ, Harris M, Henderson B. Distribution of, and a putative role for, the cell-surface neutral metallo-endopeptidases during mammalian craniofacial development. Development 1994; 120:3213-26. [PMID: 7720564 DOI: 10.1242/dev.120.11.3213] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endopeptidase-24.11 (neutral endopeptidase, neprilysin, ‘enkephalinase’, EC 3.4.24.11) and endopeptidase-24.18 (endopeptidase-2, meprin, EC 3.4.24.18) are cell-surface zinc-dependent metallo-endopeptidases able to cleave a variety of bioactive peptides including growth factors. We report the first study of the cellular and tissue distribution of both enzymes and of the mRNA for NEP during embryonic development in the rat. Endopeptidase-24.11 protein was first detected at E10 in the lining of the gut and, at E12, the enzyme was present on the notochord, medial and lateral nasal processes, otocyst, mesonephros, heart and neuroepithelium. In contrast, at this time endopeptidase-24.18 was present only on the apical surface of the neuroepithelial cells. By E14 and E16, NEP was also detected in a wide range of craniofacial structures, notably the palatal mesenchyme, the choroid plexus, tongue and perichondrium. The distribution of endopeptidase-24.18 at these stages was restricted to the inner ear, the nasal conchae, and ependymal layer of the brain ventricles and the choroid plexus. Although endopeptidase-24.11 had been detectable in the craniofacial vasculature at E12 and E14, this was no longer apparent at E16. Significantly, the distribution of endopeptidase-24.11 mRNA closely matched the immunolocalization of the protein at all stages investigated. In order to explore the functional role of these enzymes, inhibition studies were carried out using two selective inhibitors of endopeptidase-24.11, phosphoramidon and thiorphan. E9.5 and E10.5 embryos exposed to either inhibitor displayed a characteristic, asymmetric abnormality consisting of a spherical swelling, possibly associated with a haematoma, predominantly on the left side of the prosencephalon, and the severity of this defect appeared to be a dose-dependent phenomenon. This study suggests that these enzymes play previously unrecognized roles during mammalian embryonic development.
Collapse
Affiliation(s)
- B Spencer-Dene
- Maxillofacial Surgery Research Unit, Eastman Dental Institute, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Grünberg J, Dumermuth E, Eldering JA, Sterchi EE. Expression of the alpha subunit of PABA peptide hydrolase (EC 3.4.24.18) in MDCK cells. Synthesis and secretion of an enzymatically inactive homodimer. FEBS Lett 1993; 335:376-9. [PMID: 8262186 DOI: 10.1016/0014-5793(93)80422-q] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this paper, we report the expression of PPH alpha in the polarized cell line MDCK (Madin Darby canine kidney). In these cells, the enzyme was synthesized in an inactive proform, which upon treatment with trypsin was activated. The enzyme isolated from cell extracts was core-glycosylated and appeared to be retained in the ER as a homodimer. No PPH alpha was detectable on the surface of intact cells by immunofluorescence. However, a complex glycosylated soluble but inactive form was present in the culture medium, suggesting that proteolytic removal of the C-terminal membrane anchoring peptide leads to the secretion of PPH alpha.
Collapse
Affiliation(s)
- J Grünberg
- Institute of Biochemistry and Molecular Biology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
38
|
Dumermuth E, Eldering JA, Grünberg J, Jiang W, Sterchi EE. Cloning of the PABA peptide hydrolase alpha subunit (PPH alpha) from human small intestine and its expression in COS-1 cells. FEBS Lett 1993; 335:367-75. [PMID: 8262185 DOI: 10.1016/0014-5793(93)80421-p] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PABA peptide hydrolase (PPH) from human enterocytes is comprised of two subunits, alpha and beta. PPH alpha is over 70% identical to meprin, a protease isolated from mouse and rat kidney. The enzyme shows a modular organization in that it contains an astacin protease domain, an adhesive domain, an EGF-like domain, an a putative C-terminal membrane spanning domain. Expression of a chimeric meprin-PPH alpha cDNA in COS-1 cells led to the synthesis of immature, transport-incompetent homodimers. In addition, complex glycosylated forms were detected in the culture medium, suggesting that the enzyme is secreted after proteolytic removal of the membrane anchor.
Collapse
Affiliation(s)
- E Dumermuth
- Institute of Biochemistry and Molecular Biology, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Durie PR, Yung-Jato LY, Soldin SJ, Verjee Z, Ellis L. Bentiromide test using liquid-chromatographic measurement of p-aminobenzoic acid and its metabolites for diagnosing pancreatic insufficiency in childhood. J Pediatr 1992; 121:413-6. [PMID: 1517919 DOI: 10.1016/s0022-3476(05)81798-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We assessed the diagnostic capability of the bentiromide test using a high-pressure liquid-chromatography method to analyze p-aminobenzoic acid and its metabolites in plasma as an indirect measure of exocrine pancreatic function. Mean total amine concentration in pancreatic-insufficient subjects was significantly lower than in control subjects. There were 3 of 15 false-negative results and no false-positive results. We conclude that this chromatographic method is an effective means of analyzing p-aminobenzoic acid and its metabolites after ingestion of bentiromide.
Collapse
Affiliation(s)
- P R Durie
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Price JS, Kenny AJ, Huskisson NS, Brown MJ. Neuropeptide Y (NPY) metabolism by endopeptidase-2 hinders characterization of NPY receptors in rat kidney. Br J Pharmacol 1991; 104:321-6. [PMID: 1665730 PMCID: PMC1908564 DOI: 10.1111/j.1476-5381.1991.tb12429.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Despite the observation of pharmacological responses to neuropeptide Y (NPY) in mammalian kidneys, there are species differences in the ease with which specific NPY binding sites can be demonstrated; we have investigated whether this can be explained by differential metabolism of NPY by a membrane-bound peptidase. 2. NPY receptors were identified on cell membranes isolated from the rabbit kidney (KD = 97 +/- 16 pM, Bmax = 290 +/- 30 fmol mg-1 protein), and this preparation did not degrade [125I]-NPY. However, a similar preparation of cell membranes from the rat kidney exhibited a much lower apparent receptor affinity (IC50 approximately 30 nM); these membranes rapidly degraded [125I]-NPY to fragments which did not bind NPY receptors in either tissue. 3. [125I]-NPY binding sites were revealed in the rat kidney when degradation was inhibited by insulin B chain. Chelating agents also inhibited degradation, but interfered with receptor binding. Binding sites could not be demonstrated in sections of rat kidney, even in the presence of insulin B chain. 4. The difference in degradative activity between rat and rabbit renal cell membranes, inhibition of degradation by chelating agents and insulin B chain, and insensitivity to phosphoramidon suggest that the enzyme responsible was endopeptidase-2, and this was confirmed by comparing the hydrolysis of [125I]-NPY by purified enzyme with rat renal tissue. Activity of this enzyme explains the difficulties encountered demonstrating receptors in the rat kidney. 5. Renal cell membranes from the mouse digested [125I]-NPY in a similar manner and this may be due to the closely related enzyme, meprin. NPY degradation has not previously been reported. The results suggest that NPY should be added to the list of peptides sensitive to these enzymes.
Collapse
Affiliation(s)
- J S Price
- Clinical Pharmacology Unit, University of Cambridge Clinical School, Addenbrooke's Hospital
| | | | | | | |
Collapse
|
42
|
Lennarz WJ, Strittmatter WJ. Cellular functions of metallo-endoproteinases. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:149-58. [PMID: 1854793 DOI: 10.1016/0304-4157(91)90022-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- W J Lennarz
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook
| | | |
Collapse
|
43
|
Laufer D, Cleghorn G, Forstner G, Ellis L, Koren G, Durie P. The bentiromide test using plasma p-aminobenzoic acid for diagnosing pancreatic insufficiency in young children. The effect of two different doses and a liquid meal. Gastroenterology 1991; 101:207-13. [PMID: 2044909 DOI: 10.1016/0016-5085(91)90479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bentiromide test was evaluated using plasma p-aminobenzoic acid as an indirect test of pancreatic insufficiency in young children between 2 months and 4 years of age. To determine the optimal test method, the following were examined: (a) the best dose of bentiromide (15 mg/kg or 30 mg/kg); (b) the optimal sampling time for plasma p-aminobenzoic acid; and (c) the effect of coadministration of a liquid meal. Sixty-nine children 91.6 +/- 1.0 years) were studied, including 34 controls with normal fat absorption and 35 patients (34 with cystic fibrosis) with fat maldigestion due to pancreatic insufficiency. Control and pancreatic insufficient subjects were studied in three age-matched groups: (a) low-dose bentiromide (15 mg/kg) with clear fluids; (b) high-dose bentiromide (30 mg/kg) with clear fluids; and (c) high-dose bentiromide with a liquid meal. Plasma p-aminobenzoic acid was determined at 0, 30, 60, and 90 minutes then hourly for 6 hours. The dose effect of bentiromide with clear liquids was evaluated. High-dose bentiromide best discriminated control and pancreatic insufficient subjects, due to a higher peak plasma p-aminobenzoic acid level in controls, but poor sensitivity and specificity remained. High-dose bentiromide with a liquid meal produced a delayed increase in plasma p-aminobenzoic acid in the control subjects probably caused by retarded gastric emptying. However, in the pancreatic insufficient subjects, use of a liquid meal resulted in significantly lower plasma p-aminobenzoic acid levels at all time points; plasma p-aminobenzoic acid at 2 and 3 hours completely discriminated between control and pancreatic insufficient patients. Evaluation of the data by area under the time-concentration curve failed to improve test results. In conclusion, the bentiromide test is a simple, clinically useful means of detecting pancreatic insufficiency in young children, but a higher dose administered with a liquid meal is recommended.
Collapse
Affiliation(s)
- D Laufer
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Barnes K, Ingram J, Kenny AJ. Proteins of the kidney microvillar membrane. Structural and immunochemical properties of rat endopeptidase-2 and its immunohistochemical localization in tissues of rat and mouse. Biochem J 1989; 264:335-46. [PMID: 2690825 PMCID: PMC1133587 DOI: 10.1042/bj2640335] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phosphoramidon-insensitive endopeptidase-2 in rat renal brush borders was investigated by immunochemical approaches with a rabbit polyclonal antibody raised to the purified enzyme released from the membrane by papain. An immunoaffinity column successfully purified the detergent-solubilized form of endopeptidase-2. This preparation had an apparent subunit Mr of 80,000, and did not show the two subunits, of Mr 80,000 and 74,000, consistently found in the papain-solubilized forms, indicating that the latter resulted from proteolysis by papain. SDS/polyacrylamide-gel electrophoresis of non-reduced samples of the enzyme revealed a band of Mr 220,000, confirming the presence of disulphide-bridged subunits. Treatment with endoglycosidases H and F generated smaller molecular forms, indicating that endopeptidase-2 contained about 30% asparagine-linked carbohydrate and that a few of these oligosaccharide chains were of the high-mannose type. Treatment with phosphatidylinositol-specific phospholipase indicated that the enzyme did not possess a glycolipid membrane anchor. A survey of rat tissues examined immunohistochemically and by immunoblotting revealed that only the kidney and intestinal tract expressed the antigen in significant amounts. Although some weak staining was seen in salivary glands and thyroid, other organs and tissues including brain and spinal cord were negative by both immunochemical techniques. In the kidney the antigen was confined to the lumen of the proximal tubule and was seen mainly in the population of juxtamedullary nephrons. In the gut, luminal staining was observed throughout its whole length, from duodenum to rectum. Excellent cross-reactivity of the antibody with Balb/c mouse tissues was observed. Immunohistochemistry of mouse kidney and gut revealed a distribution identical with that observed in the rat. Immunopurification of the detergent-solubilized mouse kidney antigen showed it to be a protein containing disulphide-linked subunits of Mr 90,000. It possessed endopeptidase-2-like activity, but was more efficient in hydrolysing azo-casein and less efficient in hydrolysing a model substrate than the rat enzyme. The close similarity between rat endopeptidase-2 and mouse meprin is further supported by these results.
Collapse
Affiliation(s)
- K Barnes
- Department of Biochemistry, University of Leeds, U.K
| | | | | |
Collapse
|
45
|
Stephenson SL, Kenny AJ. The metabolism of neuropeptides. Hydrolysis of peptides by the phosphoramidon-insensitive rat kidney enzyme 'endopeptidase-2' and by rat microvillar membranes. Biochem J 1988; 255:45-51. [PMID: 2461706 PMCID: PMC1135188 DOI: 10.1042/bj2550045] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endopeptidase-2, the second endopeptidase in rat kidney brush border [Kenny & Ingram (1987) Biochem. J. 245, 515-524] has been further characterized in regard to its specificity and its contribution to the hydrolysis of peptides by microvillar membrane preparations. The peptide products were identified, after incubating luliberin, substance P, bradykinin and angiotensins I, II and III with the purified enzyme. The bonds hydrolysed were those involving a hydrophobic amino acid residue, but this residue could be located at either the P1 or P1' site. Luliberin was hydrolysed faster than other peptides tested, followed by substance P and bradykinin. Human alpha-atrial natriuretic peptide and the angiotensins were only slowly attacked. Oxytocin and [Arg8]vasopressin were not hydrolysed. No peptide fragments were detected on prolonged incubation with insulin, cytochrome c, ovalbumin and serum albumin. In comparison with pig endopeptidase-24.11 the rates for the susceptible peptides were, with the exception of luliberin, much lower for endopeptidase-2. Indeed, for bradykinin and substance P the ratio kcat./Km was two orders of magnitude lower. Since both endopeptidases are present in rat kidney microvilli, an assessment was made of the relative contributions to the hydrolysis of luliberin, bradykinin and substance P. Only for the first named was endopeptidase-2 the dominant enzyme; for bradykinin it made an equal, and for substance P a minor, contribution.
Collapse
|
46
|
Sterchi EE, Naim HY, Lentze MJ, Hauri HP, Fransen JA. N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase: a metalloendopeptidase of the human intestinal microvillus membrane which degrades biologically active peptides. Arch Biochem Biophys 1988; 265:105-18. [PMID: 3261961 DOI: 10.1016/0003-9861(88)90376-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Particulate fractions of human small intestinal mucosa contain an enzyme capable of hydrolyzing N-benzoyl-L-tyrosyl-p-aminobenzoic acid (PABA-peptide), a substrate used for clinical purposes to assess exocrine function of the pancreas (PABA test, pancreas function test). In this paper we describe the purification of PABA-peptide hydrolase (PPH) by immunoaffinity chromatography using a monoclonal antibody (Mab), HBB 3/716/36, bound to protein A-Sepharose, and the characterization of the purified enzyme. The final preparation of the enzyme was in the immobilized form, i.e., bound to Mab-protein A-Sepharose, and showed a 765-fold enrichment over the mucosal homogenate. The enrichment factor in purified microvillus membranes was comparable to that of sucrase-isomaltase, a microvillar marker enzyme. This, together with immunoelectron microscopy using protein A-gold, indicated that PPH is located in the apical membrane of intestinal epithelial cells. The enzyme was found to be present throughout the small intestine with the activity in distal ileum being 4.5-fold higher than that in the proximal duodenum. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoaffinity-purified PPH under reducing conditions revealed a polypeptide band with a relative molecular weight (Mr) of 100,000; under nonreducing conditions a major band with Mr 200,000 was observed. This indicates that PPH consists of two subunits with Mr 100,000 each, which are held together by one or more disulfide bonds. Two-dimensional polyacrylamide gel electrophoresis of the enzyme showed marked microheterogeneity, with pI's ranging from 6.0 to 6.85, probably due to glycosylation. The Km for PABA-peptide was 16.7 mM, and the pH optimum was 7.5-8.0 PPH activity was not inhibited by phenylmethylsulfonyl fluoride; pepstatin, leupeptin, amastatin, bestatin, puromycin, iodoacetate, or phosphoramidon. Activity was affected by captopril and Zinkov inhibitor, and in particular by thiol and chelating reagents. Chelator-inhibited PPH could be reactivated by bivalent metal ions, Zn2+ being the most effective. The enzyme catalyzed the hydrolysis of peptides including insulin B-chain, angiotensins I and II, bradykinin and bradykinin derivatives, oxytocin, and substance P, in each case yielding reproducible peptide fragments. On the basis of amino acid analysis of the products it could be concluded that peptides are hydrolyzed preferentially after an aromatic residue.
Collapse
Affiliation(s)
- E E Sterchi
- Department of Gastroenterology, University Children's Hospital, Berne, Switzerland
| | | | | | | | | |
Collapse
|
47
|
|
48
|
|
49
|
|
50
|
Abstract
The standard Bentiromide test and a new modified test using p-aminosalicylic acid (PAS) as a pharmacokinetic marker for p-aminobenzoic acid (PABA) have been evaluated in the detection of pancreatic exocrine insufficiency in children. The conventional two day test using a colorimetric assay for urinary PABA discriminated poorly between five children with pancreatic insufficiency and 13 others with normal pancreatic function. Two further groups of patients, comprising 28 with pancreatic exocrine insufficiency and 20 with normal pancreatic function underwent the modified test, and urine samples were analysed by high performance liquid chromatography. The results showed a complete separation between groups. The use of PAS eliminates a number of sources of error inherent in a two day Bentiromide test and provides a simplified and accurate diagnostic test for pancreatic insufficiency. The PABA-PAS modified test enables collection of the urine to be done during a single six hour period.
Collapse
Affiliation(s)
- J W Puntis
- Institute of Child Health, University of Birmingham, Birmingham Children's Hospital
| | | | | | | | | |
Collapse
|