1
|
Liu T, Cui L, Xue H, Yang X, Liu M, Zhi L, Yang H, Liu Z, Zhang M, Guo Q, He P, Liu Y, Zhang Y. Telmisartan Potentiates Insulin Secretion via Ion Channels, Independent of the AT1 Receptor and PPARγ. Front Pharmacol 2021; 12:739637. [PMID: 34594226 PMCID: PMC8477257 DOI: 10.3389/fphar.2021.739637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II type 1 (AT1) receptor blockers (ARBs), as antihypertensive drugs, have drawn attention for their benefits to individuals with diabetes and prediabetes. However, the direct effects of ARBs on insulin secretion remain unclear. In this study, we aimed to investigate the insulinotropic effect of ARBs and the underlying electrophysiological mechanism. We found that only telmisartan among the three ARBs (telmisartan, valsartan, and irbesartan) exhibited an insulin secretagogue role in rat islets. Independent of AT1 receptor and peroxisome proliferator-activated receptor γ (PPARγ), telmisartan exerted effects on ion channels including voltage-dependent potassium (Kv) channels and L-type voltage-gated calcium channels (VGCCs) to promote extracellular Ca2+ influx, thereby potentiating insulin secretion in a glucose-dependent manner. Furthermore, we identified that telmisartan directly inhibited Kv2.1 channel on a Chinese hamster ovary cell line with Kv2.1 channel overexpression. Acute exposure of db/db mice to a telmisartan dose equivalent to therapeutic doses in humans resulted in lower blood glucose and increased plasma insulin concentration in OGTT. We further observed the telmisartan-induced insulinotropic and electrophysiological effects on pathological pancreatic islets or β-cells isolated from db/db mice. Collectively, our results establish an important insulinotropic function of telmisartan distinct from other ARBs in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of General Surgery, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Acute regulation of pancreatic islet microcirculation and glycaemia by telmisartan and ramipril: discordant effects between normal and Type 2 diabetic rats. Clin Sci (Lond) 2013; 125:433-8. [DOI: 10.1042/cs20120635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic patients are often treated with an ACEi (angiotensin-converting enzyme inhibitor) or angiotensin receptor antagonist against hypertension or albuminuria. These drugs also have a positive impact on glucose tolerance, but the mechanism for this remains elusive. Hypothesizing a positive non-additive effect, we studied whether the angiotensin receptor antagonist telmisartan or the ACEi ramipril acutely influence insulin secretion and glycaemia in vivo in healthy and Type 2 diabetic rats through effects on islet blood perfusion. Telmisartan and ramipril were injected intravenously into anaesthetized non-diabetic Wistar rats or Type 2 diabetic GK (Goto–Kakizaki) rats. In non-diabetic Wistar rats, neither whole PBF (pancreatic blood flow) nor IBF (islet blood flow) were significantly influenced by telmisartan and ramipril, alone or in combination. Renal blood flow was enhanced significantly by telmisartan and ramipril when used in combination, whereas ABF (adrenal blood flow) was not affected by any of the drugs. Telmisartan and ramipril both significantly increased serum insulin levels, but did not influence glycaemia. In Type 2 diabetic GK rats, both whole PBF and IBF were significantly decreased by telmisartan and ramipril, but only when used in combination. Renal blood flow was enhanced significantly by telmisartan and ramipril alone, but not when used in combination, whereas ABF was not affected by any of the drugs. Telmisartan and ramipril both significantly decreased serum insulin levels, and non-additively elevated blood glucose levels. In conclusion, the present study suggests that a local pancreatic RAS (renin–angiotensin system), sensitive to acute administration of telmisartan and ramipril, controls pancreatic IBF and insulin secretion and thereby has an impact on glucose tolerance. Our findings indicate unexpected significant differences in the effects of these agents on islet microcirculation, in vivo insulin secretion and glycaemia between healthy and Type 2 diabetic rats.
Collapse
|
5
|
Fouad AA, Al-Mulhim AS, Jresat I, Morsy MA. Protective effects of captopril in diabetic rats exposed to ischemia/reperfusion renal injury. J Pharm Pharmacol 2012; 65:243-52. [DOI: 10.1111/j.2042-7158.2012.01585.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/05/2012] [Indexed: 01/31/2023]
Abstract
Abstract
Objectives
To investigate the potential protective effects of captopril, the angiotensin-converting enzyme inhibitor, in diabetic rats exposed to ischaemia/reperfusion (I/R) renal injury.
Methods
Following successful induction of diabetes, captopril treatment (50 mg/kg/day, p.o.) was applied for 4 weeks, after which bilateral renal ischaemia was induced for 30 min followed by reperfusion for 24 h.
Results
Captopril significantly attenuated hyperglycaemia and hypoinsulinaemia in diabetic rats, and significantly reduced the elevations of serum creatinine and aldosterone levels, and renal malondialdehyde, tumour necrosis factor-α and nitric oxide (NO), and prevented the depletion of reduced glutathione caused by I/R in diabetic rats. Histopathological renal tissue damage induced by I/R in diabetic rats was ameliorated by captopril treatment. Immunohistochemical analysis revealed that captopril significantly attenuated the reduction of insulin content in pancreatic islet β-cells, and decreased the I/R-induced expression of inducible NO synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin and heme oxygenase-1 in the kidney tissue of diabetic rats.
Conclusions
Captopril represents a potential candidate to reduce the risk of renal injury induced by ischaemia/reperfusion in type 2 diabetes.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Iyad Jresat
- Department of Biomedical Sciences, Pathology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, Pharmacology Division, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
6
|
Wu L, Olverling A, Fransson L, Ortsäter H, Kappe C, Gao X, Sjöholm A. Early intervention with liraglutide improves glucose tolerance without affecting islet microcirculation in young Goto-Kakizaki rats. ACTA ACUST UNITED AC 2012; 177:92-6. [PMID: 22587909 DOI: 10.1016/j.regpep.2012.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/17/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
Liraglutide, an analog of glucagon-like peptide-1 (GLP-1), is an effective anti-diabetic agent with few side effects. Since native GLP-1 exerts vascular effects, we investigated changes in pancreatic islet blood flow using a non-radioactive microsphere technique, as well as insulin concentration and glucose tolerance after 17 day treatment with liraglutide in 6-week-old Goto-Kakizaki (GK) rats. Compared to saline-treated control GK rats, liraglutide limited body weight gain, decreased glycemia, improved glucose tolerance and lowered serum insulin concentration. Neither pancreatic or islet blood flow, nor pancreatic insulin content, was affected by liraglutide treatment. We conclude that early intervention with liraglutide decreases glycemia and improves glucose tolerance, thus halting the natural progression towards diabetes, without affecting islet microcirculation or pancreatic insulin content in young female GK rats.
Collapse
Affiliation(s)
- Lin Wu
- Fudan University, Department of Geriatrics, Zhongshan Hospital, 180 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Effect of renin angiotensin system blockade on the islet microvessel density of diabetic rats and its relationship with islet function. ACTA ACUST UNITED AC 2009; 29:684-8. [PMID: 20037807 DOI: 10.1007/s11596-009-0602-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Indexed: 10/19/2022]
Abstract
To investigate the effects of rennin angiotensin system blockade on the microvessel density in islets of diabetic rats and its relationship with islet function, diabetes model was created by feeding of high-caloric laboratory chow plus intraperitoneal injection of a small dose of streptozotocin (30 mg/kg). After 8 weeks intervention with perindopril (AE, n=10) or valsartan (AR, n=10), the islet function of the animals was evaluated by intravenous insulin release test (IVIRT). The pancreases were immunohistochemically stained to analyze the content of insulin and vascular endothelial growth factor (VEGF) in the islets. The microvessel density (MVD) of islets was detected by counting CD34 positive cells. The hypoxia inducible factor (HIF)-1alpha mRNA expression in the islets was detected by RT-PCR. Compared with normal control group (NC, n=10), the area under the curve for insulin from 0 to 30 min (AUCI(0-30)) of diabetes group (DM, n=8) was decreased by 66.3%; the insulin relative concentration (IRC) of betacell was decreased significantly; the relative content of VEGF was increased obviously [(-4.21+/-0.13) vs (-4.06+/-0.29)]; MVD in islets was decreased by 71.4%; the relative expression of HIF-1alpha mRNA was increased by 1.19 times (all P<0.01). Compared with DM group, the AUCI(0-30) of AE and AR group was increased by 44.6% and 34.9% respectively; IRC was also increased significantly; the relative content of VEGF was decreased by 21.2% and 21.7% respectively; MVD was increased by 62.5% and 75.0% respectively; the relative expression of HIF-1alpha was decreased by 27.2% and 29.0% respectively (all P<0.01 or P<0.05). There were no significant differences in the said indexes between group AE and AR. It is concluded that the blockade of RAS may ameliorate islets function of diabetic rats by increasing the MVD in islets.
Collapse
|