1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025; 62:113-134. [PMID: 39743506 PMCID: PMC11854058 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M. Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Mitrokhin V, Hadzi-Petrushev N, Kazanski V, Schileyko S, Kamkina O, Rodina A, Zolotareva A, Zolotarev V, Kamkin A, Mladenov M. The Role of K ACh Channels in Atrial Fibrillation. Cells 2024; 13:1014. [PMID: 38920645 PMCID: PMC11201540 DOI: 10.3390/cells13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
This manuscript explores the intricate role of acetylcholine-activated inward rectifier potassium (KACh) channels in the pathogenesis of atrial fibrillation (AF), a common cardiac arrhythmia. It delves into the molecular and cellular mechanisms that underpin AF, emphasizing the vital function of KACh channels in modulating the atrial action potential and facilitating arrhythmogenic conditions. This study underscores the dual nature of KACh activation and its genetic regulation, revealing that specific variations in potassium channel genes, such as Kir3.4 and K2P3.1, significantly influence the electrophysiological remodeling associated with AF. Furthermore, this manuscript identifies the crucial role of the KACh-mediated current, IKACh, in sustaining arrhythmia through facilitating shorter re-entry circuits and stabilizing the re-entrant circuits, particularly in response to vagal nerve stimulation. Experimental findings from animal models, which could not induce AF in the absence of muscarinic activation, highlight the dependency of AF induction on KACh channel activity. This is complemented by discussions on therapeutic interventions, where KACh channel blockers have shown promise in AF management. Additionally, this study discusses the broader implications of KACh channel behavior, including its ubiquitous presence across different cardiac regions and species, contributing to a comprehensive understanding of AF dynamics. The implications of these findings are profound, suggesting that targeting KACh channels might offer new therapeutic avenues for AF treatment, particularly in cases resistant to conventional approaches. By integrating genetic, cellular, and pharmacological perspectives, this manuscript offers a holistic view of the potential mechanisms and therapeutic targets in AF, making a significant contribution to the field of cardiac arrhythmia research.
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Viktor Kazanski
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Stanislav Schileyko
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Olga Kamkina
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Anastasija Rodina
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Alexandra Zolotareva
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Valentin Zolotarev
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Andre Kamkin
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Mitko Mladenov
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
3
|
Sgarabotto L, Ravarotto V, Stefanelli LF, Cacciapuoti M, Davis PA, Nalesso F, Calò LA. Oxidants and Cardiorenal Vascular Remodeling—Insights from Rare Genetic Tubulopathies: Bartter’s and Gitelman’s Syndromes. Antioxidants (Basel) 2023; 12:antiox12040811. [PMID: 37107186 PMCID: PMC10135094 DOI: 10.3390/antiox12040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Two human genetic tubulopathies, Bartter’s (BS) and Gitelman’s (GS) syndromes, have normo/hypotension and absent cardiac remodeling despite their apparent angiotensin system (RAS) activation. This seeming contradiction has led to an extensive investigation of BSGS patients, the result of which is that BSGS represents a mirror image of hypertension. BSGS’s unique set of properties has then permitted their use as a human model to probe and characterize RAS system pathways and oxidative stress in cardiovascular and renal remodeling and pathophysiology. This review details the results using GSBS patients that provide a deeper understanding of Ang II signaling and its associated oxidants/oxidative stress in humans. By providing a more complete and complex picture of cardiovascular and renal remodeling pathways and processes, studies of GSBS can inform the identification and selection of new targets and therapies to treat these and other oxidant-related disorders.
Collapse
Affiliation(s)
- Luca Sgarabotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Verdiana Ravarotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Paul A. Davis
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Federico Nalesso
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8213071
| |
Collapse
|
4
|
Polyphenon E Effects on Gene Expression in PC-3 Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms232214328. [PMID: 36430806 PMCID: PMC9697490 DOI: 10.3390/ijms232214328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Polyphenon E (Poly E) is a standardized, caffeine-free green tea extract with defined polyphenol content. Poly E is reported to confer chemoprotective activity against prostate cancer (PCa) progression in the TRAMP model of human PCa, and has shown limited activity against human PCa in human trials. The molecular mechanisms of the observed Poly E chemopreventive activity against PCa are not fully understood. We hypothesized that Poly E treatment of PCa cells induces gene expression changes, which could underpin the molecular mechanisms of the limited Poly E chemoprevention activity against PCa. PC-3 cells were cultured in complete growth media supplemented with varied Poly E concentrations for 24 h, then RNA was isolated for comparative DNA microarray (0 vs. 200 mg/L Poly E) and subsequent TaqMan qRT-PCR analyses. Microarray data for 54,613 genes were filtered for >2-fold expression level changes, with 8319 genes increased and 6176 genes decreased. Eight genes involved in key signaling or regulatory pathways were selected for qRT-PCR. Two genes increased expression significantly, MXD1 (13.98-fold; p = 0.0003) and RGS4 (21.98-fold; p = 0.0011), by qRT-PCR. MXD1 and RGS4 significantly increased gene expression in Poly E-treated PC-3 cells, and the MXD1 gene expression increases were Poly E dose-dependent.
Collapse
|
5
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|
6
|
Dahlen SA, Bernadyn TF, Dixon AJ, Sun B, Xia J, Owens EA, Osei-Owusu P. Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias and disrupts the fine-tuning of G i/o signaling. J Mol Cell Cardiol 2022; 170:34-46. [PMID: 35661621 DOI: 10.1016/j.yjmcc.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function. METHODS AND RESULTS We found that Rgs2/5 dbKO mice showed left ventricular dilatation at baseline by echocardiography. Cardiac contractile response to dobutamine stress test was sex-dependently reduced in male Rgs2/5 dbKO relative to WT mice. When subjected to surgery-induced stress, male Rgs2/5 dbKO mice had 75% mortality within 72-96 h after surgery, accompanied by elevated baseline blood pressure and decreased cardiac contractile function. At the cellular level, cardiomyocytes (CM) from Rgs2/5 dbKO mice showed augmented Ca2+ transients and increased incidence of arrhythmia without augmented contractile response to electrical field stimulation (EFS) and activation of β-adrenergic receptors (βAR) with isoproterenol. Dual loss of Rgs2 and 5 suppressed forskolin-induced cAMP production, which was restored by Gi/o inactivation with pertussis toxin that also reduced arrhythmogenesis during EFS or βAR stimulation. Cardiomyocyte NCX and PMCA mRNA expression was unaffected in Rgs2/5 dbKO male mice. However, there was an exaggerated elevation of EFS-induced cytoplasmic Ca2+ in the presence of SERCA blockade with thapsigargin. CONCLUSIONS We conclude that RGS2 and 5 promote normal ventricular rhythm by coordinating their regulatory activity towards Gi/o signaling and facilitating cardiomyocyte calcium handling.
Collapse
Affiliation(s)
- Shelby A Dahlen
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Tyler F Bernadyn
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Alethia J Dixon
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Bo Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Jingsheng Xia
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Elizabeth A Owens
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Patrick Osei-Owusu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America; Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America.
| |
Collapse
|
7
|
Ravarotto V, Bertoldi G, Stefanelli LF, Gobbi L, Calò LA. Molecular aspects of the altered Angiotensin II signalling in Gitelman’s syndrome. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2066996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Verdiana Ravarotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Laura Gobbi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| |
Collapse
|
8
|
RGS4 inhibition and the effects of adrenoceptor and cholinoceptor agonists on isolated left atrium and aorta of normal and diabetic rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Hu L, He F, Huang M, Zhao Q, Cheng L, Said N, Zhou Z, Liu F, Dai YS. SPARC promotes insulin secretion through down-regulation of RGS4 protein in pancreatic β cells. Sci Rep 2020; 10:17581. [PMID: 33067534 PMCID: PMC7567887 DOI: 10.1038/s41598-020-74593-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown. Here, we showed that SPARC enhanced the promoting effect of Muscarinic receptor agonist oxotremorine-M on insulin secretion in cultured mouse islets. Overexpression of SPARC down-regulated RGS4, a negative regulator of β-cell M3 muscarinic receptors. Conversely, knockdown of SPARC up-regulated RGS4 in Min6 cells. RGS4 was up-regulated in islets from sparc -/- mice, which correlated with decreased glucose-stimulated insulin secretion (GSIS). Furthermore, inhibition of RGS4 restored GSIS in the islets from sparc -/- mice, and knockdown of RGS4 partially decreased the promoting effect of SPARC on oxotremorine-M-stimulated insulin secretion. Phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 abolished SPARC-induced down-regulation of RGS4. Taken together, our data revealed that SPARC promoted GSIS by inhibiting RGS4 in pancreatic β cells.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifeng Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhao
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
10
|
Wang R, Zhao P, Ge X, Tian P. Overview of Alternaria alternata Membrane Proteins. Indian J Microbiol 2020; 60:269-282. [PMID: 32647391 DOI: 10.1007/s12088-020-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022] Open
Abstract
Alternaria species are mainly saprophytic fungi, but some pathotypes of Alternaria alternata infect economically important plants including cereal crops, vegetables and fruits. Specially, A. alternata generates toxins which contaminate food and feed. To date, management of A. alternata relies primarily on fungicides. However, the control efficacy in most cases is below expectation due to ubiquity of A. alternata and resistance to fungicides. To mitigate resistance and develop long-lasting fungicides, uncovering multiple rather than single target is a prerequisite. Membrane proteins are potential targets of fungicides owing to wide participation in myriad biochemical events especially material transport, signal transduction and pathogenicity. However, so far, little is known about the distribution and molecular structure of A. alternata membrane proteins (AAMPs). Herein we summarize AAMPs by data mining and subsequent structure prediction. We also outline the state-of-the-art research advances of AAMPs especially those closely related to pathogenicity. Overall, this review aims to portray a picture of AAMPs and provide valuable insights for future development of highly efficient fungicides towards A. alternata or beyond.
Collapse
Affiliation(s)
- Ruyi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023 People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| |
Collapse
|
11
|
Su S, Shahriyari L. RGS5 plays a significant role in renal cell carcinoma. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191422. [PMID: 32431860 PMCID: PMC7211867 DOI: 10.1098/rsos.191422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Recent advances in biotechnology led to generation of large complex biological and clinical datasets that can be used to infer the underlying mechanism of many diseases and arrive at personalized treatments. One of these datasets are the whole genome profiles, including a good collection of publicly available human gene expression datasets. In this project, we analysed gene expression profiles of patients with renal cell carcinoma (RCC). We found that the regulator of G-protein signalling 5 (RGS5) might play a crucial role in initiation and progression of RCC, and it might be prognostic. We observed that a high expression level of RGS5 is associated with better survival months. Importantly, when the grade of tumour increases, the RGS5 expression level significantly decreases. Although there is no difference between expression level of RGS5 in male and female patients with primary tumours in the right kidney, among patients with primary tumours in the left kidney, females have a significantly higher RGS5 expression than male patients. Interestingly, we also observed a significant association between the high expression level of RGS5 and low serum calcium level and elevated white blood cells level.
Collapse
Affiliation(s)
- Sumeyye Su
- Department of Mathematics, University of Texas Arlington, Arlington, TX 76019, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Hsu LC, Hsu LS, Lee TH. RGS5 rs4657251 polymorphism is associated with small vessel occlusion stroke in Taiwan Han Chinese. J Chin Med Assoc 2020; 83:251-254. [PMID: 32080025 DOI: 10.1097/jcma.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The regulator of G-protein signaling protein 5 (RGS5) has been demonstrated to play a role in regulating blood pressure and cardiovascular function. Studies have shown that RGS5 polymorphisms exhibit susceptibility to hypertension. However, no study has yet been performed among stroke patients. METHODS To evaluate whether RGS5 rs4657251 is a susceptibility gene for stroke, we performed a case-control association study involving 714 large-artery atherosclerosis (LAA) patients, 383 small vessel occlusion (SVO) patients, 401 hypertensive intracranial hemorrhages (HICH), and 626 controls. The RGS5 rs4657251 polymorphism was analyzed through polymerase chain reaction. RESULTS The TC genotype was significantly higher in the SVO group compared with that in the control group (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.02-1.76, p = 0.035). In addition, the dominant phenotype (TC + CC vs TT) was also significantly different between the SVO and the control groups (OR = 1.31, 95% CI = 1.01-1.70, p = 0.046). However, no association was found between RGS5 rs4657251 and LAA an HICH. After adjustment with gender, diabetes, smoking, cholesterol and low-density lipoprotein levels, RGS5 rs4657251 polymorphism remained an independent risk factor for SVO (OR = 1.49; 95% CI = 1.12-1.98) but not for LAA or HICH. CONCLUSION Our findings, obtained among Taiwan Han Chinese subjects, provide the first evidence that RGS5 rs4657251 polymorphism is an independent risk factor for SVO.
Collapse
Affiliation(s)
- Li-Chi Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University school of Medicine, Taipei, Taiwan, ROC
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurology and Stroke Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
13
|
Liu S, Jiang X, Lu H, Xing M, Qiao Y, Zhang C, Zhang W. HuR (Human Antigen R) Regulates the Contraction of Vascular Smooth Muscle and Maintains Blood Pressure. Arterioscler Thromb Vasc Biol 2020; 40:943-957. [PMID: 32075416 DOI: 10.1161/atvbaha.119.313897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE HuR (human antigen R)-an RNA-binding protein-is involved in regulating mRNA stability by binding adenylate-uridylate-rich elements. This study explores the role of HuR in the regulation of smooth muscle contraction and blood pressure. Approach and Results: Vascular HuRSMKO (smooth muscle-specific HuR knockout) mice were generated by crossbreeding HuRflox/flox mice with α-SMA (α-smooth muscle actin)-Cre mice. As compared with CTR (control) mice, HuRSMKO mice showed hypertension and cardiac hypertrophy. HuR levels were decreased in aortas from hypertensive patients and SHRs (spontaneously hypertensive rats), and overexpression of HuR could lower the blood pressure of SHRs. Contractile response to vasoconstrictors was increased in mesenteric artery segments isolated from HuRSMKO mice. The functional abnormalities in HuRSMKO mice were attributed to decreased mRNA and protein levels of RGS (regulator of G-protein signaling) protein(s) RGS2, RGS4, and RGS5, which resulted in increased intracellular calcium increase. Consistently, the degree of intracellular calcium ion increase in HuR-deficient smooth muscle cells was reduced by overexpression of RGS2, RGS4, or RGS5. Finally, administration of RGS2 and RGS5 reversed the elevated blood pressure in HuRSMKO mice. CONCLUSIONS Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.
Collapse
Affiliation(s)
- Shanshan Liu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of General Surgery (X.J.), Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Mengdan Xing
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Yanning Qiao
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Cheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Wang CHJ, Chidiac P. RGS2 promotes the translation of stress-associated proteins ATF4 and CHOP via its eIF2B-inhibitory domain. Cell Signal 2019; 59:163-170. [PMID: 30826455 DOI: 10.1016/j.cellsig.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
Abstract
Regulator of G protein signaling 2 (RGS2) is upregulated by multiple forms of stress and can augment translational attenuation associated with the phosphorylation of the initiation factor eIF2, a hallmark of several stress-induced coping mechanisms. Under stress-induced translational inhibition, key factors, such as ATF4, are selectively expressed via alternative translation mechanisms. These factors are known to regulate molecular switches that control cell fate by regulating pro-survival and pro-apoptotic signals. The molecular mechanisms that balance these opposing responses to stresses are unclear. The present results suggest that RGS2 may be an important regulatory component in the cellular stress response through its translational control abilities. Previously, we have shown that RGS2 can interact with the translation initiation factor, eIF2B, and inhibit de novo protein synthesis. Here, we demonstrate that the expression of either full length RGS2 or its eIF2B-interacting domain (RGS2eb) significantly increases levels of ATF4 and CHOP, both of which are linked to stress-induced apoptosis. Furthermore, we show that these effects are translationally regulated and independent of eIF2 phosphorylation. The present results thus point to a novel function of RGS2 in the stress response directly related to its ability to reduce global protein synthesis.
Collapse
Affiliation(s)
- Chang-Hui Jenny Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Biology, Faculty of Science, University of Western Ontario, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
15
|
Arnold C, Demirel E, Feldner A, Genové G, Zhang H, Sticht C, Wieland T, Hecker M, Heximer S, Korff T. Hypertension‐evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J 2018; 32:2021-2035. [DOI: 10.1096/fj.201700384rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Eda Demirel
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Guillem Genové
- Center of Medical ResearchHeidelberg UniversityHeidelbergGermany
| | - Hangjun Zhang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Carsten Sticht
- Integrated Cardiometabolic CenterKarolinska InstituteHuddingeSweden
| | - Thomas Wieland
- Department of Physiology, Heart and Stroke Richard Lewar Centre of Excellence for Cardiovascular ResearchUniversity of TorontoTorontoOntarioCanada
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Scott Heximer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
16
|
Wijesinghe P, Johansen NJ, Curatolo A, Sampson DD, Ganss R, Kennedy BF. Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta. Biophys J 2018; 113:2540-2551. [PMID: 29212007 DOI: 10.1016/j.bpj.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Cellular-scale imaging of the mechanical properties of tissue has helped to reveal the origins of disease; however, cellular-scale resolution is not readily achievable in intact tissue volumes. Here, we demonstrate volumetric imaging of Young's modulus using ultrahigh-resolution optical coherence elastography, and apply it to characterizing the stiffness of mouse aortas. We achieve isotropic resolution of better than 15 μm over a 1-mm lateral field of view through the entire depth of an intact aortic wall. We employ a method of quasi-static compression elastography that measures volumetric axial strain and uses a compliant, transparent layer to measure surface axial stress. This combination is used to estimate Young's modulus throughout the volume. We demonstrate differentiation by stiffness of individual elastic lamellae and vascular smooth muscle. We observe stiffening of the aorta in regulator of G protein signaling 5-deficient mice, a model that is linked to vascular remodeling and fibrosis. We observe increased stiffness with proximity to the heart, as well as regions with micro-structural and micro-mechanical signatures characteristic of fibrous and lipid-rich tissue. High-resolution imaging of Young's modulus with optical coherence elastography may become an important tool in vascular biology and in other fields concerned with understanding the role of mechanics within the complex three-dimensional architecture of tissue.
Collapse
Affiliation(s)
- Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia.
| | - Niloufer J Johansen
- Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; Research Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Andrea Curatolo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Hong K, Li M, Nourian Z, Meininger GA, Hill MA. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension. Hypertension 2017; 70:1264-1272. [PMID: 29061726 DOI: 10.1161/hypertensionaha.117.09757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/11/2017] [Accepted: 09/20/2017] [Indexed: 01/07/2023]
Abstract
Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT1R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT1R when activated by mechanical stress or angiotensin II and whether this modulates AT1R-mediated vasoconstriction. To determine whether activation of the AT1R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT1R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT1R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT1R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT1R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT1R activation results in translocation of RGS5 toward the plasma membrane, limiting AT1R-mediated vasoconstriction through its role in Gq/11 protein-dependent signaling.
Collapse
Affiliation(s)
- Kwangseok Hong
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Min Li
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Zahra Nourian
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Gerald A Meininger
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Michael A Hill
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.).
| |
Collapse
|
18
|
Maziarz M, Garcia-Marcos M. Fluorescence polarization assays to measure interactions between Gα subunits of heterotrimeric G proteins and regulatory motifs. Methods Cell Biol 2017; 142:133-143. [PMID: 28964332 DOI: 10.1016/bs.mcb.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fluorescence polarization (FP) is a simple and sensitive method allowing for the quantification of interactions between proteins and fluorescently tagged small molecules like peptides. Heterotrimeric G proteins are critical signal transducing molecules and their activity is controlled by a complex network of regulatory proteins. Some of these regulators have defined short motifs (<40 amino acids) that are sufficient to bind G proteins and subsequently modulate their activity. For these cases, FP represents a robust and quantitative method to characterize the G protein regulator interaction. Here we describe FP assays in a 384-well plate format to quantify interactions between Gα subunits of heterotrimeric G proteins and peptides corresponding to the Gα binding and activating (GBA) or GoLoco motifs, which are present in some proteins with guanine nucleotide exchange factor (GEF) (e.g., GIV/Girdin) or guanine nucleotide dissociation inhibitor (GDI) (e.g., RGS12) activity, respectively. This assay can be used to determine equilibrium dissociation constants, characterize the impact of single amino acid point mutations on the Gα-peptide interaction, and is suitable for high-throughput screening.
Collapse
Affiliation(s)
- Marcin Maziarz
- Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
19
|
Lee KN, Lu X, Nguyen C, Feng Q, Chidiac P. Cardiomyocyte specific overexpression of a 37 amino acid domain of regulator of G protein signalling 2 inhibits cardiac hypertrophy and improves function in response to pressure overload in mice. J Mol Cell Cardiol 2017. [PMID: 28641980 DOI: 10.1016/j.yjmcc.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regulator of G protein signalling 2 (RGS2) is known to play a protective role in maladaptive cardiac hypertrophy and heart failure via its ability to inhibit Gq- and Gs- mediated GPCR signalling. We previously demonstrated that RGS2 can also inhibit protein translation and can thereby attenuate cell growth. This G protein-independent inhibitory effect has been mapped to a 37 amino acid domain (RGS2eb) within RGS2 that binds to eukaryotic initiation factor 2B (eIF2B). When expressed in neonatal rat cardiomyocytes, RGS2eb attenuates both protein synthesis and hypertrophy induced by Gq- and Gs- activating agents. In the current study, we investigated the potential cardioprotective role of RGS2eb by determining whether RGS2eb transgenic (RGS2eb TG) mice with cardiomyocyte specific overexpression of RGS2eb show resistance to the development of hypertrophy in comparison to wild-type (WT) controls. Using transverse aortic constriction (TAC) in a pressure-overload hypertrophy model, we demonstrated that cardiac hypertrophy was inhibited in RGS2eb TG mice compared to WT controls following four weeks of TAC. Expression of the hypertrophic markers atrial natriuretic peptide (ANP) and β-myosin heavy chain (MHC-β) was also reduced in RGS2eb TG compared to WT TAC animals. Furthermore, cardiac function in RGS2eb TG TAC mice was significantly improved compared to WT TAC mice. Notably, cardiomyocyte cell size was significantly decreased in TG compared to WT TAC mice. These results suggest that RGS2 may limit pathological cardiac hypertrophy at least in part via the function of its eIF2B-binding domain.
Collapse
Affiliation(s)
- Katherine N Lee
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Chau Nguyen
- School of Pharmacy, D'Youville College, Buffalo, New York 14201, USA
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada.
| |
Collapse
|
20
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol 2016; 312:H189-H200. [PMID: 27881385 DOI: 10.1152/ajpheart.00155.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid. Spain; and.,Ciber Enfermedades Respiratorias (Ciberes). Madrid. Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| |
Collapse
|
22
|
Jie L, Owens EA, Plante LA, Fang Z, Rensing DT, Moeller KD, Osei-Owusu P. RGS2 squelches vascular Gi/o and Gq signaling to modulate myogenic tone and promote uterine blood flow. Physiol Rep 2016; 4:4/2/e12692. [PMID: 26811058 PMCID: PMC4760385 DOI: 10.14814/phy2.12692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Uterine artery blood flow (UABF) is critical to maintaining uterine perfusion in nonpregnant states and for uteroplacental delivery of nutrients and oxygen to the fetus during pregnancy. Impaired UABF is implicated in infertility and several pregnancy complications including fetal growth restriction, small for gestational age, and preeclampsia. The etiology of abnormal UABF is not known. Here, we determined whether deficiency or loss of RGS2, a GTPase-activating protein for Gq/11 and Gi/o class G proteins, affects UABF in nonpregnant mice. We used Doppler ultrasonography to assess UABF in wild type (WT), Rgs2 heterozygous (Rgs2+/-), and homozygous knockout (Rgs2-/-) mice. Video microscopy was used for ex vivo examination of uterine artery myogenic tone and fura-2 imaging for in vitro assessment of internal stores Ca(2+) release. We found that baseline UABF velocity was markedly decreased while impedance measured as resistive index (WT = 0.58 ± 0.04 vs. Rgs2-/- = 0.71 ± 0.03, P < 0.01) and pulsatile index (WT = 0.90 ± 0.06 vs. Rgs2-/- = 1.25 ± 0.11, P < 0.01) was increased in Rgs2-/- mice. Uterine artery tone was augmented in Rgs2+/- and Rgs2-/- mice, which was normalized to WT levels following Gi/o and Gq inactivation. Conversely, blockade of ryanodine receptors increased WT myogenic tone to RGS2 mutant levels. The data together indicate that RGS2 deficiency decreases UABF by increasing myogenic tone at least partly through prolonged G protein activation. Mutations that decrease vascular RGS2 expression may be a predisposition to decreased uterine blood flow. Targeting G protein signaling therefore might improve uterine and uteroplacental underperfusion disorders.
Collapse
Affiliation(s)
- Li Jie
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Elizabeth A Owens
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Lauren A Plante
- Department of Obstetrics & Gynecology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zhuyuan Fang
- Jiangsu Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Derek T Rensing
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Patrick Osei-Owusu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Sjögren B, Parra S, Atkins KB, Karaj B, Neubig RR. Digoxin-Mediated Upregulation of RGS2 Protein Protects against Cardiac Injury. J Pharmacol Exp Ther 2016; 357:311-9. [PMID: 26941169 PMCID: PMC4851323 DOI: 10.1124/jpet.115.231571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins have emerged as novel drug targets since their discovery almost two decades ago. RGS2 has received particular interest in cardiovascular research due to its role in regulating Gqsignaling in the heart and vascular smooth muscle. RGS2(-/-)mice are hypertensive, prone to heart failure, and display accelerated kidney fibrosis. RGS2 is rapidly degraded through the proteasome, and human mutations leading to accelerated RGS2 protein degradation correlate with hypertension. Hence, stabilizing RGS2 protein expression could be a novel route in treating cardiovascular disease. We previously identified cardiotonic steroids, including digoxin, as selective stabilizers of RGS2 protein in vitro. In the current study we investigated the functional effects of digoxin-mediated RGS2 protein stabilization in vivo. Using freshly isolated myocytes from wild-type and RGS2(-/-)mice treated with vehicle or low-dose digoxin (2µg/kg/day for 7 days) we demonstrated that agonist-induced cAMP levels and cardiomyocyte contractility was inhibited by digoxin in wild-type but not in RGS2(-/-)mice. This inhibition was accompanied by an increase in RGS2 protein levels in cardiomyocytes as well as in whole heart tissue. Furthermore, digoxin had protective effects in a model of cardiac injury in wild-type mice and this protection was lost in RGS2(-/-)mice. Digoxin is the oldest known therapy for heart failure; however, beyond its activity at the Na(+)/K(+)-ATPase, the exact mechanism of action is not known. The current study adds a novel mechanism, whereby through stabilizing RGS2 protein levels digoxin could exert its protective effects in the failing heart.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Sergio Parra
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Kevin B Atkins
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Behirda Karaj
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci 2016; 129:1210-22. [PMID: 26826188 DOI: 10.1242/jcs.181883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Activator of G-protein signaling 8 (AGS8, also known as FNDC1) is a receptor-independent accessory protein for the Gβγ subunit, which was isolated from rat heart subjected to repetitive transient ischemia with the substantial development of collaterals. Here, we report the role of AGS8 in vessel formation by endothelial cells. Knockdown of AGS8 by small interfering RNA (siRNA) inhibited vascular endothelial growth factor (VEGF)-induced tube formation, as well as VEGF-stimulated cell growth and migration. VEGF stimulated the phosphorylation of the VEGF receptor-2 (VEGFR-2, also known as KDR), ERK1/2 and p38 MAPK; however, knockdown of AGS8 inhibited these signaling events. Signal alterations by AGS8 siRNA were associated with a decrease of cell surface VEGFR-2 and an increase of VEGFR-2 in the cytosol. Endocytosis blockers did not influence the decrease of VEGFR-2 by AGS8 siRNA, suggesting the involvement of AGS8 in VEGFR-2 trafficking to the plasma membrane. VEGFR-2 formed a complex with AGS8 in cells, and a peptide designed to disrupt AGS8-Gβγ interaction inhibited VEGF-induced tube formation. These data suggest a potential role for AGS8-Gβγ in VEGF signal processing. AGS8 might play a key role in tissue adaptation by regulating angiogenic events.
Collapse
Affiliation(s)
- Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Abdullah Al Mamun
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Miho Sakima
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
25
|
Song D, Nishiyama M, Kimura S. Potent inhibition of angiotensin AT1 receptor signaling by RGS8: importance of the C-terminal third exon part of its RGS domain. J Recept Signal Transduct Res 2016; 36:478-87. [PMID: 26754208 DOI: 10.3109/10799893.2015.1130056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in regulation of many GPCR-mediated responses. Multiple RGS proteins are usually expressed in a cell, and it is difficult to point out which RGS protein species are functionally important in the cell. To evaluate intrinsic potency of these RGS proteins, we compared inhibitory effects of RGS1, RGS2, RGS3, RGS4, RGS5, RGS8 and RGS16 on AT1 receptor signaling. Intracellular Ca(2+) responses to angiotensin II were markedly attenuated by transiently expressed RGS2, RGS3 and RGS8, compared to weak inhibition by RGS1, RGS4, RGS5 and RGS16. N-terminally deleted RGS2 (RGS2 domain) lost this potent inhibitory effect, whereas RGS domains of RGS3 and RGS8 showed strong inhibition similar to those of the full-length proteins. To investigate key determinants that specify the differences in potency, we constructed chimeric domains by replacing one or two of three exon parts of RGS8 domain with the corresponding part of RGS5. The chimeric RGS8 domains containing the first or the second exon part of RGS5 showed strong inhibitory effects similar to that of wild type RGS8, but the chimeric domain with the third exon part of RGS5 lost its activity. On the contrary, replacement of the third exon part of RGS5 with the corresponding residues of RGS8 increased the inhibitory effect. The role of the third exon part of RGS8 domain was further confirmed with the chimeric RGS8/RGS4 domains. These results indicate the potent inhibitory activity of RGS8 among R4/B subfamily proteins and importance of the third exon.
Collapse
Affiliation(s)
- Dan Song
- a Department of Biochemistry and Molecular Pharmacology , Graduate School of Medicine, Chiba University , Chuo-Ku , Chiba , Japan
| | - Mariko Nishiyama
- a Department of Biochemistry and Molecular Pharmacology , Graduate School of Medicine, Chiba University , Chuo-Ku , Chiba , Japan
| | - Sadao Kimura
- a Department of Biochemistry and Molecular Pharmacology , Graduate School of Medicine, Chiba University , Chuo-Ku , Chiba , Japan
| |
Collapse
|
26
|
Inducible glomerular erythropoietin production in the adult kidney. Kidney Int 2015; 88:1345-1355. [PMID: 26398496 DOI: 10.1038/ki.2015.274] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor (HIF)-2-triggered erythropoietin production in renal interstitial fibroblast-like cells is the physiologically relevant source of erythropoietin for regulating erythropoiesis. During renal fibrosis, these cells transform into myofibroblasts and lose their ability to produce sufficient erythropoietin leading to anemia. To find if other cells for erythropoietin production might exist in the kidney we tested for the capability of nonepithelial glomerular cells to elaborate erythropoietin. Therefore, HIF transcription factors were stabilized by cell-specific deletion of the von Hippel-Lindau (VHL) gene. Inducible deletion of VHL in glomerular connexin40-expressing cells (endothelial, renin-expressing, and mesangial cells) markedly increased glomerular erythropoietin mRNA expression levels, plasma erythropoietin concentrations, and hematocrit values. These changes were mimicked by inducible cell-specific VHL deletion in renin-expressing and in mesangial cells but not in endothelial cells. The increases of erythropoietin production were absent, when VHL was co-deleted with HIF-2. The induction of glomerular erythropoietin expression was associated with the downregulation of juxtaglomerular renin expression, again in a HIF-2-dependent manner. Thus, VHL deletion in renin-expressing and in mesangial cells induces the capability to produce relevant amounts of erythropoietin and to suppress renin expression in the adult kidney if HIF-2 is stabilized.
Collapse
|
27
|
Arnold C, Feldner A, Pfisterer L, Hödebeck M, Troidl K, Genové G, Wieland T, Hecker M, Korff T. RGS5 promotes arterial growth during arteriogenesis. EMBO Mol Med 2015; 6:1075-89. [PMID: 24972930 PMCID: PMC4154134 DOI: 10.15252/emmm.201403864] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arteriogenesis—the growth of collateral arterioles—partially compensates for the progressive occlusion of large conductance arteries as it may occur as a consequence of coronary, cerebral or peripheral artery disease. Despite being clinically highly relevant, mechanisms driving this process remain elusive. In this context, our study revealed that abundance of regulator of G-protein signalling 5 (RGS5) is increased in vascular smooth muscle cells (SMCs) of remodelling collateral arterioles. RGS5 terminates G-protein-coupled signalling cascades which control contractile responses of SMCs. Consequently, overexpression of RGS5 blunted Gαq/11-mediated mobilization of intracellular calcium, thereby facilitating Gα12/13-mediated RhoA signalling which is crucial for arteriogenesis. Knockdown of RGS5 evoked opposite effects and thus strongly impaired collateral growth as evidenced by a blockade of RhoA activation, SMC proliferation and the inability of these cells to acquire an activated phenotype in RGS5-deficient mice after the onset of arteriogenesis. Collectively, these findings establish RGS5 as a novel determinant of arteriogenesis which shifts G-protein signalling from Gαq/11-mediated calcium-dependent contraction towards Gα12/13-mediated Rho kinase-dependent SMC activation. Subject Categories Vascular Biology & Angiogenesis
Collapse
Affiliation(s)
- Caroline Arnold
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Anja Feldner
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Larissa Pfisterer
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Maren Hödebeck
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Troidl
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillem Genové
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Heidelberg, Mannheim, Germany
| | - Markus Hecker
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Cheng WL, Wang PX, Wang T, Zhang Y, Du C, Li H, Ji Y. Regulator of G-protein signalling 5 protects against atherosclerosis in apolipoprotein E-deficient mice. Br J Pharmacol 2015; 172:5676-89. [PMID: 25363362 DOI: 10.1111/bph.12991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a chronic inflammatory disease, in which 'vulnerable plaques' have been recognized as the underlying risk factor for coronary disease. Regulator of G-protein signalling (RGS) 5 controls endothelial cell function and inflammation. In this study, we explored the effect of RGS5 on atherosclerosis and the potential underlying mechanisms. EXPERIMENTAL APPROACH RGS5(-/-) apolipoprotein E (ApoE)(-/-) and ApoE(-/-) littermates were fed a high-fat diet for 28 weeks. Total aorta surface and lipid accumulation were measured by Oil Red O staining and haematoxylin-eosin staining was used to analyse the morphology of atherosclerotic lesions. Inflammatory cell infiltration and general inflammatory mediators were examined by immunofluorescence staining. Apoptotic endothelial cells and macrophages were assayed with TUNEL. Expression of RGS5 and adhesion molecules, and ERK1/2 phosphorylation were evaluated by co-staining with CD31. Expression of mRNA and protein were determined by quantitative real-time PCR and Western blotting respectively. KEY RESULTS Atherosclerotic phenotypes were significantly accelerated in RGS5(-/-) ApoE(-/-) mice, as indicated by increased inflammatory mediator expression and apoptosis of endothelial cells and macrophages. RGS5 deficiency enhanced instability of vulnerable plaques by increasing infiltration of macrophages in parallel with the accumulation of lipids, and decreased smooth muscle cell and collagen content. Mechanistically, increased activation of NF-κB and MAPK/ERK 1/2 could be responsible for the accelerated development of atherosclerosis in RGS5-deficient mice. CONCLUSIONS AND IMPLICATIONS RGS5 deletion accelerated development of atherosclerosis and decreased the stability of atherosclerotic plaques partly through activating NF-κB and the MEK-ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Du
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Ganss R. Keeping the Balance Right. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:93-121. [DOI: 10.1016/bs.pmbts.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Momen A, Afroze T, Sadi AM, Khoshbin A, Zhang H, Choi J, Gu S, Zaidi SH, Heximer SP, Husain M. Enhanced proliferation and altered calcium handling in RGS2-deficient vascular smooth muscle cells. J Recept Signal Transduct Res 2014; 34:476-83. [PMID: 24846582 DOI: 10.3109/10799893.2014.920393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Regulator of G-protein signaling-2 (RGS2) inhibits Gq-mediated regulation of Ca(2+) signalling in vascular smooth muscle cells (VSMC). OBJECTIVE RGS2 knockout (RGS2KO) mice are hypertensive and show arteriolar remodeling. VSMC proliferation modulates intracellular Ca(2+) concentration [Ca(2+)]i. RGS2 involvement in VSMC proliferation had not been examined. METHODS Thymidine incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion assays measured cell proliferation. Fura-2 ratiometric imaging quantified [Ca(2+)]i before and after UTP and thapsigargin. [(3)H]-labeled inositol was used for phosphoinositide hydrolysis. Quantitative RT-PCR and confocal immunofluorescence of select Ca(2+) transporters was performed in primary aortic VSMC. RESULTS AND DISCUSSION Platelet-derived growth factor (PDGF) increased S-phase entry and proliferation in VSMC from RGS2KO mice to a greater extent than in VSMC from wild-type (WT) controls. Consistent with differential PDGF-induced changes in Ca(2+) homeostasis, RGS2KO VSMC showed lower resting [Ca(2+)]i but higher thapsigargin-induced [Ca(2+)]i as compared with WT. RGS2KO VSMC expressed lower mRNA levels of plasma membrane Ca(2+) ATPase-4 (PMCA4) and Na(+) Ca(2+) Exchanger (NCX), but higher levels of sarco-endoplasmic reticulum Ca(2+) ATPase-2 (SERCA2). Western blot and immunofluorescence revealed similar differences in PMCA4 and SERCA2 protein, while levels of NCX protein were not reduced in RGS2KO VSMC. Consistent with decreased Ca(2+) efflux activity, (45)Ca-extrusion rates were lower in RGS2KO VSMC. These differences were reversed by the PMCA inhibitor La(3+), but not by replacing extracellular Na(+) with choline, implicating differences in the activity of PMCA and not NCX. CONCLUSION RGS2-deficient VSMC exhibit higher rates of proliferation and coordinate plasticity of Ca(2+)-handling mechanisms in response to PDGF stimulation.
Collapse
Affiliation(s)
- Abdul Momen
- Division of Experimental Therapeutics, Toronto General Research Institute , University Health Network, Toronto, Ontario , Canada and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
ADEBIYI ADEBOWALE. RGS2 regulates urotensin II-induced intracellular Ca2+ elevation and contraction in glomerular mesangial cells. J Cell Physiol 2014; 229:502-11. [PMID: 24105430 PMCID: PMC11250777 DOI: 10.1002/jcp.24470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
Urotensin II (UII), a vasoactive peptide modulates renal hemodynamics. However, the physiological functions of UII in glomerular cells are unclear. In particular, whether UII alters mesangial tone remains largely unknown. The present study investigates the physiological effects of UII on glomerular mesangial cells (GMCs). This study also tested the hypothesis that the regulator of G-protein signaling (RGS) controls UII receptor (UTR) activity in GMCs. RT-PCR, Western immunoblotting, and immunofluorescence revealed UTR expression in cultured murine GMCs. Mouse UII (mUII) stimulated Ca(2+) release from intracellular stores and activated store-operated Ca(2+) entry (SOCE) in the cells. mUII also caused a reduction in planar GMC surface area. mUII-induced [Ca(2+)]i elevation and contraction were attenuated by SB 657510, a UTR antagonist, araguspongin B, an inositol 1,4,5-trisphosphate receptor antagonist, thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, and La(3+), a store-operated Ca(2+) channel blocker, but not nimodipine, an L-type Ca(2+) channel blocker. In situ proximity ligation assay indicated molecular proximity between endogenous RGS2 and UTR in the cells. Treatment of GMCs with mUII elevated plasma membrane expression of RGS2 by ∼2-fold. mUII also increased the interaction between RGS2 and UTR in the cells. siRNA-mediated knockdown of RGS2 in murine GMCs increased mUII-induced [Ca(2+)]i elevation and contraction by ∼35 and 31%, respectively. These findings indicate that mUII-induced SOCE results in murine GMC contraction. These data also suggest that UTR activation stimulates RGS2 recruitment to GMC plasma membrane as a negative feedback mechanism to regulate UTR signaling.
Collapse
Affiliation(s)
- ADEBOWALE ADEBIYI
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
32
|
Protection of cardiomyocytes from the hypoxia-mediated injury by a peptide targeting the activator of G-protein signaling 8. PLoS One 2014; 9:e91980. [PMID: 24632710 PMCID: PMC3954831 DOI: 10.1371/journal.pone.0091980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/16/2014] [Indexed: 11/19/2022] Open
Abstract
Signaling via heterotrimeric G-protein is involved in the development of human diseases including ischemia-reperfusion injury of the heart. We previously identified an ischemia-inducible G-protein activator, activator of G-protein signaling 8 (AGS8), which regulates Gβγ signaling and plays a key role in the hypoxia-induced apoptosis of cardiomyocytes. Here, we attempted to intervene in the AGS8-Gβγ signaling process and protect cardiomyocytes from hypoxia-induced apoptosis with a peptide that disrupted the AGS8-Gβγ interaction. Synthesized AGS8-peptides, with amino acid sequences based on those of the Gβγ-binding domain of AGS8, successfully inhibited the association of AGS8 with Gβγ. The AGS8-peptide effectively blocked hypoxia-induced apoptosis of cardiomyocytes, as determined by DNA end-labeling and an increase in cleaved caspase-3. AGS8-peptide also inhibited the change in localization/permeability of channel protein connexin 43, which was mediated by AGS8-Gβγ under hypoxia. Small compounds that inhibit a wide range of Gβγ signals caused deleterious effects in cardiomyocytes. In contrast, AGS8-peptide did not cause cell damage under normoxia, suggesting an advantage inherent in targeted disruption of the AGS8-Gβγ signaling pathway. These data indicate a pivotal role for the interaction of AGS8 with Gβγ in hypoxia-induced apoptosis of cardiomyocytes, and suggest that targeted disruption of the AGS8-Gβγ signal provides a novel approach for protecting the myocardium against ischemic injury.
Collapse
|
33
|
Chidiac P, Sobiesiak AJ, Lee KN, Gros R, Nguyen CH. The eIF2B-interacting domain of RGS2 protects against GPCR agonist-induced hypertrophy in neonatal rat cardiomyocytes. Cell Signal 2014; 26:1226-34. [PMID: 24576550 DOI: 10.1016/j.cellsig.2014.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 11/29/2022]
Abstract
The protective effect of Regulator of G protein Signaling 2 (RGS2) in cardiac hypertrophy is thought to occur through its ability to inhibit the chronic GPCR signaling that promotes pathogenic growth both in vivo and in cultured cardiomyocytes. However, RGS2 is known to have additional functions beyond its activity as a GTPase accelerating protein, such as the ability to bind to eukaryotic initiation factor, eIF2B, and inhibit protein synthesis. The RGS2 eIF2B-interacting domain (RGS2(eb)) was examined for its ability to regulate hypertrophy in neonatal ventricular myocytes. Both full-length RGS2 and RGS2(eb) were able to inhibit agonist-induced cardiomyocyte hypertrophy, but RGS2(eb) had no effect on receptor-mediated inositol phosphate production, cAMP production, or ERK 1/2 activation. These results suggest that the protective effects of RGS2 in cardiac hypertrophy may derive at least in part from its ability to govern protein synthesis.
Collapse
Affiliation(s)
- Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alina J Sobiesiak
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Katherine N Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Chau H Nguyen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; School of Pharmacy, D'Youville College, Buffalo, NY 14201, USA.
| |
Collapse
|
34
|
G protein-coupled receptor accessory proteins and signaling: pharmacogenomic insights. Methods Mol Biol 2014; 1175:121-52. [PMID: 25150869 DOI: 10.1007/978-1-4939-0956-8_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification and characterization of the genes encoding G protein-coupled receptors (GPCRs) and the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane are discussed in the context of human genetic disease. In addition to functional GPCR variants, the identification of genetic disruptions affecting proteins necessary to GPCR functions have provided insights into the function of these pathways. Gsα and Gβ subunit polymorphisms have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribution of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disorders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in the context of genetic disorders associated with disruption of the genes that encode them. An understanding of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of given receptor systems.
Collapse
|
35
|
Zhang P, Mende U. Functional role, mechanisms of regulation, and therapeutic potential of regulator of G protein signaling 2 in the heart. Trends Cardiovasc Med 2013; 24:85-93. [PMID: 23962825 DOI: 10.1016/j.tcm.2013.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022]
Abstract
G protein-mediated signal transduction is essential for the regulation of cardiovascular function, including heart rate, growth, contraction, and vascular tone. Regulators of G protein Signaling (RGS proteins) fine-tune G protein-coupled receptor-induced signaling by regulating its magnitude and duration through direct interaction with the α subunits of heterotrimeric G proteins. Changes in the RGS protein expression and/or function in the heart often lead to pathophysiological changes and are associated with cardiac disease in animals and humans, including hypertrophy, fibrosis development, heart failure, and arrhythmias. This article focuses on Regulator of G protein Signaling 2 (RGS2), which is widely expressed in many tissues and is highly regulated in its expression and function. Most information to date has been obtained in biochemical, cellular, and animal studies, but data from humans is emerging. We review recent advances on the functional role of cardiovascular RGS2 and the mechanisms that determine its signaling selectivity, expression, and functionality. We highlight key unanswered questions and discuss the potential of RGS2 as a therapeutic target.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
36
|
Guasch E, Benito B, Qi X, Cifelli C, Naud P, Shi Y, Mighiu A, Tardif JC, Tadevosyan A, Chen Y, Gillis MA, Iwasaki YK, Dobrev D, Mont L, Heximer S, Nattel S. Atrial Fibrillation Promotion by Endurance Exercise. J Am Coll Cardiol 2013; 62:68-77. [DOI: 10.1016/j.jacc.2013.01.091] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 12/31/2022]
|
37
|
Holobotovskyy V, Manzur M, Tare M, Burchell J, Bolitho E, Viola H, Hool LC, Arnolda LF, McKitrick DJ, Ganss R. Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling. Circ Res 2013; 112:781-91. [PMID: 23303165 DOI: 10.1161/circresaha.111.300142] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regulator of G-protein signaling 5 (RGS5) modulates G-protein-coupled receptor signaling and is prominently expressed in arterial smooth muscle cells. Our group first reported that RGS5 is important in vascular remodeling during tumor angiogenesis. We hypothesized that RGS5 may play an important role in vessel wall remodeling and blood pressure regulation. OBJECTIVE To demonstrate that RGS5 has a unique and nonredundant role in the pathogenesis of hypertension and to identify crucial RGS5-regulated signaling pathways. METHODS AND RESULTS We observed that arterial RGS5 expression is downregulated with chronically elevated blood pressure after angiotensin II infusion. Using a knockout mouse model, radiotelemetry, and pharmacological inhibition, we subsequently showed that loss of RGS5 results in profound hypertension. RGS5 signaling is linked to the renin-angiotensin system and directly controls vascular resistance, vessel contractility, and remodeling. RGS5 deficiency aggravates pathophysiological features of hypertension, such as medial hypertrophy and fibrosis. Moreover, we demonstrate that protein kinase C, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Rho kinase signaling pathways are major effectors of RGS5-mediated hypertension. CONCLUSIONS Loss of RGS5 results in hypertension. Loss of RGS5 signaling also correlates with hyper-responsiveness to vasoconstrictors and vascular stiffening. This establishes a significant, distinct, and causal role of RGS5 in vascular homeostasis. RGS5 modulates signaling through the angiotensin II receptor 1 and major Gαq-coupled downstream pathways, including Rho kinase. So far, activation of RhoA/Rho kinase has not been associated with RGS molecules. Thus, RGS5 is a crucial regulator of blood pressure homeostasis with significant clinical implications for vascular pathologies, such as hypertension.
Collapse
Affiliation(s)
- Vasyl Holobotovskyy
- Western Australian Institute for Medical Research, Rear, 50 Murray St, Perth, WA 6010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Qin M, Huang H, Wang T, Hu H, Liu Y, Cao H, Li H, Huang C. Absence of Rgs5 prolongs cardiac repolarization and predisposes to ventricular tachyarrhythmia in mice. J Mol Cell Cardiol 2012; 53:880-90. [DOI: 10.1016/j.yjmcc.2012.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/19/2012] [Accepted: 10/03/2012] [Indexed: 11/17/2022]
|
39
|
Jones DL, Tuomi JM, Chidiac P. Role of Cholinergic Innervation and RGS2 in Atrial Arrhythmia. Front Physiol 2012; 3:239. [PMID: 22754542 PMCID: PMC3386567 DOI: 10.3389/fphys.2012.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/12/2012] [Indexed: 01/25/2023] Open
Abstract
The heart receives sympathetic and parasympathetic efferent innervation as well as the ability to process information internally via an intrinsic cardiac autonomic nervous system (ICANS). For over a century, the role of the parasympathetics via vagal acetylcholine release was related to controlling primarily heart rate. Although in the late 1800s shown to play a role in atrial arrhythmia, the myocardium took precedence from the mid-1950s until in the last decade a resurgence of interest in the autonomics along with signaling cascades, regulators, and ion channels. Originally ignored as being benign and thus untreated, recent emphasis has focused on atrial arrhythmia as atrial fibrillation (AF) is the most common arrhythmia seen by the general practitioner. It is now recognized to have significant mortality and morbidity due to resultant stroke and heart failure. With the aging population, there will be an unprecedented increased burden on health care resources. Although it has been known for more than half a century that cholinergic stimulation can initiate AF, the classical concept focused on the M2 receptor and its signaling cascade including RGS4, as these had been shown to have predominant effects on nodal function (heart rate and conduction block) as well as contractility. However, recent evidence suggests that the M3 receptor may also playa role in initiation and perpetuation of AF and thus RGS2, a putative regulator of the M3 receptor, may be a target for therapeutic intervention. Mice lacking RGS2 (RGS2−/−), were found to have significantly altered electrophysiological atrial responses and were more susceptible to electrically induced AF. Vagally induced or programmed stimulation-induced AF could be blocked by the selective M3R antagonist, darifenacin. These results suggest a potential surgical target (ICANS) and pharmacological targets (M3R, RGS2) for the management of AF.
Collapse
Affiliation(s)
- Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| | | | | |
Collapse
|
40
|
Kach J, Sethakorn N, Dulin NO. A finer tuning of G-protein signaling through regulated control of RGS proteins. Am J Physiol Heart Circ Physiol 2012; 303:H19-35. [PMID: 22542620 DOI: 10.1152/ajpheart.00764.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
41
|
Huang PS, Yeh HS, Yi HP, Lin CJ, Yang CS. Fluorescence-based assay probing regulator of G protein signaling partner proteins. Anal Biochem 2012; 423:133-40. [PMID: 22310500 DOI: 10.1016/j.ab.2012.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
The regulator of G protein signaling (RGS) proteins are one of the essential modulators for the G protein system. Besides regulating G protein signaling by accelerating the GTPase activity of Gα subunits, RGS proteins are implicated in exerting other functions; they are also known to be involved in several diseases. Moreover, the existence of a single RGS protein in plants and its seven-transmembrane domain found in 2003 triggered efforts to unveil detailed structural and functional information of RGS proteins. We present a method for real-time examination of the protein-protein interactions between RGS and Gα subunits. AtRGS1 from plants and RGS4 from mammals were site-directedly labeled with the fluorescent probe Lucifer yellow on engineered cysteine residues and used to interact with different Gα subunits. The physical interactions can be revealed by monitoring the real-time fluorescence changes (8.6% fluorescence increase in mammals and 27.6% in plants); their correlations to functional exertion were shown with a GTPase accelerating activity assay and further confirmed by measurement of K(d). We validate the effectiveness of this method and suggest its application to the exploration of more RGS signaling partner proteins in physiological and pathological studies.
Collapse
Affiliation(s)
- Po-Shiun Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Lee HK, Park DW, Bae JH, Kim HJ, Shin DG, Park JS, Lee JG, Lee SJ, Bae YS, Baek SH. RGS2 is a negative regulator of STAT3-mediated Nox1 expression. Cell Signal 2012; 24:803-9. [DOI: 10.1016/j.cellsig.2011.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
43
|
Osei-Owusu P, Sabharwal R, Kaltenbronn KM, Rhee MH, Chapleau MW, Dietrich HH, Blumer KJ. Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating Gi/o signaling. J Biol Chem 2012; 287:12541-9. [PMID: 22354966 DOI: 10.1074/jbc.m111.332130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Yang Z, Balenga N, Cooper PR, Damera G, Edwards R, Brightling CE, Panettieri RA, Druey KM. Regulator of G-protein signaling-5 inhibits bronchial smooth muscle contraction in severe asthma. Am J Respir Cell Mol Biol 2012; 46:823-32. [PMID: 22281988 DOI: 10.1165/rcmb.2011-0110oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Severe asthma is associated with fixed airway obstruction attributable to inflammation, copious luminal mucus, and increased airway smooth muscle (ASM) mass. Paradoxically, studies demonstrated that the hypertrophic and hyperplastic ASM characteristic of severe asthma has reduced contractile capacity. We compared the G-protein-coupled receptor (GPCR)-induced Ca(2+) mobilization and expression of GPCRs and signaling proteins related to procontractile signaling in ASM derived postmortem from subjects who died of nonrespiratory causes, with cells from subjects who died of asthma. Despite the increased or comparable expression of contraction-promoting GPCRs (bradykinin B2 or histamine H1 and protease-activated receptor 1, respectively) in asthmatic ASM cells relative to cells from healthy donors, asthmatic ASM cells exhibited reduced histamine-induced Ca(2+) mobilization and comparable responses to bradykinin and thrombin, suggesting a postreceptor signaling defect. Accordingly, the expression of regulator of G-protein signaling-5 (RGS5), an inhibitor of ASM contraction, was increased in cultured, asthmatic ASM cells and in bronchial smooth muscle bundles of both human subjects with asthma and allergen-challenged mice, relative to those of healthy human subjects or naive mice. The overexpression of RGS5 impaired the release of Ca(2+) to thrombin, histamine, and carbachol, and reduced the contraction of precision-cut lung slices to carbachol. These results suggest that increased RGS5 expression contributes to decreased myocyte shortening in severe and fatal asthma.
Collapse
Affiliation(s)
- Zhao Yang
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Insitute of Allergy and Infectious Diseases/NIH, 10 Center Drive, Bethesda, MD 20982, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Xie Z, Liu D, Liu S, Calderon L, Zhao G, Turk J, Guo Z. Identification of a cAMP-response element in the regulator of G-protein signaling-2 (RGS2) promoter as a key cis-regulatory element for RGS2 transcriptional regulation by angiotensin II in cultured vascular smooth muscles. J Biol Chem 2011; 286:44646-58. [PMID: 22057271 DOI: 10.1074/jbc.m111.265462] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice deficient in regulator of G-protein signaling-2 (RGS2) have severe hypertension, and RGS2 genetic variations occur in hypertensive humans. A potentially important negative feedback loop in blood pressure homeostasis is that angiotensin II (Ang II) increases vascular smooth muscle cell (VSMC) RGS2 expression. We reported that Group VIA phospholipase A(2) (iPLA(2)β) is required for this response (Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) J. Biol. Chem. 282, 25278-25289), but the specific molecular causes and consequences of iPLA(2)β activation are not known. Here we demonstrate that both protein kinases C (PKC) and A (PKA) participate in Ang II-induced VSMC RGS2 mRNA up-regulation, and that actions of PKC and PKA precede and follow iPLA(2)β activation, respectively. Moreover, we identified a conserved cAMP-response element (CRE) in the murine RGS2 promoter that is critical for cAMP-response element-binding protein (CREB) binding and RGS2 promoter activation. Forskolin-stimulated RGS2 mRNA up-regulation is inhibited by CREB sequestration or specific disruption of the CREB-RGS2 promoter interaction, and Ang II-induced CREB phosphorylation and nuclear localization are blocked by iPLA(2)β pharmacologic inhibition or genetic ablation. Ang II-induced intracellular cyclic AMP accumulation precedes CREB phosphorylation and is diminished by inhibiting iPLA(2), cyclooxygenase, or lipoxygenase. Moreover, three single nucleotide polymorphisms identified in hypertensive patients are located in the human RGS2 promoter CREB binding site. Point mutations corresponding to these single nucleotide polymorphisms interfere with stimulation of human RGS2 promoter activity by forskolin. Our studies thus delineate a negative feedback loop to attenuate Ang II signaling in VSMC with potential importance in blood pressure homeostasis and the pathogenesis of human essential hypertension.
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology, University of Kentucky School of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Zembutsu H. Prediction of tumor response to chemoradiotherapy by genetic profile in rectal cancer patients. Pharmacogenomics 2011; 12:1515-6. [PMID: 22044412 DOI: 10.2217/pgs.11.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hitoshi Zembutsu
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
47
|
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions and has been widely implicated in human disease. Regulators of G-protein signaling (RGS proteins) belong to a diverse protein family that was originally discovered for their ability to accelerate signal termination in response to GPCR stimulation, thereby reducing the amplitude and duration of GPCR effects. All RGS proteins share a common RGS domain that interacts with G protein α subunits and mediates their biological regulation of GPCR signaling. However, RGS proteins differ widely in size and the organization of their sequences flanking the RGS domain, which contain several additional functional domains that facilitate protein-protein (or protein-lipid) interactions. RGS proteins are subject to posttranslational modifications, and, in addition, their expression, activity, and subcellular localization can be dynamically regulated. Thus, there exists a wide array of mechanisms that facilitate their proper function as modulators and integrators of G-protein signaling. Several RGS proteins have been implicated in the cardiac remodeling response and heart rate regulation, and changes in RGS protein expression and/or function are believed to participate in the pathophysiology of cardiac hypertrophy, failure and arrhythmias as well as hypertension. This review is based on recent advances in our understanding of the expression pattern, regulation, and functional role of canonical RGS proteins, with a special focus on the healthy heart and the diseased heart. In addition, we discuss their potential and promise as therapeutic targets as well as strategies to modulate their expression and function.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI 02903, USA
| | | |
Collapse
|
48
|
Dai J, Gu J, Lu C, Lin J, Stewart D, Chang D, Roth JA, Wu X. Genetic variations in the regulator of G-protein signaling genes are associated with survival in late-stage non-small cell lung cancer. PLoS One 2011; 6:e21120. [PMID: 21698121 PMCID: PMC3117866 DOI: 10.1371/journal.pone.0021120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 01/08/2023] Open
Abstract
The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients.
Collapse
Affiliation(s)
- Jingyao Dai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charles Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jie Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Stewart
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Calò LA, Bordin L, Davis PA, Pagnin E, Dal Maso L, Rossi GP, Pessina AC, Clari G. PLCβ1-SHP-2 complex, PLCβ1 tyrosine dephosphorylation and SHP-2 phosphatase activity: a new part of Angiotensin II signaling? J Biomed Sci 2011; 18:38. [PMID: 21663700 PMCID: PMC3120746 DOI: 10.1186/1423-0127-18-38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) signaling occurs via two major receptors which activate non-receptor tyrosin kinases that then interact with protein tyrosin-phosphatases (PTPs) to regulate cell function. SHP-2 is one such important PTP that also functions as an adaptor to promote downstream signaling pathway. Its role in Ang II signaling remains to be clarified. RESULTS Using cultured normal human fibroblasts, immunoprecipitation and western blots, we show for the first time that SHP-2 and PLCβ1 are present as a preformed complex. Complex PLCβ1 is tyr-phosphorylated basally and Ang II increased SHP-2-PLCβ1 complexes and caused complex associated PLCβ1 tyr-phosphorylation to decline while complex associated SHP-2's tyr-phosphorylation increased and did so via the Ang II type 1 receptors as shown by Ang II type 1 receptor blocker losartan's effects. Moreover, Ang II induced both increased complex phosphatase activity and decreased complex associated PLCβ1 tyr-phosphorylation, the latter response required regulator of G protein signaling (RGS)-2. CONCLUSIONS Ang II signals are shown for the first time to involve a preformed SHP-2-PLCβ1 complex. Changes in the complex's PLCβ1 tyr-phosphorylation and SHP-2's tyr-phosphorylation as well as SHP-2-PLCβ1 complex formation are the result of Ang II type 1 receptor activation with changes in complex associated PLCβ1 tyr-phosphorylation requiring RGS-2. These findings might significantly expand the number and complexity of Ang II signaling pathways. Further studies are needed to delineate the role/s of this complex in the Ang II signaling system.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Clinical and Experimental Medicine, Clinica Medica University of Padova, School of Medicine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essential for the understanding of the (patho)physiological aspects of NO. Several PKG signaling pathways were identified, meanwhile regulating the intracellular calcium concentration, mediating calcium desensitization or cytoskeletal rearrangement. During the last decade it emerged that the inositol trisphosphate receptor-associated cGMP-kinase substrate (IRAG), an endoplasmic reticulum-anchored 125-kDa membrane protein, is a main signal transducer of PKG activity in the cardiovascular system. IRAG interacts specifically in a trimeric complex with the PKG1β isoform and the inositol 1,4,5-trisphosphate receptor I and, upon phosphorylation, reduces the intracellular calcium release from the intracellular stores. IRAG motifs for phosphorylation and for targeting to PKG1β and 1,4,5-trisphosphate receptor I were identified by several approaches. The (patho)physiological functions for the regulation of smooth muscle contractility and the inhibition of platelet activation were perceived. In this review, the IRAG recognition, targeting, and function are summarized compared with PKG and several PKG substrates in the cardiovascular system.
Collapse
Affiliation(s)
- Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|