1
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
2
|
Wieczfinska J, Pawliczak R. Relaxin Affects Airway Remodeling Genes Expression through Various Signal Pathways Connected with Transcription Factors. Int J Mol Sci 2022; 23:ijms23158413. [PMID: 35955554 PMCID: PMC9368845 DOI: 10.3390/ijms23158413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Fibrosis is one of the parameters of lung tissue remodeling in asthma. Relaxin has emerged as a natural suppressor of fibrosis, showing efficacy in the prevention of a multiple models of fibrosis. Therefore, the aim of this study was to analyze the aptitudes of relaxin, in the context of its immunomodulatory properties, in the development of airway remodeling. WI-38 and HFL1 fibroblasts, as well as epithelial cells (NHBE), were incubated with relaxin. Additionally, remodeling conditions were induced with two serotypes of rhinovirus (HRV). The expression of the genes contributing to airway remodeling were determined. Moreover, NF-κB, c-Myc, and STAT3 were knocked down to analyze the pathways involved in airway remodeling. Relaxin decreased the mRNA expression of collagen I and TGF-β and increased the expression of MMP-9 (p < 0.05). Relaxin also decreased HRV-induced expression of collagen I and α-SMA (p < 0.05). Moreover, all the analyzed transcription factors—NF-κB, c-Myc, and STAT3—have shown its influence on the pathways connected with relaxin action. Though relaxin requires further study, our results suggest that this natural compound offers great potential for inhibition of the development, or even reversing, of factors related to airway remodeling. The presented contribution of the investigated transcription factors in this process additionally increases its potential possibilities through a variety of its activity pathways.
Collapse
|
3
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
4
|
Wieczfinska J, Sitarek P, Kowalczyk T, Rieske P, Pawliczak R. Curcumin modulates airway remodelling-contributing genes-the significance of transcription factors. J Cell Mol Med 2021; 26:736-749. [PMID: 34939316 PMCID: PMC8817128 DOI: 10.1111/jcmm.17102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Bronchial epithelial cells and fibroblasts play an essential role in airway remodelling, due to their protective and secretory functions. There are many studies proving that infection caused by human rhinovirus may contribute to the process of airway remodelling. The beneficial properties of curcumin, the basic ingredient of turmeric, have been proved in many studies. Therefore, the aim of this study was the evaluation of curcumin immunomodulatory properties in development of airway remodelling. Fibroblasts (WI‐38 and HFL1) and epithelial cells (NHBE) were incubated with curcumin. Additionally, remodelling conditions were induced with rhinovirus (HRV). Airway remodelling genes were determined by qPCR and immunoblotting. Moreover, NF‐κB, c‐Myc and STAT3 were silenced to analyse the pathways involved in airway remodelling. Curcumin reduced the expression of the genes analysed, especially MMP‐9, TGF‐β and collagen I. Moreover, curcumin inhibited the HRV‐induced expression of MMP‐9, TGF‐β, collagen I and LTC4S (p < 0.05). NF‐κB, c‐Myc and STAT3 changed their course of expression. Concluding, our study shows that curcumin significantly downregulated gene expression related to the remodelling process, which is dependent on NF‐κB and, partially, on c‐Myc and STAT3. The results suggest that the remodelling process may be limited and possibly prevented, however this issue requires further research.
Collapse
Affiliation(s)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Cáceres FT, Gaspari TA, Samuel CS, Pinar AA. Serelaxin inhibits the profibrotic TGF-β1/IL-1β axis by targeting TLR-4 and the NLRP3 inflammasome in cardiac myofibroblasts. FASEB J 2019; 33:14717-14733. [PMID: 31689135 DOI: 10.1096/fj.201901079rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recombinant form of the peptide hormone relaxin, serelaxin (RLX), mediates its anti-fibrotic actions by impeding the profibrotic activity of cytokines including TGF-β1 and IL-1β. As IL-1β can be produced by the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domains-containing protein 3 (NLRP3) inflammasome, this study determined whether RLX targeted the inflammasome to inhibit the profibrotic TGF-β1/IL-1β axis in primary human cardiac myofibroblasts (HCMFs) in vitro and in mice with isoproterenol (ISO)-induced cardiomyopathy in vivo. HCMFs stimulated with TGF-β1 (5 ng/ml), LPS (100 ng/ml), and ATP (5 mM) (T+L+A) for 8 h, to induce the NLRP3 inflammasome, demonstrated significantly increased protein expression of markers of NLRP3 priming (NLRP3, apoptosis-associated speck-like protein containing a C-terminal caspase-recruitment domain, procaspase-1) and activity (IL-1β, IL-18). After 72 h, there was significantly increased neuronal NOS (nNOS), TLR-4, procaspase-1, myofibroblast differentiation, and collagen-I deposition. These measures, along with interstitial TGF-β1 expression and collagen deposition, were also increased in the left ventricle (LV) of ISO-injured mice 14 d postinjury. RLX [16.8 nM (100 ng/ml) in vitro; 0.5 mg/kg per day in vivo] inhibited T+L+A- and ISO-induced TLR-4 expression, NLRP3 priming, IL-1β, IL-18, myofibroblast differentiation, and interstitial collagen deposition at the time points studied, via the promotion of nNOS; with the NLRP3- and IL-1β-inhibitory effects of RLX in HCMFs being abrogated by pharmacological blockade of nNOS or TLR-4. Comparatively, the small molecule NLRP3 inhibitor, N-{[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)amino]carbonyl}-4-(1-hydroxy-1-methylethyl)-2-furansulfonamide (1 μM in vitro, 10 mg/kg/d in vivo), inhibited components of the NLRP3 inflammasome in vitro and in vivo and ISO-induced interstitial LV fibrosis in vivo but did not affect nNOS, TLR-4, myofibroblast differentiation, or myofibroblast-induced collagen deposition. Hence, RLX can inhibit the TGF-β1/IL-1β axis via a nNOS-TLR-4-NLRP3 inflammasome-dependent mechanism on cardiac myofibroblasts.-Cáceres, F. T., Gaspari, T. A., Samuel, C. S., Pinar, A. A. Serelaxin inhibits the profibrotic TGF-β1/IL-1β axis by targeting TLR-4 and the NLRP3 inflammasome in cardiac myofibroblasts.
Collapse
Affiliation(s)
- Felipe Tapia Cáceres
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Royce SG, Mao W, Lim R, Kelly K, Samuel CS. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid. FASEB J 2019; 33:6402-6411. [PMID: 30768365 DOI: 10.1096/fj.201802307r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The airway remodeling (AWR) associated with chronic allergic airways disease (AAD)/asthma contributes to irreversible airway obstruction. This study compared and combined the antiremodeling and other effects of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) with the corticosteroid dexamethasone (Dex) in experimental chronic AAD/asthma. Female BALB/c mice subjected to 11 wk of ovalbumin (Ova)-induced chronic AAD were intranasally administered MCA-MSCs (1 × 106 cells/mouse; once weekly on wk 10 and 11), Dex (0.5 mg/ml; once daily for 2 wk), or both combined. MCA-MSC detection and changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were measured at the end of wk 11. Mice with chronic AAD had significant AI, goblet cell metaplasia, epithelial damage/thickening, aberrant TGF-β1 levels, subepithelial myofibroblast accumulation, airway/lung fibrosis, and AHR (all P < 0.001 vs. healthy controls). MCA-MSCs were detected in the lungs up to 5-7 d postadministration and demonstrated modest anti-inflammatory but striking antifibrotic effects against Ova-induced AAD, effectively decreasing AHR by 70-75% (all P < 0.05 vs. Ova alone). In comparison, Dex predominantly demonstrated anti-inflammatory effects, decreasing AHR by ∼30%. Combining MCA-MSCs with Dex provided equivalent protection to that offered by either therapy alone. MCA-MSCs reduce chronic AAD-induced AWR and AHR to a greater extent than Dex and may act as a suitable adjunct therapy to corticosteroid treatment of asthma.-Royce, S. G., Mao, W., Lim, R., Kelly, K., Samuel, C. S. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid.
Collapse
Affiliation(s)
- Simon G Royce
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - WeiYi Mao
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics, Carlton, Victoria, Australia
| | - Chrishan S Samuel
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Lam M, Royce SG, Samuel CS, Bourke JE. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther 2018; 187:61-70. [PMID: 29447958 DOI: 10.1016/j.pharmthera.2018.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and β2-adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Simon G Royce
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Chrishan S Samuel
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Royce SG, Rele S, Broughton BRS, Kelly K, Samuel CS. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. FASEB J 2017. [PMID: 28626025 DOI: 10.1096/fj.201700178r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural changes known as airway remodeling (AWR) characterize chronic/severe asthma and contribute to lung dysfunction. Thus, we assessed the in vivo efficacy of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) on AWR in a murine model of chronic allergic airways disease (AAD)/asthma. Female Balb/c mice were subjected to a 9-wk model of ovalbumin (Ova)-induced chronic AAD and treated intravenously or intranasally with MCA-MSCs from weeks 9 to 11. Changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were assessed. Ova-injured mice presented with AI, goblet cell metaplasia, epithelial thickening, increased airway TGF-β1 levels, subepithelial myofibroblast and collagen accumulation, total lung collagen concentration, and AHR (all P < 0.001 vs. uninjured control group). Apart from epithelial thickness, all other parameters measured were significantly, although not totally, decreased by intravenous delivery of MCA-MSCs to Ova-injured mice. In comparison, intranasal delivery of MCA-MSCs to Ova-injured mice significantly decreased all parameters measured (all P < 0.05 vs. Ova group) and, most notably, normalized aberrant airway TGF-β1 levels, airway/lung fibrosis, and AHR to values measured in uninjured animals. MCA-MSCs also increased collagen-degrading gelatinase levels. Hence, direct delivery of MCA-MSCs offers great therapeutic benefit for the AWR and AHR associated with chronic AAD.-Royce, S. G., Rele, S., Broughton, B. R. S., Kelly, K., Samuel, C. S. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease.
Collapse
Affiliation(s)
- Simon G Royce
- Fibrosis Laboratory, Monash University, Clayton, Victoria, Australia; .,Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, Australia; and
| | - Siddharth Rele
- Fibrosis Laboratory, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular and Pulmonary Pharmacology Group, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics, Armadale, Victoria, Australia
| | - Chrishan S Samuel
- Fibrosis Laboratory, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
9
|
Samuel CS, Royce SG, Hewitson TD, Denton KM, Cooney TE, Bennett RG. Anti-fibrotic actions of relaxin. Br J Pharmacol 2017; 174:962-976. [PMID: 27250825 PMCID: PMC5406285 DOI: 10.1111/bph.13529] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022] Open
Abstract
Fibrosis refers to the hardening or scarring of tissues that usually results from aberrant wound healing in response to organ injury, and its manifestations in various organs have collectively been estimated to contribute to around 45-50% of deaths in the Western world. Despite this, there is currently no effective cure for the tissue structural and functional damage induced by fibrosis-related disorders. Relaxin meets several criteria of an effective anti-fibrotic based on its specific ability to inhibit pro-fibrotic cytokine and/or growth factor-mediated, but not normal/unstimulated, fibroblast proliferation, differentiation and matrix production. Furthermore, relaxin augments matrix degradation through its ability to up-regulate the release and activation of various matrix-degrading matrix metalloproteinases and/or being able to down-regulate tissue inhibitor of metalloproteinase activity. Relaxin can also indirectly suppress fibrosis through its other well-known (anti-inflammatory, antioxidant, anti-hypertrophic, anti-apoptotic, angiogenic, wound healing and vasodilator) properties. This review will outline the organ-specific and general anti-fibrotic significance of exogenously administered relaxin and its mechanisms of action that have been documented in various non-reproductive organs such as the cardiovascular system, kidney, lung, liver, skin and tendons. In addition, it will outline the influence of sex on relaxin's anti-fibrotic actions, highlighting its potential as an emerging anti-fibrotic therapeutic. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PharmacologyMonash UniversityMelbourneVic.Australia
| | - S G Royce
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PharmacologyMonash UniversityMelbourneVic.Australia
| | - T D Hewitson
- Department of NephrologyRoyal Melbourne HospitalMelbourneVic.Australia
| | - K M Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityMelbourneVic.Australia
| | - T E Cooney
- University of Pittsburgh Medical Centre (UPMC) HamotEriePAUSA
| | - R G Bennett
- Research Service 151VA Nebraska‐Western Iowa Health Care SystemOmahaNEUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
10
|
Royce SG, Bathgate RAD, Samuel CS. Promise and Limitations of Relaxin-based Therapies in Chronic Fibrotic Lung Diseases. Am J Respir Crit Care Med 2016; 194:1434-1435. [DOI: 10.1164/rccm.201606-1256le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Kang HS, Rhee CK, Lee HY, Yoon HK, Kwon SS, Lee SY. Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model. Korean J Intern Med 2016; 31:1150-1158. [PMID: 27764539 PMCID: PMC5094918 DOI: 10.3904/kjim.2015.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/05/2015] [Accepted: 08/16/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Inhaled corticosteroids are the most effective treatment currently available for asthma, but their beneficial effect against airway remodeling is limited. The tyrosine kinase inhibitor nilotinib has inhibitory activity against c-kit and the platelet-derived growth factor receptor. We compared the effects of fluticasone and nilotinib on airway remodeling in a chronic asthma model. We also examined whether co-treatment with nilotinib and fluticasone had any synergistic effect in preventing airway remodeling. METHODS We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized female BALB/c-mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated with fluticasone and/or nilotinib intranasally during the OVA challenge. RESULTS Mice chronically exposed to OVA developed eosinophilic airway inflammation and showed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Both fluticasone and nilotinib attenuated airway smooth muscle thickening. However, only nilotinib suppressed fibrotic changes, demonstrating inhibition of collagen deposition. Fluticasone reduced pro-inflammatory cells, such as eosinophils, and several cytokines, such as interleukin 4 (IL-4), IL-5, and IL-13, induced by repeated OVA challenges. On the other hand, nilotinib reduced transforming growth factor β1 levels in bronchoalveolar lavage fluid and inhibited fibroblast proliferation significantly. CONCLUSIONS These results suggest that fluticasone and nilotinib suppressed airway remodeling in this chronic asthma model through anti-inflammatory and anti-fibrotic pathways, respectively.
Collapse
Affiliation(s)
- Hye Seon Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hea Yon Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soon Seok Kwon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon, Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sook Young Lee, M.D. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6061 Fax: +82-2-596-2158 E-mail:
| |
Collapse
|
12
|
Lam M, Royce SG, Donovan C, Jelinic M, Parry LJ, Samuel CS, Bourke JE. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation. Front Pharmacol 2016; 7:406. [PMID: 27833558 PMCID: PMC5081476 DOI: 10.3389/fphar.2016.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022] Open
Abstract
Treatment with β-adrenoceptor agonists does not fully overcome the symptoms associated with severe asthma. Serelaxin elicits potent uterine and vascular relaxation via its cognate receptor, RXFP1, and nitric oxide (NO) signaling, and is being clinically evaluated for the treatment of acute heart failure. However, its direct bronchodilator efficacy has yet to be explored. Tracheal rings were prepared from male Sprague-Dawley rats (250–350 g) and tricolor guinea pigs, and precision cut lung slices (PCLSs) containing intrapulmonary airways were prepared from rats only. Recombinant human serelaxin (rhRLX) alone and in combination with rosiglitazone (PPARγ agonist; recently described as a novel dilator) or β-adrenoceptor agonists (isoprenaline, salbutamol) were added either to pre-contracted airways, or before contraction with methacholine or endothelin-1. Regulation of rhRLX responses by epithelial removal, indomethacin (cyclooxygenase inhibitor), L-NAME (nitric oxide synthase inhibitor), SQ22536 (adenylate cyclase inhibitor) and ODQ (guanylate cyclase inhibitor) were also evaluated. Immunohistochemistry was used to localize RXFP1 to airway epithelium and smooth muscle. rhRLX elicited relaxation in rat trachea and PCLS, more slowly than rosiglitazone or isoprenaline, but potentiated relaxation to both these dilators. It markedly increased β-adrenoceptor agonist potency in guinea pig trachea. rhRLX, rosiglitazone, and isoprenaline pretreatment also inhibited the development of rat tracheal contraction. Bronchoprotection by rhRLX increased with longer pre-incubation time, and was partially reduced by epithelial removal, indomethacin and/or L-NAME. SQ22536 and ODQ also partially inhibited rhRLX-mediated relaxation in both intact and epithelial-denuded trachea. RXFP1 expression in the airways was at higher levels in epithelium than smooth muscle. In summary, rhRLX elicits large and small airway relaxation via epithelial-dependent and -independent mechanisms, likely via RXFP1 activation and generation of NO, prostaglandins and cAMP/cGMP. rhRLX also enhanced responsiveness to other dilators, suggesting its potential as an alternative or add-on therapy for severe asthma.
Collapse
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton VIC, Australia
| | - Simon G Royce
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton VIC, Australia
| | - Chantal Donovan
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, ClaytonVIC, Australia; Department of Pharmacology, Lung Health Research Centre, The University of Melbourne, ParkvilleVIC, Australia
| | - Maria Jelinic
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Chrishan S Samuel
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton VIC, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, ClaytonVIC, Australia; Department of Pharmacology, Lung Health Research Centre, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
13
|
Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends Pharmacol Sci 2016; 37:485-497. [DOI: 10.1016/j.tips.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
|
14
|
Pini A, Boccalini G, Lucarini L, Catarinicchia S, Guasti D, Masini E, Bani D, Nistri S. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin). J Pharmacol Exp Ther 2016; 357:451-8. [PMID: 27048661 DOI: 10.1124/jpet.116.232215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2023] Open
Abstract
Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD), which is characterized by airway remodeling, lung inflammation and fibrosis, emphysema, and respiratory failure. The current therapies can improve COPD management but cannot arrest its progression and reduce mortality. Hence, there is a major interest in identifying molecules susceptible of development into new drugs to prevent or reduce CS-induced lung injury. Serelaxin (RLX), or recombinant human relaxin-2, is a promising candidate because of its anti-inflammatory and antifibrotic properties highlighted in lung disease models. Here, we used a guinea pig model of CS-induced lung inflammation, and remodeling reproducing some of the hallmarks of COPD. Animals exposed chronically to CS (8 weeks) were treated with vehicle or RLX, delivered by osmotic pumps (1 or 10 μg/day) or aerosol (10 μg/ml/day) during CS treatment. Controls were nonsmoking animals. RLX maintained airway compliance to a control-like pattern, likely because of its capability to counteract lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed animals with RLX reduced the inflammatory recruitment of leukocytes, accompanied by a significant reduction of the release of proinflammatory cytokines (tumor necrosis factor α and interleukin-1β). Moreover, RLX was able to counteract the adverse bronchial remodeling and emphysema induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle thickening, and fibrosis. Of note, RLX delivered by aerosol has shown a comparable efficacy to systemic administration in reducing CS-induced lung dysfunction and damage. In conclusion, RLX emerges as a new molecule to counteract CS-induced inflammatory lung diseases.
Collapse
Affiliation(s)
- Alessandro Pini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Giulia Boccalini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Laura Lucarini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Stefano Catarinicchia
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Daniele Guasti
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Emanuela Masini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Daniele Bani
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Silvia Nistri
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| |
Collapse
|
15
|
Patel KP, Giraud AS, Samuel CS, Royce SG. Combining an epithelial repair factor and anti-fibrotic with a corticosteroid offers optimal treatment for allergic airways disease. Br J Pharmacol 2016; 173:2016-29. [PMID: 27060978 DOI: 10.1111/bph.13494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the extent to which individual versus combination treatments that specifically target airway epithelial damage [trefoil factor-2 (TFF2)], airway fibrosis [serelaxin (RLX)] or airway inflammation [dexamethasone (DEX)] reversed the pathogenesis of chronic allergic airways disease (AAD). EXPERIMENTAL APPROACH Following induction of ovalbumin (OVA)-induced chronic AAD in 6–8 week female Balb/c mice, animals were i.p. administered naphthalene (NA) on day 64 to induce epithelial damage, then received daily intranasal administration of RLX (0.8 mg·mL(−1)), TFF2 (0.5 mg·mL(−1)), DEX (0.5 mg·mL(−1)), RLX + TFF2 or RLX + TFF2 + DEX from days 67–74. On day 75, lung function was assessed by invasive plethysmography, before lung tissue was isolated for analyses of various measures. The control group was treated with saline + corn oil (vehicle for NA). KEY RESULTS OVA + NA-injured mice demonstrated significantly increased airway inflammation, airway remodelling (AWR) (epithelial damage/thickness; subepithelial myofibroblast differentiation, extracellular matrix accumulation and fibronectin deposition; total lung collagen concentration), and significantly reduced airway dynamic compliance (cDyn). RLX + TFF2 markedly reversed several measures of OVA + NA-induced AWR and normalized the reduction in cDyn. The combined effects of RLX + TFF2 + DEX significantly reversed peribronchial inflammation score, airway epithelial damage, subepithelial extracellular matrix accumulation/fibronectin deposition and total lung collagen concentration (by 50–90%) and also normalized the reduction of cDyn. CONCLUSIONS AND IMPLICATIONS Combining an epithelial repair factor and anti-fibrotic provides an effective means of treating the AWR and dysfunction associated with AAD/asthma and may act as an effective adjunct therapy to anti-inflammatory corticosteroids
Collapse
Affiliation(s)
- K P Patel
- Fibrosis Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia
| | - A S Giraud
- Murdoch Children's Research Institute, University of Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Vic., Australia
| | - C S Samuel
- Fibrosis Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia
| | - S G Royce
- Fibrosis Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia.,Respiratory Pharmacology Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia
| |
Collapse
|
16
|
Royce SG, Shen M, Patel KP, Huuskes BM, Ricardo SD, Samuel CS. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Res 2015; 15:495-505. [PMID: 26426509 DOI: 10.1016/j.scr.2015.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 09/20/2015] [Indexed: 01/14/2023] Open
Abstract
This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs.
Collapse
Affiliation(s)
- Simon G Royce
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| | - Matthew Shen
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Krupesh P Patel
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Brooke M Huuskes
- Kidney Regeneration and Stem Cell Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sharon D Ricardo
- Kidney Regeneration and Stem Cell Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Chrishan S Samuel
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
17
|
Royce SG, Lim CXF, Patel KP, Wang B, Samuel CS, Tang MLK. Intranasally administered serelaxin abrogates airway remodelling and attenuates airway hyperresponsiveness in allergic airways disease. Clin Exp Allergy 2015; 44:1399-408. [PMID: 25113628 DOI: 10.1111/cea.12391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/03/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The peptide hormone relaxin plays a key role in the systemic hemodynamic and renovascular adaptive changes that occur during pregnancy, which is linked to its antiremodelling effects. Serelaxin (a recombinant form of human gene-2 relaxin) has been shown to inhibit lung fibrosis in various disease models and reverse airway remodelling and airway hyperresponsiveness (AHR) in allergic airways disease (AAD). OBJECTIVE Although continuous systemic delivery of exogenous serelaxin alleviates allergic fibrosis and AHR, more direct routes for administration into the lung have not been investigated. Thus, intranasal administration of serelaxin was evaluated for its ability to reverse airway remodelling and AHR associated with AAD. METHODS Female Balb/c mice were subjected to a 9-week model of chronic AAD. Subgroups of animals (n = 12/group) were then treated intranasally with serelaxin (0.8 mg/mL) or vehicle once daily for 14 days (from weeks 9-11). Saline-sensitized/challenged mice treated with intranasal saline served as additional controls. Differential bronchoalveolar lavage (BAL) cell counts, ovalbumin (OVA)-specific IgE levels, tissue inflammation, parameters of airway remodelling and AHR were then assessed. RESULTS Chronic AAD was associated with significant increases in differential BAL cell counts, OVA-specific IgE levels, inflammation, epithelial thickening, goblet cell metaplasia, TGF-β1 expression, epithelial Smad2 phosphorylation (pSmad2), subepithelial collagen thickness, total lung collagen concentration and AHR (all P < 0.05 vs. respective measurements from saline-treated mice). Daily intranasal delivery of serelaxin significantly diminished AAD-induced epithelial thickening, epithelial pSmad2, subepithelial and total lung collagen content (fibrosis) and AHR (all P < 0.05 vs. vehicle-treated AAD mice). CONCLUSIONS AND CLINICAL RELEVANCE Intranasal delivery of serelaxin can effectively reduce airway remodelling and AHR, when administered once daily. Respirable preparations of serelaxin may have therapeutic potential for the prevention and/or reversal of established airway remodelling and AHR in asthma.
Collapse
Affiliation(s)
- S G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, Vic., Australia; Department of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | | | |
Collapse
|
18
|
Philpott H, Nandurkar S, Royce SG, Thien F, Gibson PR. Risk factors for eosinophilic esophagitis. Clin Exp Allergy 2015; 44:1012-9. [PMID: 24990069 DOI: 10.1111/cea.12363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic antigen driven disease, whereby food and/or aeroallergens result in inflammation and luminal narrowing, and the clinical symptoms of dysphagia and food bolus obstruction events (FBOE). Established risk factors are male gender, Caucasian race and atopy. Increased risk amongst family members, and a single nucleotide polymorphism (SNP) in a gene coding thymic stromal lymphopoietin (TSLP) on the pseudoautosomal region of the X and Y chromosomes supports a genetic predisposition. Environmental factors including the timing and nature of food and aeroallergen exposure to the developing immune system may be important, whilst esophageal barrier function integrity and the influence of microbiota are worthy of future research.
Collapse
Affiliation(s)
- H Philpott
- Department of Gastroenterology, Box Hill Hospital, Melbourne, Victoria, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
19
|
Bansal P, Saw S, Govindaraj D, Arora N. Intranasal administration of a combination of choline chloride, vitamin C, and selenium attenuates the allergic effect in a mouse model of airway disease. Free Radic Biol Med 2014; 73:358-65. [PMID: 24905385 DOI: 10.1016/j.freeradbiomed.2014.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023]
Abstract
Respiratory allergic disease is an inflammatory condition accompanied by oxidative stress. Supplementation of an anti-inflammatory agent with antioxidants may have a therapeutic effect. In this study, the effects of choline chloride in combination with antioxidants were evaluated via the intranasal route in a mouse model of allergic airway disease. Balb/c mice were sensitized on days 0, 7, and 14 and challenged on days 25-30 with cockroach extract (CE) and with a booster challenge on day 38. They were treated with choline chloride (ChCl; 1mg/kg), vitamin C (Vit C; 308.33 mg/kg), and selenium (Se; 1mg/kg) alone or in combination via the intranasal route on days 31, 33, 35, 37, and 39. The mice were sacrificed on day 40 to collect blood, bronchoalveolar lavage fluid, lungs, and spleen. Mice immunized with CE showed a significant increase in airway hyperresponsiveness (AHR), lung inflammation, Th2 cytokines, and the oxidative stress markers intracellular reactive oxygen species and 8-isoprostanes compared to the phosphate-buffered saline control group. A significant decrease was observed in these parameters with all the treatments (p<0.01). The highest decrease was noticed in the ChCl+Vit C+Se-treated group, with AHR decreased to the normal level. This group also showed the highest decrease in airway inflammation (p<0.001), IL-4 and IL-5 (p<0.001), IgE and IgG1 (p<0.001), NF-κB (p<0.001), and 8-isoprostane levels (p<0.001). Glutathione peroxidase activity, which was decreased significantly in CE-immunized mice, was restored to normal levels in this group (p<0.001). IL-10 level was decreased in CE-immunized mice and was restored to normal by combination treatment. The combination treatment induced FOXP3(+) cells in splenocyte culture, responsible for the upregulation of IL-10. In conclusion, the combination of choline chloride, vitamin C, and selenium via the intranasal route reduces AHR, inflammation, and oxidative stress, probably by causing IL-10 production by FOXP3(+) cells, and possesses therapeutic potential against allergic airway disease.
Collapse
Affiliation(s)
- Preeti Bansal
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India; Department of Biotechnology, University of Pune, Ganeshkhind, Pune 411 007, India
| | - Sanjay Saw
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India; Department of Biotechnology, University of Pune, Ganeshkhind, Pune 411 007, India
| | - Dhanapal Govindaraj
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India.
| |
Collapse
|
20
|
Royce SG, Moodley Y, Samuel CS. Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. Pharmacol Ther 2013; 141:250-60. [PMID: 24513131 DOI: 10.1016/j.pharmthera.2013.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
Abstract
Inflammatory cell infiltration, cytokine release, epithelial damage, airway/lung remodelling and fibrosis are central features of inflammatory lung disorders, which include asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Although the lung has some ability to repair itself from acute injury, in the presence of ongoing pathological stimuli and/or insults that lead to chronic disease, it no longer retains the capacity to heal, resulting in fibrosis, the final common pathway that causes an irreversible loss of lung function. Despite inflammation, genetic predisposition/factors, epithelial-mesenchymal transition and mechanotransduction being able to independently contribute to airway remodelling and fibrosis, current therapies for inflammatory lung diseases are limited by their ability to only target the inflammatory component of the disease without having any marked effects on remodelling (epithelial damage and fibrosis) that can cause lung dysfunction independently of inflammation. Furthermore, as subsets of patients suffering from these diseases are resistant to currently available therapies (such as corticosteroids), novel therapeutic approaches are required to combat all aspects of disease pathology. This review discusses emerging therapeutic approaches, such as trefoil factors, relaxin, histone deacetylase inhibitors and stem cells, amongst others that have been able to target airway inflammation and airway remodelling while improving related lung dysfunction. A better understanding of the mode of action of these therapies and their possible combined effects may lead to the identification of their clinical potential in the setting of lung disease, either as adjunct or alternative therapies to currently available treatments.
Collapse
Affiliation(s)
- Simon G Royce
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Departments of Pathology and Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yuben Moodley
- Department of Respiratory and Sleep Medicine, School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth 6000, Western Australia, Australia
| | - Chrishan S Samuel
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|