1
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
2
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Jeddi S, Gheibi S, Afzali H, Carlström M, Kashfi K, Ghasemi A. Hydrogen sulfide potentiates the protective effects of nitrite against myocardial ischemia-reperfusion injury in type 2 diabetic rats. Nitric Oxide 2022; 124:15-23. [DOI: 10.1016/j.niox.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
4
|
Comparison of infarction size, complete ST-segment resolution incidence, mortality and re-infarction and target vessel revascularization between remote ischemic conditioning and ischemic postconditioning in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2020; 16:278-286. [PMID: 33597992 PMCID: PMC7863805 DOI: 10.5114/aic.2020.99262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction Due to higher morbidity and mortality, ST-segment elevation myocardial infarction (STEMI) causes many public health problems. Aim To observe effects of remote ischemic conditioning (RIC) and ischemic postconditioning (IPC) on patients diagnosed as STEMI undergoing primary percutaneous coronary intervention (pPCI). Material and methods This meta-analysis was conducted using indirect comparison by conducting a network meta-analysis (NMA). We conducted searches by utilizing PubMed and the other databases to identify randomized controlled trials (RCTs) that described IPC or RIC treated patients diagnosed with STEMI during processes of pPCI. Enzymatic infarct size and infarction size were evaluated and cardiac events were assessed during the follow-up. Results Pooled results showed that lower enzymatic infarction size was associated with the RIC group compared to the IPC group (IPC vs. RIC: standardized mean difference (SMD) = 1.126; 95% confidence interval (CI): 0.756–1.677). Compared with IPC, RIC significantly reduced infarction size, which was assessed using cardiac magnetic resonance (CMR) (SMD = 1.113; 95% CI: 0.674–1.837). We noted a potential toward greater complete ST-segment resolution in RIC patients compared with IPC patients (odds ratio (OR) = 0.821; 95% CI: 0.166–4.051). No significant difference existed in all-cause mortality (OR = 2.211; 95% CI: 0.845–5.784), Target vessel revascularization (TVR) (OR = 0.045; 95% CI: 0.001–.662) or re-infarction (OR = 1.763; 95% CI: 0.741–4.193). Conclusions This meta-analysis suggested RIC was correlated with significantly smaller infarction size compared to IPC. No significant superiority between RIC and IPC has been observed in this study on cSTR incidence, mortality and re-infarction or TVR.
Collapse
|
5
|
Dose-Dependent Effects of Long-Term Administration of Hydrogen Sulfide on Myocardial Ischemia-Reperfusion Injury in Male Wistar Rats: Modulation of RKIP, NF-κB, and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21041415. [PMID: 32093102 PMCID: PMC7073056 DOI: 10.3390/ijms21041415] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/30/2022] Open
Abstract
Decreased circulating levels of hydrogen sulfide (H2S) are associated with higher mortality following myocardial ischemia. This study aimed at determining the long-term dose-dependent effects of sodium hydrosulfide (NaSH) administration on myocardial ischemia-reperfusion (IR) injury. Male rats were divided into control and NaSH groups that were treated for 9 weeks with daily intraperitoneal injections of normal saline or NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg), respectively. At the end of the study, hearts from all rats were isolated and hemodynamic parameters were recorded during baseline and following IR. In isolated hearts, infarct size, oxidative stress indices as well as mRNA expression of H2S-, nitric oxide (NO)-producing enzymes, and inflammatory markers were measured. In heart tissue following IR, low doses of NaSH (0.28 and 0.56 mg/kg) had no effect, whereas an intermediate dose (1.6 mg/kg), improved recovery of hemodynamic parameters, decreased infarct size, and decreased oxidative stress. It also increased expression of cystathionine γ-lyase (CSE), Raf kinase inhibitor protein (RKIP), endothelial NO synthase (eNOS), and neuronal NOS (nNOS), as well as decreased expression of inducible NOS (iNOS) and nuclear factor kappa-B (NF-κB). At the high dose of 5.6 mg/kg, NaSH administration was associated with worse recovery of hemodynamic parameters and increased infarct size as well as increased oxidative stress. This dose also decreased expression of CSE, RKIP, and eNOS and increased expression of iNOS and NF-κB. In conclusion, chronic treatment with NaSH has a U-shaped concentration effect on IR injury in heart tissue. An intermediate dose was associated with higher CSE-derived H2S, lower iNOS-derived NO, lower oxidative stress, and inflammation in heart tissue following IR.
Collapse
|
6
|
Changes in nitric oxide synthase levels are associated with impaired cardiac function and tolerance to ischemia-reperfusion injury in male rats with transient congenital hypothyroidism. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1103-1111. [PMID: 31940052 DOI: 10.1007/s00210-020-01812-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
Transient congenital hypothyroidism (TCH) has long-lasting consequences on the cardiovascular system during adulthood. The aim of this study was to determine whether nitric oxide (NO) and NO-producing enzymes are involved in impaired cardiac function as well as decreased tolerance to ischemia-reperfusion (IR) injury in adult male rats with TCH. Pregnant rats were divided into control and hypothyroid groups. Male offspring rats were categorized in control and hypothyroid (TCH) groups at week 16. Levels of NOx (nitrate+nitrite) and neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) were measured in hearts of rats and isolated perfused hearts from both groups were subjected to IR. Levels of NOx and NOSs were also measured in both groups after ischemia. Compared with controls, heart NOx levels were higher at baseline (48.0 ± 4.9 vs. 35.0 ± 2.6 μmol/L; P = 0.034) and following IR (103.6 ± 4.2 vs. 70.2 ± 2.7 μmol/L; P < 0.001) in rat with TCH. At baseline, compared with controls, heart iNOS and nNOS levels were significantly higher in rats with TCH (6.12 ± 0.34 vs. 4.78 ± 0.27 ng/mg protein; P = 0.008 for iNOS and 4.87 ± 0.28 vs. 3.55 ± 0.23 ng/mg protein; P = 0.003 for nNOS). Following IR, in rats with TCH, heart iNOS levels increased (11.75 ± 2.02 vs. 6.12 ± 0.34, ng/mg protein; P = 0.015) whereas nNOS level decreased (4.10 ± 0.25 vs. 4.87 ± 0.28 ng/mg protein; P = 0.063). Adverse effects of TCH on cardiac function are associated with increased ratio of iNOS/eNOS; in addition, increased heart nNOS levels are involved in impaired cardiac function while its decrease is associated with decreased tolerance to IR injury.
Collapse
|
7
|
Ding M, Hu L, Yang H, Gao C, Zeng K, Yu M, Feng J, Qiu J, Liu C, Fu F, Li Y. Reduction of SIRT1 blunts the protective effects of ischemic post-conditioning in diabetic mice by impairing the Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1677-1689. [PMID: 30954556 DOI: 10.1016/j.bbadis.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023]
Abstract
Ischemic post-conditioning (IPO) activates Akt signaling to confer cardioprotection. The responsiveness of diabetic hearts to IPO is impaired. We hypothesized that decreased cardiac SIRT1, a positive regulator of Akt, may be responsible for the impaired responsiveness of diabetic hearts to IPO-mediated cardioprotection. High-fat diet and streptozotocin-induced diabetic mice were subjected to myocardial ischemia/reperfusion (MI/R, 30 min ischemia and 180 min reperfusion) or IPO (three cycles of 10 s of reperfusion and ischemia at the onset of reperfusion). Adenoviral vectors encoding GFP or SIRT1 (Ad-SIRT1) were administered by direct injection into the left ventricular. Our results showed that IPO activated the Akt signaling pathway and reduced MI/R injury in non-diabetic hearts but not in diabetic hearts, in which reduced expression of SIRT1 and increased Akt acetylation were observed. Delivery of Ad-SIRT1 into the diabetic hearts reduced Akt acetylation and restored the cardioprotective effects of IPO by modulating Akt signaling pathway. In contrast, cardiac-specific SIRT1 knockout increased Akt acetylation and blunted the cardioprotective effects of IPO. In in vitro study, transfection with wild-type SIRT1 but not inactive mutant SIRT1 reduced the expression of Akt acetylation and restored the protective effects of hypoxic post-conditioning in high glucose-incubated cardiomyocytes. Moreover, the cardiomyocytes transfected with constitutive Akt acetylation showed repressed Akt phosphorylation and blunted protective effects against hypoxia/reoxygenation injury. These findings demonstrate that the reduction of SIRT1 blunts the protective effects of IPO by impairing Akt signaling pathway and that SIRT1 up-regulation restores IPO-mediated cardioprotection in diabetic mice via deacetylation-dependent activation of Akt signaling pathway.
Collapse
Affiliation(s)
- Mingge Ding
- Department of Cardiology, Xi'an Central Hospital, Xi'an Jiaotong University, China; Department of Physiology and Pathophysiology, Fourth Military Medical University, China
| | - Lang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, China
| | - Ke Zeng
- Department of Physiology and Pathophysiology, Fourth Military Medical University, China
| | - Mingzhe Yu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, China
| | - Jiahao Feng
- Department of Physiology and Pathophysiology, Fourth Military Medical University, China
| | - Jihuan Qiu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, China
| | - Chaoyang Liu
- School of Life Sciences, Northwest University, Xi'an 710000, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, China.
| | - Yan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, China.
| |
Collapse
|
8
|
The prognostic value of nitrotyrosine levels in coronary heart disease: long-term evaluation in the Acute Coronary Syndrome Registry Strategy (ERICO study). Clin Biochem 2019; 66:37-43. [PMID: 30776353 DOI: 10.1016/j.clinbiochem.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION We aimed to analyze the association of nitrotyrosine (N-TYR) levels and long-term survival in an ongoing coronary heart disease (CHD) prospective cohort, the Acute Coronary Syndrome Registry Strategy (ERICO study). METHODS N-TYR levels collected during acute and subacute phase from onset of acute coronary syndrome (ACS) symptoms (myocardial infarction and unstable angina) were evaluated in 342 patients. We calculated case-fatality rates (180-days, 1 year, 2 years and 4 years) and survival analyses up to 4 years using Kaplan-Meier curves and Cox regression with respective cumulative hazard ratios (95% confidence interval; 95%CI), according to N-TYR tertiles up to 4 years of follow-up. Models are presented as crude, age and sex-adjusted and further adjusted for lipids and other confounders. RESULTS Overall, median level of N-TYR was 208.33 nmol/l (range: 3.09 to 1500 nmol/l), regardless ACS subtype. During follow-up of 4 years, we observed 44 (12.9%) deaths. Overall survival rate was 298 (87.1%) (Survival days: 1353, 95%CI: 1320-1387 days). N-TYR levels did not associate with mortality / survival rates up to 4 years. CONCLUSIONS No relationship was found between N-TYR levels and mortality rates after ACS during 4-year follow-up in the ERICO study.
Collapse
|
9
|
Xia Z, Li H, Irwin MG. Myocardial ischaemia reperfusion injury: the challenge of translating ischaemic and anaesthetic protection from animal models to humans. Br J Anaesth 2018; 117 Suppl 2:ii44-ii62. [PMID: 27566808 DOI: 10.1093/bja/aew267] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myocardial ischaemia reperfusion injury is the leading cause of death in patients with cardiovascular disease. Interventions such as ischaemic pre and postconditioning protect against myocardial ischaemia reperfusion injury. Certain anaesthesia drugs and opioids can produce the same effects, which led to an initial flurry of excitement given the extensive use of these drugs in surgery. The underlying mechanisms have since been extensively studied in experimental animal models but attempts to translate these findings to clinical settings have resulted in contradictory results. There are a number of reasons for this such as dose response, the intensity of the ischaemic stimulus applied, the duration of ischaemia and lost or diminished cardioprotection in common co-morbidities such as diabetes and senescence. This review focuses on current knowledge regarding myocardial ischaemia reperfusion injury and cardioprotective interventions both in experimental animal studies and in clinical trials.
Collapse
Affiliation(s)
- Z Xia
- Department of Anaesthesiology Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
| | - H Li
- Department of Anaesthesiology
| | - M G Irwin
- Department of Anaesthesiology Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Jeong J, Kim S, Lim DS, Kim SH, Doh H, Kim SD, Song YS. TLR5 Activation through NF-κB Is a Neuroprotective Mechanism of Postconditioning after Cerebral Ischemia in Mice. Exp Neurobiol 2017; 26:213-226. [PMID: 28912644 PMCID: PMC5597552 DOI: 10.5607/en.2017.26.4.213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 07/22/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022] Open
Abstract
Postconditioning has been shown to protect the mouse brain from ischemic injury. However, the neuroprotective mechanisms of postconditioning remain elusive. We have found that toll-like receptor 5 (TLR5) plays an integral role in postconditioning-induced neuroprotection through Akt/nuclear factor kappa B (NF-κB) activation in cerebral ischemia. Compared to animals that received 30 min of transient middle cerebral artery occlusion (tMCAO) group, animals that also underwent postconditioning showed a significant reduction of up to 60.51% in infarct volume. Postconditioning increased phospho-Akt (p-Akt) levels and NF-κB translocation to the nucleus as early as 1 h after tMCAO and oxygen-glucose deprivation. Furthermore, inhibition of Akt by Akt inhibitor IV decreased NF-κB promoter activity after postconditioning. Immunoprecipitation showed that interactions between TLR5, MyD88, and p-Akt were increased from postconditioning both in vivo and in vitro. Similar to postconditioning, flagellin, an agonist of TLR5, increased NF-κB nuclear translocation and Akt phosphorylation. Our results suggest that postconditioning has neuroprotective effects by activating NF-κB and Akt survival pathways via TLR5 after cerebral ischemia. Additionally, the TLR5 agonist flagellin can simulate the neuroprotective mechanism of postconditioning in cerebral ischemia.
Collapse
Affiliation(s)
- Jaewon Jeong
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Soojin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Da-Sol Lim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Seo-Hea Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Heeju Doh
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - So-Dam Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
11
|
Feyzizadeh S, Badalzadeh R. Application of ischemic postconditioning's algorithms in tissues protection: response to methodological gaps in preclinical and clinical studies. J Cell Mol Med 2017; 21:2257-2267. [PMID: 28402080 PMCID: PMC5618671 DOI: 10.1111/jcmm.13159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Ischaemic postconditioning (IPostC) was introduced for the first time by Zhao et al. as a feasible method for reduction of myocardial ischaemia–reperfusion (IR) injury. The cardioprotection by this protocol has been extensively evaluated in various species. Then, further research revealed that IPostC is a safe and convenient approach in limiting IR injury of non‐myocardial tissues such as lung, liver, kidney, intestine, skeletal muscle, brain and spinal cord. IPostC has been conducted with different algorithms, resulting in diverse effects. The possible important factors leading to these differences are the difference in activation levels of signalling pathways and protective mediators by any algorithm, presence or absence of IPostC effectors in each tissue, or intrinsic characteristics of the tissues as well as the methodological biases. Also, the conflicting results have been shown with the application of the same algorithm of IPostC in certain tissues or animal species. The effectiveness of IPostC may depend upon various parameters including the species and the tissues characteristics. For example, different heart rates and metabolic rates of the species and unequal amounts of perfusion and blood flow of the tissues should be considered as the important determinants of IPostC effectiveness and should be thought about in designing IPostC algorithms for future studies. Due to these discrepancies, there is still no optimal single IPostC algorithm applicable to any tissue or any species. This issue is the main topic of the present article.
Collapse
Affiliation(s)
- Saeid Feyzizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5763743. [PMID: 27379176 PMCID: PMC4917706 DOI: 10.1155/2016/5763743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 11/18/2022]
Abstract
Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.
Collapse
|
13
|
Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 2016; 580:169-176. [PMID: 26774797 DOI: 10.1016/j.gene.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Cardioprotection by ischemic postconditioning (IPost) is negated in hypothyroidism; the underlying mechanisms however are unknown. This study aimed at determining whether changes in Bax, Bcl-2, eNOS, and iNOS gene expressions are involved in the negating effects of IPost against ischemia-reperfusion (IR) injury in hypothyroidism. The hearts from control and hypothyroid rats were perfused in Langendorff apparatus and exposed to 30 min ischemia, followed by 120 min reperfusion and IPost. In a subgroup of hypothyroid rats, ischemia duration was extended to 40 min. Hemodynamic parameters, infarct size, and gene expressions were measured. Compared to controls, hypothyroid rats with 30 min ischemia had higher recovery of post-ischemic LVDP and ± dp/dt, confirmed by decreased CK and LDH levels (187 ± 16 vs. 485 ± 41 and 191 ± 9 vs. 702 ± 48 U/L, respectively; p<0.05), decreased infarct size (6.7 ± 1.1 vs. 46.1 ± 1.7%; p<0.05), and a reduced DNA laddering pattern. Recovery of post-ischemic LVDP and ± dp/dt decreased and infarct size increased following extension of ischemia period in hypothyroid rats. IPost increased eNOS and Bcl-2 expression by 3.2-fold and 3.7-fold and decreased Bax and iNOS expression by 79% and 38%, respectively; it also reduced IR-induced DNA laddering pattern in controls, whereas no change was observed in hypothyroid rats, regardless of the ischemia period. In conclusion, hearts from hypothyroid rats were resistant to IR injury, partly due to the lower expression of iNOS and subsequent reduction in apoptosis after IR. In hypothyroid rats, IPost was not associated with further reduction in iNOS expression and failed to provide additional cardioprotection against ischemia.
Collapse
|
14
|
Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: role of the PI3K/Akt and JAK2/STAT3 pathways. Clin Sci (Lond) 2015; 130:377-92. [PMID: 26666444 DOI: 10.1042/cs20150496] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
Patients with diabetes are vulnerable to MI/R (myocardial ischaemia/reperfusion) injury, but are not responsive to IPostC (ischaemic post-conditioning) which activates PI3K (phosphoinositide 3-kinase)/Akt (also known as PKB or protein kinase B) and JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathways to confer cardioprotection. We hypothesized that increased cardiac PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K/Akt, is responsible for the loss of diabetic heart sensitivity to IPostC cardioprotecton. In STZ (streptozotocin)-induced Type 1 diabetic rats subjected to MI/R (30 min coronary occlusion and 120 min reperfusion), the post-ischaemic myocardial infarct size, CK-MB (creatine kinase-MB) and 15-F2t-isoprostane release, as well as cardiac PTEN expression were significantly higher than those in non-diabetic controls, concomitant with more severe cardiac dysfunction and lower cardiac Akt, STAT3 and GSK-3β (glycogen synthase kinase 3β) phosphorylation. IPostC significantly attenuated post-ischaemic infarct size, decreased PTEN expression and further increased Akt, STAT3 and GSK-3β phosphorylation in non-diabetic, but not in diabetic rats. Application of the PTEN inhibitor BpV (bisperoxovanadium) (1.0 mg/kg) restored IPostC cardioprotection in diabetic rats. HPostC (hypoxic post-conditioning) in combination with PTEN gene knockdown, but not HPostC alone, significantly reduced H/R (hypoxia/reoxygenation) injury in cardiac H9c2 cells exposed to high glucose as was evident from reduced apoptotic cell death and JC-1 monomer in cells, accompanied by increased phosphorylation of Akt, STAT3 and GSK-3β. PTEN inhibition/gene knockdown mediated restoration of IPostC/HPostC cardioprotection was completely reversed by the PI3K inhibitor wortmannin, and partially reversed by the JAK2 inhibitor AG490. Increased cardiac PTEN, by impairing PI3K/Akt and JAK2/STAT3 pathways, is a major mechanism that rendered diabetic hearts not responsive to post-conditioning cardioprotection.
Collapse
|
15
|
Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacol Res 2015; 103:318-27. [PMID: 26607864 DOI: 10.1016/j.phrs.2015.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
The alpha2-adrenergic receptor agonist Dexmedetomidine (Dex) is a sedative medication used by anesthesiologists. Dex protects the heart against ischemia-reperfusion (IR) and can also act as a preconditioning mimetic. The mechanisms involved in Dex-dependent cardiac preconditioning, and whether this action occurs directly or indirectly on cardiomyocytes, still remain unclear. The endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway and endothelial cells are known to play key roles in cardioprotection against IR injury. Therefore, the aims of this work were to evaluate whether the eNOS/NO pathway mediates the pharmacological cardiac effect of Dex, and whether endothelial cells are required in this cardioprotective action. Isolated adult rat hearts were treated with Dex (10nM) for 25min and the dimerization of eNOS and production of NO were measured. Hearts were then subjected to global IR (30/120min) and the role of the eNOS/NO pathway was evaluated. Dex promoted the activation of eNOS and production of NO. Dex reduced the infarct size and improved the left ventricle function recovery, but this effect was reversed when Dex was co-administered with inhibitors of the eNOS/NO/PKG pathway. In addition, Dex was unable to reduce cell death in isolated adult rat cardiomyocytes subjected to simulated IR. Cardiomyocyte death was attenuated by co-culturing them with endothelial cells pre-treated with Dex. In summary, our results show that Dex triggers cardiac protection by activating the eNOS/NO signaling pathway. This pharmacological effect of Dex requires its interaction with the endothelium.
Collapse
|
16
|
Gao J, Luo J, Liu F, Zheng Y, Chen B, Chen Q, Yang Y. Short-and long-term effects of ischemic postconditioning in STEMI patients: a meta-analysis. Lipids Health Dis 2015; 14:147. [PMID: 26573572 PMCID: PMC4647593 DOI: 10.1186/s12944-015-0151-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023] Open
Abstract
Background Compelling evidence from large randomized trials demonstrates the salutary effects of ischemic postconditioning on cardioprotection against ischemic/reperfusion injury. However, some studies appear negative findings. This study was designed to assess the short-and long-term effects of postconditioning (Poc) in studies including evolving ST-elevation myocardial infarction (STEMI). Methods Relevant studies were identified through an electronic literature search from the PubMed, Library of Congress, Embase, Cochrane Central Register of Controlled Trials, and ISI Web of Science. Studies published up to December 2014 were eligible for inclusion. Patients older than 18 years presenting within 12 h of the first STEMI and eligible for angioplasty were considered for the study. Results The 25 trials allocated 1136 patients to perform locational postconditioning cycles at the onset of reperfusion and 1153 patients to usual percutaneous coronary intervention (PCI). Ischemic postconditioning demonstrated a decrease in serum cardiac enzymes creatine kinase (CK) and CK-MB (P < 0.00001 and P =0.25, respectively) in the subgroup analysis based on direct stenting. Reduction in infarct size by imaging was showed during7 days after myocardial infarction (P =0.01), but not in the longterm (P = 0.08). The wall motion score index was improved in both the short term within 7 days (P = 0.009) and the long term over 6 months after receiving Poc (P = 0.02). All included studies were limited by the high risk of performance and publication bias. Conclusions Ischemic postconditioning by brief interruptions of coronary blood flow at the onset of reperfusion after PCI appears to be superior to PCI alone in reducing myocardial injury and improving left ventricular function, especially in patients who have received direct stenting in PCI.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R., China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China.,Department of endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, P.R.China
| | - Junyi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R., China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China
| | - Yingying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R., China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China
| | - Qingjie Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R., China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China
| | - Yining Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R., China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R., China.
| |
Collapse
|
17
|
Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A. Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia–reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 2015; 570:185-90. [DOI: 10.1016/j.gene.2015.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/17/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
|
18
|
Badalzadeh R, Mohammadi M, Yousefi B, Farajnia S, Najafi M, Mohammadi S. Involvement of Glycogen Synthase Kinase-3β and Oxidation Status in the Loss of Cardioprotection by Postconditioning in Chronic Diabetic Male Rats. Adv Pharm Bull 2015; 5:321-7. [PMID: 26504753 DOI: 10.15171/apb.2015.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Diabetes mellitus as a main risk-factor of ischemic heart disease may interfere with postconditioning'scardioprotective effects. This study aimed to investigate the involvement of glycogen synthase kinase-3β (GSK-3β) and oxidation status in chronic diabetes-induced loss of cardioprotective effect of ischemic-postconditioning (IPostC) in Wistar rats. METHODS After 8 weeks of induction of diabetes by streptozotocin (50mg/kg), hearts of control and diabetic rats were isolated and mounted on a constant-pressure Langendorff system. All hearts were subjected to 30min regional ischemia followed by 60min reperfusion (by occluding and re-opening of left anterior descending coronary artery, respectively). IPostC was applied immediately at the onset of reperfusion. At the end of reperfusion, the infarct size of myocardium was measured via computerized planimetry. Myocardial contents of malondealdehyde and glutathione as indices of oxidative status were assayed spectrophotometrically and the total and phosphorylated forms of myocardial GSK-3β were quantified through western blotting. RESULTS IPostC reduced the infarct size of control hearts from 41±2.9% to 28±1.9% (P<0.05), whereas it could not induce significant changes in infarct size of diabetic animals (35±1.8% vs. 39±3.1%). IPostC-induced reduction in malondealdehyde and elevation in glutathione contents were significant only in control not in diabetic hearts. The total forms of GSK-3β were similar in all groups; however, the phosphorylation of GSK-3β (at Ser9) by IPostC was greater in control hearts than diabetics (P<0.01). CONCLUSION The failure of cardioprotection by IPostC in diabetic hearts may be attributed to the loss of phosphorylation of GSK-3β and thereby increase in oxidative stress in diabetic states.
Collapse
Affiliation(s)
- Reza Badalzadeh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mustafa Mohammadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Najafi
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Mohammadi
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Captopril Pretreatment Produces an Additive Cardioprotection to Isoflurane Preconditioning in Attenuating Myocardial Ischemia Reperfusion Injury in Rabbits and in Humans. Mediators Inflamm 2015; 2015:819232. [PMID: 26273143 PMCID: PMC4530291 DOI: 10.1155/2015/819232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/27/2014] [Indexed: 01/04/2023] Open
Abstract
Background. Pretreatment with the angiotensin-converting inhibitor captopril or volatile anesthetic isoflurane has, respectively, been shown to attenuate myocardial ischemia reperfusion (MI/R) injury in rodents and in patients. It is unknown whether or not captopril pretreatment and isoflurane preconditioning (Iso) may additively or synergistically attenuate MI/R injury. Methods and Results. Patients selected for heart valve replacement surgery were randomly assigned to five groups: untreated control (Control), captopril pretreatment for 3 days (Cap3d), or single dose captopril (Cap1hr, 1 hour) before surgery with or without Iso (Cap3d+Iso and Cap1hr+Iso). Rabbit MI/R model was induced by occluding coronary artery for 30 min followed by 2-hour reperfusion. Rabbits were randomized to receive sham operation (Sham), MI/R (I/R), captopril (Cap, 24 hours before MI/R), Iso, or the combination of captopril and Iso (Iso+Cap). In patients, Cap3d+Iso but not Cap1hr+Iso additively reduced postischemic myocardial injury and attenuated postischemic myocardial inflammation. In rabbits, Cap or Iso significantly reduced postischemic myocardial infarction. Iso+Cap additively reduced cellular injury that was associated with improved postischemic myocardial functional recovery and reduced myocardial apoptosis and attenuated oxidative stress. Conclusion. A joint use of 3-day captopril treatment and isoflurane preconditioning additively attenuated MI/R by reducing oxidative stress and inflammation.
Collapse
|
20
|
Penna C, Angotti C, Pagliaro P. Protein S-nitrosylation in preconditioning and postconditioning. Exp Biol Med (Maywood) 2015; 239:647-62. [PMID: 24668550 DOI: 10.1177/1535370214522935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a complex pathophysiology that includes multiple mechanisms. Among these is the oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide may act through several mechanisms, such as guanylyl cyclase activation and via S-nitrosylation of proteins. The latter is a covalent modification of a protein cysteine thiol by a nitric oxide-group that generates an S-nitrosothiol. Here, we report data showing that nitric oxide and S-nitrosylation of proteins play a pivotal role not only in preconditioning but also in postconditioning cardioprotection.
Collapse
|
21
|
Kaur H, Kumar A, Jaggi AS, Singh N. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice. J Surg Res 2015; 197:191-200. [DOI: 10.1016/j.jss.2015.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
|
22
|
Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:624819. [PMID: 26161241 PMCID: PMC4487342 DOI: 10.1155/2015/624819] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 01/16/2023]
Abstract
Ulinastatin (UTI), a trypsin inhibitor, is isolated and purified from human urine and has been shown to exert protective effect on myocardial ischemia reperfusion injury in patients. The present study was aimed at investigating the effect of ulinastatin on neurologic functions after spinal cord ischemia reperfusion injury and the underlying mechanism. The spinal cord IR model was achieved by occluding the aorta just caudal to the left renal artery with a bulldog clamp. The drugs were administered immediately after the clamp was removed. The animals were terminated 48 hours after reperfusion. Neuronal function was evaluated with the Tarlov Scoring System. Spinal cord segments between L2 and L5 were harvested for pathological and biochemical analysis. Ulinastatin administration significantly improved postischemic neurologic function with concomitant reduction of apoptotic cell death. In addition, ulinastatin treatment increased SOD activity and decreased MDA content in the spinal cord tissue. Also, ulinastatin treatment suppressed the protein expressions of Bax and caspase-3 but enhanced Bcl-2 protein expression. These results suggest that ulinastatin significantly attenuates spinal cord ischemia-reperfusion injury and improves postischemic neuronal function and that this protection might be attributable to its antioxidant and antiapoptotic properties.
Collapse
|
23
|
Mahi N, Kumar A, Jaggi AS, Singh N, Dhawan R. Possible role of pannexin 1/P2x7 purinoceptor in neuroprotective mechanism of ischemic postconditioning in mice. J Surg Res 2015; 196:190-9. [DOI: 10.1016/j.jss.2015.02.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
|
24
|
Inserte J, Garcia-Dorado D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol 2015; 172:1996-2009. [PMID: 25297462 DOI: 10.1111/bph.12959] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022] Open
Abstract
Cardiomyocyte cell death occurring during myocardial reperfusion (reperfusion injury) contributes to final infarct size after transient coronary occlusion. Different interrelated mechanisms of reperfusion injury have been identified, including alterations in cytosolic Ca(2+) handling, sarcoplasmic reticulum-mediated Ca(2+) oscillations and hypercontracture, proteolysis secondary to calpain activation and mitochondrial permeability transition. All these mechanisms occur during the initial minutes of reperfusion and are inhibited by intracellular acidosis. The cGMP/PKG pathway modulates the rate of recovery of intracellular pH, but has also direct effect on Ca(2+) oscillations and mitochondrial permeability transition. The cGMP/PKG pathway is depressed in cardiomyocytes by ischaemia/reperfusion and preserved by ischaemic postconditioning, which importantly contributes to postconditioning protection. The present article reviews the mechanisms and consequences of the effect of ischaemic postconditioning on the cGMP/PKG pathway, the different pharmacological strategies aimed to stimulate it during myocardial reperfusion and the evidence, limitations and promise of translation of these strategies to the clinical practice. Overall, the preclinical and clinical evidence suggests that modulation of the cGMP/PKG pathway may be a therapeutic target in the context of myocardial infarction.
Collapse
Affiliation(s)
- Javier Inserte
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
25
|
Yao HC, Yang LJ, Han QF, Wang LH, Wu L, Zhang CY, Tian KL, Zhang M. Postconditioning with simvastatin decreases myocardial injury in rats following acute myocardial ischemia. Exp Ther Med 2015; 9:1166-1170. [PMID: 25780404 PMCID: PMC4353796 DOI: 10.3892/etm.2015.2273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to investigate whether postconditioning with simvastatin attenuated myocardial ischemia reperfusion injury by inhibiting the expression of high mobility group box 1 (HMGB1) in rat myocardium following acute myocardial ischemia. In total, 30 male Sprague-Dawley rats were divided into sham operation (sham; n=10), acute myocardial infarction (AMI; n=10) and simvastatin (sim; n=10) groups. The AMI and sim groups were subjected to ischemia for 30 min, followed by reperfusion for 180 min. The rats in the sim group were administered 20 mg/kg simvastatin intravenously 5 min prior to reperfusion. Subsequently, the infarct size, serum cardiac troponin (c-TnI), tumor necrosis factor (TNF)-α and myocardial malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Western blot analysis was used to detect the protein expression of HMGB1. Postconditioning with simvastatin was shown to decrease the infarct size and HMGB1 expression levels in the myocardium following AMI (P<0.05). In addition, postconditioning with simvastatin not only decreased the serum levels of c-TnI and TNF-α (P<0.05), but also inhibited the increase in MDA levels and the reduction in SOD activity (P<0.05). Therefore, postconditioning with simvastatin was shown to attenuate myocardial injury. The underlying mechanism may be associated with the downregulation of HMGB1 expression in the ischemic myocardium.
Collapse
Affiliation(s)
- Heng-Chen Yao
- Department of Cardiology, Qilu Hospital of Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China ; Department of Cardiology, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lan-Ju Yang
- Department of Cardiology, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lan-Hua Wang
- Department of Cardiology, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lei Wu
- Department of Cardiology, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Chun-Yan Zhang
- Department of Cardiology, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Ke-Li Tian
- Department of Biochemistry and Molecular Biology, ShandongUniversity School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Mei Zhang
- Department of Cardiology, Qilu Hospital of Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
26
|
Pagliaro P, Penna C. Redox signalling and cardioprotection: translatability and mechanism. Br J Pharmacol 2015; 172:1974-95. [PMID: 25303224 DOI: 10.1111/bph.12975] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
The morbidity and mortality from coronary artery disease (CAD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of culprit coronary arteries. Although it is mandatory to reperfuse the ischaemic territory as soon as possible, paradoxically this leads to additional myocardial injury, namely ischaemia/reperfusion (I/R) injury, in which redox stress plays a pivotal role and for which no effective therapy is currently available. In this review, we report evidence that the redox environment plays a pivotal role not only in I/R injury but also in cardioprotection. In fact, cardioprotective strategies, such as pre- and post-conditioning, result in a robust reduction in infarct size in animals and the role of redox signalling is of paramount importance in these conditioning strategies. Nitrosative signalling and cysteine redox modifications, such as S-nitrosation/S-nitrosylation, are also emerging as very important mechanisms in conditioning cardioprotection. The reasons for the switch from protective oxidative/nitrosative signalling to deleterious oxidative/nitrosative/nitrative stress are not fully understood. The complex regulation of this switch is, at least in part, responsible for the diminished or lack of cardioprotection induced by conditioning protocols observed in ageing animals and with co-morbidities as well as in humans. Therefore, it is important to understand at a mechanistic level the reasons for these differences before proposing a safe and useful transition of ischaemic or pharmacological conditioning. Indeed, more mechanistic novel therapeutic strategies are required to protect the heart from I/R injury and to improve clinical outcomes in patients with CAD.
Collapse
Affiliation(s)
- P Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Turin, Italy
| | | |
Collapse
|
27
|
Zaman J, Jeddi S, Ghasemi A. The effects of ischemic postconditioning on myocardial function and nitric oxide metabolites following ischemia-reperfusion in hyperthyroid rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:481-7. [PMID: 25598662 PMCID: PMC4296037 DOI: 10.4196/kjpp.2014.18.6.481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/28/2014] [Accepted: 10/27/2014] [Indexed: 11/27/2022]
Abstract
Ischemic postconditioning (IPost) could decrease ischemia-reperfusion (IR) injury. It has not yet reported whether IPost is useful when ischemic heart disease is accompanied with co-morbidities like hyperthyroidism. The aim of this study was to examine the effect of IPost on myocardial IR injury in hyperthyroid male rats. Hyperthyroidism was induced with administration of thyroxine in drinking water (12 mg/L) over a period of 21 days. After thoracotomy, the hearts of control and hyperthyroid rats were perfused in the Langendorff apparatus and subjected to 30 minutes global ischemia, followed by 120 minutes reperfusion; IPost, intermittent early reperfusion, was induced instantly following ischemia. In control rats, IPost significantly improved the left ventricular developed pressure (LVDP) and ±dp/dt during reperfusion (p<0.05); however it had no effect in hyperthyroid rats. In addition, hyperthyroidism significantly increased basal NOx (nitrate+nitrite) content in serum (125.5±5.4 µmol/L vs. 102.8±3.7 µmol/L; p< 0.05) and heart (34.9±4.1 µmol/L vs. 19.9±1.94 µmol/L; p<0.05). In hyperthyroid groups, heart NOx concentration significantly increased after IR and IPost, whereas in the control groups, heart NOx were significantly higher after IR and lower after IPost (p< 0.05). IPost reduced infarct size (p<0.05) only in control groups. In hyperthyroid group subjected to IPost, aminoguanidine, an inducible nitric oxide (NO) inhibitor, significantly reduced both the infarct size and heart NOx concentrations. In conclusion, unlike normal rats, IPost cycles following reperfusion does not provide cardioprotection against IR injury in hyperthyroid rats; an effect that may be due to NO overproduction because it is restored by iNOS inhibition.
Collapse
Affiliation(s)
- Jalal Zaman
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran. ; Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| | - Sajjad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran. ; Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran. ; Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| |
Collapse
|
28
|
Jeddi S, Zaman J, Ghasemi A. Effects of ischemic postconditioning on the hemodynamic parameters and heart nitric oxide levels of hypothyroid rats. Arq Bras Cardiol 2014; 104:136-43. [PMID: 25424164 PMCID: PMC4375657 DOI: 10.5935/abc.20140181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022] Open
Abstract
Background Ischemic postconditioning (IPost) is a method of protecting the heart against
ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of
ischemic heart disease accompanied by co-morbidities such as hypothyroidism
remains unclear. Objective The aim of this study was to determine the effect of IPost on myocardial IR injury
in hypothyroid male rats. Methods Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21
days to induce hypothyroidism. The hearts from control and hypothyroid rats were
perfused in a Langendorff apparatus and exposed to 30 min of global ischemia,
followed by 120 min of reperfusion. IPost was induced immediately following
ischemia. Results Hypothyroidism and IPost significantly improved the left ventricular developed
pressure (LVDP) and peak rates of positive and negative changes in left
ventricular pressure (±dp/dt) during reperfusion in control rats (p < 0.05).
However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in
hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO
metabolite (NOx) levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7
μmol/L; p < 0.05) and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L;
p < 0.05). Heart NOx concentration in the hypothyroid groups did not
change after IR and IPost, whereas these were significantly (p < 0.05) higher
and lower after IR and IPost, respectively, in the control groups. Conclusion Hypothyroidism protects the heart from IR injury, which may be due to a decrease
in basal nitric oxide (NO) levels in the serum and heart and a decrease in NO
after IR. IPost did not decrease the NO level and did not provide further
cardioprotection in the hypothyroid group.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaman
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci 2014; 6:233-40. [PMID: 25400405 PMCID: PMC4231382 DOI: 10.4103/0975-7406.142951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/05/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Postconditioning (PoCo) is an adaptive phenomenon whereby brief repetitive cycles of ischemia with intermittent reperfusion instituted immediately after prolonged ischemia at the onset of prolonged reperfusion elicit tissue protection. PoCo is noted to exert a protective effect in various organs like heart, liver, kidney and brain. Various triggers, mediators and end effectors are suggested to contribute to the protective effect of PoCo. However, the neuroprotective mechanism of PoCo is poorly understood. OBJECTIVES The present study has been designed to investigate the role of nitric oxide pathway in the neuroprotective mechanism of ischemic postconditioning (iPoCo) employing a mouse model of global cerebral ischemia and reperfusion-induced injury. MATERIALS AND METHODS Bilateral carotid artery occlusion (BCAO) of 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion (I/R)-induced cerebral injury in mice. Cerebral injury was assessed in the terms of cerebral infarct, memory impairment and motor in-coordination. Brain nitrite/nitrate; acetylcholinesterase activity, thiobarbituric acid reactive species (TBARS) and glutathione level were also estimated. RESULTS BCAO followed by reperfusion produced a significant rise in cerebral infarct size, memory impairment and motor incoordination. Further a rise in acetylcholinesterase activity and TBARS level along with fall in brain nitrite/nitrate and glutathione levels was also noted. iPoCo consisting of three episodes of 10 s carotid artery occlusion and reperfusion (instituted immediately after BCAO) significantly attenuated infarct size, memory impairment, motor incoordination as well as altered biochemicals. iPoCo-induced neuroprotective effects were significantly abolished by pretreatment of L-NAME, a nonselective NOS inhibitor. CONCLUSION It may be concluded that the nitric oxide pathway probably plays a vital role in the neuroprotective mechanism of iPoCo.
Collapse
Affiliation(s)
- Puja Gulati
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
30
|
Li L, Guo Y, Zhai H, Yin Y, Zhang J, Chen H, Wang L, Li N, Liu R, Xia Y. Aging increases the susceptivity of MSCs to reactive oxygen species and impairs their therapeutic potency for myocardial infarction. PLoS One 2014; 9:e111850. [PMID: 25393016 PMCID: PMC4230939 DOI: 10.1371/journal.pone.0111850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide and Mesenchymal Stem Cells (MSCs) transplantation has been considered a promising therapy. Recently, it was reported that the therapeutic effectiveness of MSCs is dependent on the age of the donor, yet the underlying mechanism has not been thoroughly investigated. This study was designed to investigate whether this impaired therapeutic potency is caused by an increased susceptivity of MSCs from old donors to reactive oxygen species (ROS). The MSCs were isolated from the subcutaneous inguinal region of young (8–10 weeks) and old (18 months) Sprague–Dawley (SD) rats. By exposing these MSCs to H2O2, we found that the adhesion of MSCs from old donors was damaged more severely. Specifically, decreased expression of integrin and reduced phosphorylation of focal adhesion kinase Src and FAK were observed. Furthemore, H2O2 triggered an increased apoptosis of MSCs from old donors. To study the viability and therapeutic potency of MSCs from young and old donors in vivo, these MSCs were transplanted into acute MI model rats. We observed a more rapidly decreased survival rate of the old MSCs in the infarct region, which may be caused by their increased susceptivity to the micro-environmental ROS, as transplantation of the old MSCs with N-acetyl-L-cysteine (NAC), a ROS scavenger, protected them. The low viability of engrafted old MSCs consequently impaired their therapeutic effectiveness, judging by the histology and function of heart. Our study may help to understand the mechanism of MSCs-host interaction during MI, as well as shed light on the design of therapeutic strategy in clinic.
Collapse
Affiliation(s)
- Liang Li
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Yingfei Guo
- Department of Emergency, First hospital affiliated to general hospital of People's Liberation Army, Beijing, China
| | - Hongxia Zhai
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Yaxin Yin
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Jinjin Zhang
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Haiwei Chen
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Lei Wang
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Na Li
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Runmei Liu
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
| | - Yunfeng Xia
- First Department of Cadres, First Hospital Affiliated to General Hospital of People's Liberation Army, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Touboul C, Angoulvant D, Mewton N, Ivanes F, Muntean D, Prunier F, Ovize M, Bejan-Angoulvant T. Ischaemic postconditioning reduces infarct size: systematic review and meta-analysis of randomized controlled trials. Arch Cardiovasc Dis 2014; 108:39-49. [PMID: 25453717 DOI: 10.1016/j.acvd.2014.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/29/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Infarct size (IS) is a major determinant of patient outcome after acute ST-segment elevation myocardial infarction (STEMI). Interventions aimed at reducing reperfusion injury, such as cardiac ischaemic postconditioning (IPost), may reduce IS and improve clinical outcomes. IPost has been shown to be feasible in patients with STEMI treated by primary percutaneous coronary intervention (PPCI). AIMS To provide an updated summary of the efficacy of IPost, assessed by analysing accurate surrogate markers of IS. METHODS We performed a meta-analysis of randomized controlled trials that evaluated the efficacy of IPost in STEMI patients undergoing PPCI. The main outcome was area under the curve of serum creatine kinase release (CK-AUC). Secondary outcomes were other surrogate biomarkers of IS, complete ST-segment resolution, direct measurement of IS by single-photon emission computed tomography and estimation of IS by cardiac magnetic resonance (CMR-IS). RESULTS Eleven studies were retrieved, including 1313 STEMI patients undergoing PPCI with or without IPost. Compared with controls, we observed a significant reduction in CK-AUC (standard mean difference [SMD] -2.84 IU/L, 95% CI -5.43 to -0.25 IU/L; P=0.03). Other surrogate markers, such as CMR-IS (SMD -0.36, 95% CI -0.88 to 0.15; P=0.16), showed a non-significant IS reduction in the IPost group. CONCLUSIONS This meta-analysis, dealing with accurate surrogate markers of IS, suggests that IPost reduces IS. However, results should be interpreted cautiously because of limited sample sizes and significant heterogeneity. Whether this translates into improvements in cardiac function and patient prognosis still needs to be demonstrated in larger prospective randomized controlled studies that are powered sufficiently.
Collapse
Affiliation(s)
- Caroline Touboul
- CHRU de Tours, ICCU & Cardiology department, Trousseau Hospital, 37000 Tours, France
| | - Denis Angoulvant
- CHRU de Tours, ICCU & Cardiology department, Trousseau Hospital, 37000 Tours, France; Université François Rabelais, EA 4245 Cellules Dendritiques Immunomodulation et Greffes, FHU "SUPORT", 37000 Tours, France.
| | - Nathan Mewton
- Inserm U1060-CarMeN, service d'explorations fonctionnelles cardiovasculaires, centre d'investigation clinique, 1407, université Claude-Bernard Lyon 1, Louis-Pradel Hospital, CHU de Lyon, Lyon, France
| | - Fabrice Ivanes
- CHRU de Tours, ICCU & Cardiology department, Trousseau Hospital, 37000 Tours, France; Université François Rabelais, EA 4245 Cellules Dendritiques Immunomodulation et Greffes, FHU "SUPORT", 37000 Tours, France
| | - Danina Muntean
- Department of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Fabrice Prunier
- EA 3860 cardioprotection remodelage et thrombose, Cardiology Department, université d'Angers, CHU d'Angers, Angers, France
| | - Michel Ovize
- Inserm U1060-CarMeN, service d'explorations fonctionnelles cardiovasculaires, centre d'investigation clinique, 1407, université Claude-Bernard Lyon 1, Louis-Pradel Hospital, CHU de Lyon, Lyon, France
| | - Theodora Bejan-Angoulvant
- CHRU de Tours, department of Pharmacology, Tours, France; CNRS UMR 7292, Tours, France; Université François Rabelais, GICC, Tours, France
| |
Collapse
|
32
|
Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P. The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 2014; 172:1587-606. [PMID: 24923364 DOI: 10.1111/bph.12811] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease is one of the leading causes of morbidity and mortality worldwide. The development of cardioprotective therapeutic agents remains a partly unmet need and a challenge for both medicine and industry, with significant financial and social implications. Protection of the myocardium can be achieved by mechanical vascular occlusions such as preconditioning (PC), when brief episodes of ischaemia/reperfusion (I/R) are experienced prior to ischaemia; postconditioning (PostC), when the brief episodes are experienced at the immediate onset of reperfusion; and remote conditioning (RC), when the brief episodes are experienced in another vascular territory. The elucidation of the signalling pathways, which underlie the protective effects of PC, PostC and RC, would be expected to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent reperfusion injury. Gasotransmitters including NO, hydrogen sulphide (H2S) and carbon monoxide (CO) are a growing family of regulatory molecules that affect physiological and pathological functions. NO, H2S and CO share several common properties; they are beneficial at low concentrations but hazardous in higher amounts; they relax smooth muscle cells, inhibit apoptosis and exert anti-inflammatory effects. In the cardiovascular system, NO, H2S and CO induce vasorelaxation and promote cardioprotection. In this review article, we summarize current knowledge on the role of the gasotransmitters NO, H2S and CO in myocardial I/R injury and cardioprotection provided by conditioning strategies and highlight future perspectives in cardioprotection by NO, H2S, CO, as well as their donor molecules.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
33
|
Favaretto E, Roffi M, Frigo AC, Lee MS, Marra MP, Napodano M, Tarantini G. Meta-analysis of randomized trials of postconditioning in ST-elevation myocardial infarction. Am J Cardiol 2014; 114:946-52. [PMID: 25108303 DOI: 10.1016/j.amjcard.2014.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 11/27/2022]
Abstract
Clinical benefit of postconditioning in patients with ST-elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention is still controversial. We performed a meta-analysis of available randomized clinical trials (RCTs) to define the role of postconditioning in STEMI. Fourteen RCTs evaluating postconditioning in a total of 778 patients with STEMI were identified in PubMed, EMBase, and Cochrane databases from January 1998 to February 2014. Overall, postconditioning was found to be cardioprotective in term of infarct size reduction (weighted standardized mean differences -0.5837, 95% confidence interval -0.9609 to -0.2066, p <0.05), but significant heterogeneity across the trials was detected (I(2) = 84%). Univariate meta-regression analysis did not identify clinical or procedural variables associated with a more pronounced effect of postconditioning effects on infarct size with the exception of using cardiac magnetic resonance (CMR) to evaluate infarct size (p <0.01). Restricting the analysis to 6 RCTs including a total of 448 patients and evaluating the postconditioning effect on infarct size by means of CMR led to the disappearance of benefit of postconditioning on infarct size. In conclusion, the results of this meta-analysis of RCTs suggested that postconditioning reduces infarct size, as expressed by weighted standardized mean differences. However, if the analysis was limited to trials with a more accurate quantification of infarct size reduction, namely by CMR, the benefit was lost. More data are required before adoption of postconditioning in clinical practice.
Collapse
|
34
|
Gulati P, Singh N. Evolving possible link between PI3K and NO pathways in neuroprotective mechanism of ischemic postconditioning in mice. Mol Cell Biochem 2014; 397:255-65. [DOI: 10.1007/s11010-014-2193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
|
35
|
Increased levels of the oxidative stress marker, nitrotyrosine in patients with provocation test-induced coronary vasospasm. J Cardiol 2014; 64:86-90. [DOI: 10.1016/j.jjcc.2013.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/30/2013] [Indexed: 11/24/2022]
|
36
|
Neuroprotective mechanism of ischemic postconditioning in mice: a possible relationship between protein kinase C and nitric oxide pathways. J Surg Res 2014; 189:174-83. [DOI: 10.1016/j.jss.2014.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 11/21/2022]
|
37
|
Gulati P, Singh N. Tadalafil enhances the neuroprotective effects of ischemic postconditioning in mice, probably in a nitric oxide associated manner. Can J Physiol Pharmacol 2014; 92:418-26. [DOI: 10.1139/cjpp-2013-0428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study investigates the modulatory effect of tadalafil, a selective phosphodiesterase (PDE-5) inhibitor, on the neuroprotective effects of ischemic postconditioning (iPoCo) in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion induced cerebral injury. Cerebral infarct size was measured using TTC staining. Memory was assessed using the Morris water maze test. Degree of motor incoordination was evaluated using inclined beam-walking, rota-rod, and lateral push tests. Brain nitrite/nitrate, acetylcholinesterase activity, TBARS, and glutathione levels were also estimated. BCAO followed by reperfusion produced a significant increase in cerebral infarct size, brain nitrite/nitrate and TBARS levels, and acetylcholinesterase activity along with a reduction in glutathione. Marked impairment of memory and motor coordination was also noted. iPoCo consisting of 3 episodes of 10 s carotid artery occlusion and reperfusion instituted immediately after BCAO significantly decreased infarct size, memory impairment, motor incoordination, and altered biochemistry. Pretreatment with tadalafil mimicked the neuroprotective effects of iPoCo. The tadalafil-induced neuroprotective effects were significantly attenuated by l-NAME, a nonselective NOS inhibitor. We concluded that tadalafil mimics the neuroprotective effects of iPoCo, probably through a nitric oxide dependent pathway, and PDE-5 could be a target of interest with respect to the neuroprotective mechanism of iPoCo.
Collapse
Affiliation(s)
- Puja Gulati
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
38
|
Pharmacologic evidence for role of endothelial nitric oxide synthase in neuroprotective mechanism of ischemic postconditioning in mice. J Surg Res 2014; 188:349-60. [DOI: 10.1016/j.jss.2013.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022]
|
39
|
Aging aggravates nitrate-mediated ROS/RNS changes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:376515. [PMID: 24790702 PMCID: PMC3981534 DOI: 10.1155/2014/376515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/17/2013] [Accepted: 08/18/2013] [Indexed: 11/17/2022]
Abstract
Nitrates are the most frequently prescribed and utilized drugs worldwide. The elderly are a major population receiving nitrate therapy. Both nitrates and aging can increase in vivo reactive oxygen species (ROS) and reactive nitrogen species (RNS). To date, the effects of aging upon nitrate-induced ROS/RNS alteration are unknown. The present study tested the effects of aging upon nitrate-induced ROS/RNS alteration in vivo. 32 adults and 43 elderly unstable angina (UA) patients were subjected to 48 hours of isosorbide dinitrate intravenous injection (50 μg/minutes) in this clinical study. Blood samples were obtained at baseline and conclusion. Outcome measures of oxidative stress included plasma malondialdehyde (MDA), myeloperoxidase (MPO), and reduced glutathione (GSH). Plasma concentrations of NOx and nitrotyrosine served as markers of RNS. Because of the significant differences in basic clinical characters between adults and the elderly, we designed an additional experiment determining ROS/RNS stress in rat cardiac tissue. Additionally, rat thoracic aortic NOS activity served as a marker indicating endothelial function. Our study demonstrated that nitrate therapy significantly increased in vivo ROS/RNS stress in the elderly compared to adult patients, confirmed by animal data. Decreased NOS activity was observed in old rats. Taken together, the present study's data suggests a synergism between nitrate treatment and the aging process.
Collapse
|
40
|
Kumar A, Jaggi AS, Singh N. Pharmacological investigations on possible role of Src kinases in neuroprotective mechanism of ischemic postconditioning in mice. Int J Neurosci 2014; 124:777-86. [DOI: 10.3109/00207454.2013.879869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Role of P2X7 purinoceptors in neuroprotective mechanism of ischemic postconditioning in mice. Mol Cell Biochem 2014; 390:161-73. [DOI: 10.1007/s11010-014-1967-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023]
|
42
|
Alleviation of hyperglycemia induced vascular endothelial injury by exenatide might be related to the reduction of nitrooxidative stress. BIOMED RESEARCH INTERNATIONAL 2013; 2013:843657. [PMID: 24371833 PMCID: PMC3858999 DOI: 10.1155/2013/843657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022]
Abstract
We will investigate the effects of exenatide on vascular endothelial injury and nitrooxidative stress in hyperglycemia both in vivo and in vitro and explore the role of nitrooxidative stress in endothelium-protective action of exenatide. Healthy male Wistar rats were randomly divided into 4 groups: control, diabetes mellitus (DM) model, low dose of exenatide treatment, and high dose of exenatide treatment. In vitro study showed that, compared with control group, the DM rats exhibited a lowered endothelium-dependent relaxation and damaged structural integrity of thoracic aortas, and there was a significant increase in plasma nitrotyrosine concentration. These parameters were improved after treatment with either low dose or high dose of exenatide for 45 days. In vitro study showed that exendin-4 (the active ingredient of exenatide) attenuated HUVECs injury induced by high glucose, with improving cell viability and attenuating cell apoptosis. Exendin-4 also significantly alleviated the increased malondialdehyde (MDA), nitrotyrosine content, and inducible nitric oxide synthase (iNOS) expression induced by high glucose in HUVECs. In conclusion, this study demonstrates that exenatide treatment can alleviate the vascular endothelial injury, as well as attenuating the nitrooxidative stress in hyperglycemia, implying that the endothelium-protective effect of exenatide might be related to the reduction of nitrooxidative stress.
Collapse
|
43
|
Hausenloy DJ. Conditioning the heart to prevent myocardial reperfusion injury during PPCI. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2013; 1:13-32. [PMID: 24062884 DOI: 10.1177/2048872612438805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 11/15/2022]
Abstract
For patients presenting with a ST-segment elevation myocardial infarction (STEMI), early myocardial reperfusion by primary percutaneous coronary intervention (PPCI) remains the most effective treatment strategy for limiting myocardial infarct size, preserving left ventricular systolic function, and preventing the onset of heart failure. Recent advances in PCI technology to improve myocardial reperfusion and the introduction of novel anti-platelet and anti-thrombotic agents to maintain the patency of the infarct-related coronary artery continue to optimize PPCI procedure. However, despite these improvements, STEMI patients still experience significant major adverse cardiovascular events. One major contributing factor has been the inability to protect the heart against the lethal myocardial reperfusion injury, which accompanies PPCI. Past attempts to translate cardioprotective strategies, discovered in experimental studies to prevent lethal myocardial reperfusion injury, into the clinical setting of PPCI have been disappointing. However, a number of recent proof-of-concept clinical studies suggest that the heart can be 'conditioned' to protect itself against lethal myocardial reperfusion injury, as evidenced by a reduction in myocardial infarct size. This can be achieved using either mechanical (such as ischaemic postconditioning, remote ischaemic preconditioning, therapeutic hypothermia, or hyperoxaemia) or pharmacological (such as cyclosporin-A, natriuretic peptide, exenatide) 'conditioning' strategies as adjuncts to PPCI. Furthermore, recent developments in cardiac magnetic resonance (CMR) imaging can provide a non-invasive imaging strategy for assessing the efficacy of these novel adjunctive therapies to PPCI in terms of key surrogate clinical endpoints such as myocardial infarct size, myocardial salvage, left ventricular ejection fraction, and the presence of microvascular obstruction or intramyocardial haemorrhage. In this article, we review the therapeutic potential of 'conditioning' to protect the heart against lethal myocardial reperfusion injury in STEMI patients undergoing PPCI.
Collapse
|
44
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Fan Q, Chen M, Fang X, Lau WB, Xue L, Zhao L, Zhang H, Liang YH, Bai X, Niu HY, Ye J, Chen Q, Yang X, Liu M. Aging might augment reactive oxygen species (ROS) formation and affect reactive nitrogen species (RNS) level after myocardial ischemia/reperfusion in both humans and rats. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1017-26. [PMID: 22580631 PMCID: PMC3705100 DOI: 10.1007/s11357-012-9421-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/25/2012] [Indexed: 05/10/2023]
Abstract
Previous studies indicate aging results in significantly decreased cardiac function and increased myocardial apoptosis after myocardial ischemia/reperfusion (MI/R) in humans or rats. The underlying mechanisms of aging-exacerbated effects remain unknown. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to play vital roles in aging-related MI/R injury. Heretofore, the effects of aging upon ROS and RNS formation were not investigated in humans, which is the focus of the current study. Due to experimental limitations with clinical trials, an additional animal experiment was performed. All enrolled acute myocardial infarction (AMI) patients received percutaneous coronary intervention (PCI) therapy. AMI patients were assigned into two groups: adult (age <65, n = 34) and elderly (age ≥65, n = 45) AMI patients. Blood samples were obtained from all study participants at 24 h and 3 days post-PCI. Plasma/white blood cell (WBC) ROS and RNS markers (malondialdehyde (MDA), myeloperoxidase (MPO), reduced glutathione (GSH), inducible nitric oxide synthase (iNOS) activity, NOx, and nitrotyrosine) were determined. The same markers were determined in rat cardiac tissue after 24 h MI/R. Compared to the adult group, elderly patients manifested increased plasma MDA and MPO and decreased plasma GSH concentrations. No significant differences in plasma NOx or nitrotyrosine concentration existed between adult and elderly patients. Furthermore, WBC iNOS activity in elderly patients was significantly decreased compared to the adult group. The measurement of ROS markers in the rat experiments was consistent and supported human study data. Surprisingly, RNS markers (NOx and nitrotyrosine) in blood and heart tissue increased from young to middle-aged rats but decreased from middle age to old age. Aging augments ROS, which might exacerbate MI/R injury. Additionally, our data support aging-induced changes of RNS levels in humans and rats in vivo.
Collapse
Affiliation(s)
- Qian Fan
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Mulei Chen
- />Heart Center, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Xiangyang Fang
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Wayne Bond Lau
- />Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Lei Xue
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Lina Zhao
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Hui Zhang
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Yan-hong Liang
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Xi Bai
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Hong-yu Niu
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Jing Ye
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Qing Chen
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Xinchun Yang
- />Heart Center, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| | - Miaobing Liu
- />Department of Gerontology, Beijing Chaoyang Hospital-Affiliate of Beijing Capital Medical University, 8 Gongtinan Road, Beijing, 100020 People’s Republic of China
| |
Collapse
|
46
|
Wang L, Wang J, Xu H, Li B. Postconditioning in patients treated with primary percutaneous coronary intervention: An updated meta-analysis. Catheter Cardiovasc Interv 2013; 82:E662-71. [PMID: 23804529 DOI: 10.1002/ccd.25095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/01/2013] [Accepted: 06/16/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Wang
- Graduate School; Shanxi Medical University; Taiyuan Shanxi People's Republic of China
| | - Jingping Wang
- Department of Cardiology; Shanxi Cardiovascular Hospital; Taiyuan Shanxi People's Republic of China
| | - Huiyu Xu
- Department of Cardiology; Shanxi Cardiovascular Hospital; Taiyuan Shanxi People's Republic of China
| | - Bao Li
- Department of Cardiology; Shanxi Cardiovascular Hospital; Taiyuan Shanxi People's Republic of China
| |
Collapse
|
47
|
Mao X, Wang T, Liu Y, Irwin MG, Ou JS, Liao XL, Gao X, Xu Y, Ng KFJ, Vanhoutte PM, Xia Z. N-acetylcysteine and allopurinol confer synergy in attenuating myocardial ischemia injury via restoring HIF-1α/HO-1 signaling in diabetic rats. PLoS One 2013; 8:e68949. [PMID: 23874823 PMCID: PMC3715528 DOI: 10.1371/journal.pone.0068949] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/04/2013] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To determine whether or not the antioxidants N-acetylcysteine (NAC) and allopurinol (ALP) confer synergistic cardioprotection against myocardial ischemia/reperfusion (MI/R) injury by stabilizing hypoxia inducible factor 1α (HIF-1α)/heme oxygenase 1 (HO-1) signaling in diabetic myocardium. METHODS Control or diabetic [streptozotocin (STZ)-induced] Sprague Dawley rats received vehicle or NAC, ALP or their combination for four weeks starting one week after STZ injection. The animals were then subjected to thirty minutes of coronary artery occlusion followed by two hours reperfusion in the absence or presence of the selective HO-1 inhibitor, tin protoporphyrin-IX (SnPP-IX) or the HIF-1α inhibitor 2-Methoxyestradiol (2ME2). Cardiomyocytes exposed to high glucose were subjected to hypoxia/re-oxygenation in the presence or absence of HIF-1α and HO-1 achieved by gene knock-down with related siRNAs. RESULTS Myocardial and plasma levels of 15-F2t-isoprostane, an index of oxidative stress, were significantly increased in diabetic rats while cardiac HO-1 protein and activity were reduced; this was accompanied with reduced cardiac protein levels of HIF-1α, and increased post-ischemic myocardial infarct size and cellular injury. NAC and ALP given alone and in particular their combination normalized cardiac levels of HO-1 and HIF-1α protein expression and prevented the increase in 15-F2t-isoprostane, resulting in significantly attenuated post-ischemic myocardial infarction. NAC and ALP also attenuated high glucose-induced post-hypoxic cardiomyocyte death in vitro. However, all the above protective effects of NAC and ALP were cancelled either by inhibition of HO-1 or HIF-1α with SnPP-IX and 2ME2 in vivo or by HO-1 or HIF-1α gene knock-down in vitro. CONCLUSION NAC and ALP confer synergistic cardioprotection in diabetes via restoration of cardiac HIF-1α and HO-1 signaling.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Tingting Wang
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Yanan Liu
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Michael G. Irwin
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Jing-song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-long Liao
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kwok F. J. Ng
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Paul M. Vanhoutte
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
- * E-mail:
| |
Collapse
|
48
|
Wu H, Lei S, Yuan J, Liu X, Zhang D, Gu X, Zhang L, Xia Z. Ischemic postconditioning downregulates Egr-1 expression and attenuates postischemic pulmonary inflammatory cytokine release and tissue injury in rats. J Surg Res 2013; 181:204-12. [DOI: 10.1016/j.jss.2012.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 11/28/2022]
|
49
|
Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas‐Nozal M, Garcia‐Dorado D. Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2013; 2:e005975. [PMID: 23525447 PMCID: PMC3603241 DOI: 10.1161/jaha.112.005975] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND The cGMP/protein kinase G (PKG) pathway is involved in the cardioprotective effects of postconditioning (PoCo). Although PKG signaling in PoCo has been proposed to depend on the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt cascade, recent data bring into question a causal role of reperfusion injury signaling kinase (RISK) in PoCo protection. We hypothesized that PoCo increases PKG activity by reducing oxidative stress-induced endothelial nitric oxide synthase (NOS) uncoupling at the onset of reperfusion. METHODS AND RESULTS Isolated rat hearts were submitted to 40 minutes of ischemia and reperfusion with and without a PoCo protocol. PoCo reduced infarct size by 48% and cGMP depletion. Blockade of cGMP synthesis (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) and inhibition of PKG (KT5823) or NOS (l-NAME) abolished protection, but inhibition of PI3K/Akt cascade (LY294002) did not (n=5 to 7 per group). Phosphorylation of the RISK pathway was higher in PoCo hearts. However, this difference is due to increased cell death in control hearts because in hearts reperfused with the contractile inhibitor blebbistatin, a drug effective in preventing cell death at the onset of reperfusion, RISK phosphorylation increased during reperfusion without differences between control and PoCo groups. In these hearts, PoCo reduced the production of superoxide (O2(-)) and protein nitrotyrosylation and increased nitrate/nitrite levels in parallel with a significant decrease in the oxidation of tetrahydrobiopterin (BH4) and in the monomeric form of endothelial NOS. CONCLUSIONS These results demonstrate that PoCo activates the cGMP/PKG pathway via a mechanism independent of the PI3K/Akt cascade and dependent on the reduction of O2(-) production at the onset of reperfusion, resulting in attenuated oxidation of BH4 and reduced NOS uncoupling.
Collapse
Affiliation(s)
- Javier Inserte
- Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain (J.I., V.H., V., E.A., M.P.N., D.G.D.)
| | - Victor Hernando
- Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain (J.I., V.H., V., E.A., M.P.N., D.G.D.)
| | - Úrsula Vilardosa
- Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain (J.I., V.H., V., E.A., M.P.N., D.G.D.)
| | - Elena Abad
- Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain (J.I., V.H., V., E.A., M.P.N., D.G.D.)
| | - Marcos Poncelas‐Nozal
- Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain (J.I., V.H., V., E.A., M.P.N., D.G.D.)
| | - David Garcia‐Dorado
- Laboratory of Experimental Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain (J.I., V.H., V., E.A., M.P.N., D.G.D.)
| |
Collapse
|
50
|
Koufaki M, Fotopoulou T, Iliodromitis EK, Bibli SI, Zoga A, Kremastinos DT, Andreadou I. Discovery of 6-[4-(6-nitroxyhexanoyl)piperazin-1-yl)]-9H-purine, as pharmacological post-conditioning agent. Bioorg Med Chem 2012; 20:5948-56. [DOI: 10.1016/j.bmc.2012.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/05/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|