1
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Zhao T, Ma A, Huang Z, Liu Z, Sun Z, Zhu L, Chang H. pparβ regulates lipid catabolism by mediating acox and cpt-1 genes in Scophthalmus maximus under heat stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:295-305. [PMID: 38386263 DOI: 10.1007/s10695-024-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Peroxisome proliferator-activated receptor β (pparβ) is a key gene-regulating lipid metabolism pathway, but its function in turbot remains unclear. In this study, the CDS of pparβ was cloned from kidney for the first time. The CDS sequence length was 1533 bp encoding 510 amino acids. Structural analysis showed that the pparβ protein contained a C4 zinc finger and HOLI domain, suggesting that the pparβ gene of turbot has high homology with the PPAR gene of other species. The high expression patterns of pparβ, acox, and cpt-1 at high temperatures, as shown through qPCR, indicated that high temperatures activated the transcriptional activity of pparβ and increased the activity of the acox and cpt-1 genes. The expression of acox and cpt-1 was significantly inhibited when pparβ was downregulated using RNAi technology and inhibitor treatments, suggesting that pparβ positively regulated acox and cpt-1 expression at high temperatures and, thus, modulates lipid catabolism activity. These results demonstrate that pparβ is involved in the regulation of lipid metabolism at high temperatures and expand a new perspective for studying the regulation of lipid metabolism in stress environments of teleost.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Aijun Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Zhihui Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Zhifeng Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Zhibin Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Liguang Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Haowen Chang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| |
Collapse
|
3
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Menghini R, Casagrande V, Rizza S, Federici M. GLP-1RAs and cardiovascular disease: is the endothelium a relevant platform? Acta Diabetol 2023; 60:1441-1448. [PMID: 37401947 PMCID: PMC10520195 DOI: 10.1007/s00592-023-02124-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 07/05/2023]
Abstract
Hyperglycemia strongly affects endothelial function and activation, which in turn increases the risk of atherosclerotic cardiovascular disease. Among pharmacotherapies aimed at lowering blood glucose levels, glucagon-like peptide 1 receptor agonists (GLP-1RA) represent a class of drugs involved in the improvement of the endothelium damage and the progression of cardiovascular diseases. They show antihypertensive and antiatherosclerotic actions due at least in part to direct favorable actions on the coronary vascular endothelium, such as oxidative stress reduction and nitric oxide increase. However, cumulative peripheral indirect actions could also contribute to the antiatherosclerotic functions of GLP-1/GLP-1R agonists, including metabolism and gut microbiome regulation. Therefore, further research is necessary to clarify the specific role of this drug class in the management of cardiovascular disease and to identify specific cellular targets involved in the protective signal transduction. In the present review, we provide an overview of the effects of GLP-1RAs treatment on cardiovascular disease with particular attention on potential molecular mechanisms involving endothelium function on formation and progression of atherosclerotic plaque.
Collapse
Affiliation(s)
- Rossella Menghini
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Casagrande
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Rizza
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| | - Massimo Federici
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
- Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Zeng X, Chen T, Cui Y, Zhao J, Chen Q, Yu Z, Zhang Y, Han L, Chen Y, Zhang J. In utero exposure to perfluoroalkyl substances and early childhood BMI trajectories: A mediation analysis with neonatal metabolic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161504. [PMID: 36634772 DOI: 10.1016/j.scitotenv.2023.161504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In utero perfluoroalkyl substances (PFAS) exposure has been associated with childhood adiposity, but the mechanisms are poorly known. OBJECTIVE To investigate the potential mediating role of neonatal metabolites in the relationship between prenatal PFAS exposure and childhood adiposity trajectories in the first four years of life. METHODS We analyzed the data for 1671 mother-child pairs from the Shanghai Birth Cohort study. We included those with PFAS exposure information in early pregnancy, neonatal metabolites data and at least three child anthropometric measurements at 6, 12, 24 and/or 48 months. Body mass index (BMI) z-score trajectories were identified using latent class growth mixture modeling. The associations between PFAS concentrations and trajectory classes were assessed using multinomial logistic regression. Screening and penalization-based selection was used to identify neonatal amino acids and acylcarnitines with significant mediation effects. RESULTS Three BMI z-score trajectories in early childhood were identified: a persistent increase trajectory (Class 1, 2.2 %), a stable trajectory (Class 2, 66 %), and a transient increase trajectory (Class 3, 32 %). Increased odds of being in Class 1 were observed in association with one log-unit increase in concentrations of perfluorooctane sulfonate (odds ratio [OR], 1.76 [95 % CI, 0.96-3.23], Class 2 as reference; OR, 2.36 [95 % CI, 1.27-4.40], Class 3 as reference), perfluorononanoic acid (OR, 1.90 [95 % CI, 0.97-3.72], Class 2 as reference; OR, 2.23 [95 % CI, 1.12-4.42], Class 3 as reference) and perfluorodecanoic acid (OR, 1.95 [95 % CI, 1.12-3.38], Class 2 as reference; OR, 2.14 [95 % CI, 1.22-3.76], Class 3 as reference). The effect of prenatal PFAS exposure on being in Class 1 was significantly but partly mediated by octanoylcarnitine (2.64 % for perfluorononanoic acid and 3.70 % for sum of 10 PFAS). CONCLUSIONS In utero PFAS exposure is a risk factor for persistent growth in BMI z-score in early childhood. The alteration of neonatal acylcarnitines suggests a potential molecular pathway.
Collapse
Affiliation(s)
- Xiaojing Zeng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yidan Cui
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Zhao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhangsheng Yu
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Wei JX, Jiang HL, Chen XH. Endothelial cell metabolism in sepsis. World J Emerg Med 2023; 14:10-16. [PMID: 36713343 PMCID: PMC9842459 DOI: 10.5847/wjem.j.1920-8642.2023.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Endothelial dysfunction in sepsis is a pathophysiological feature of septic organ failure. Endothelial cells (ECs) exhibit specific metabolic traits and release metabolites to adapt to the septic state in the blood to maintain vascular homeostasis. METHODS Web of Science and PubMed were searched from inception to October 1, 2022. The search was limited to the English language only. Two reviewers independently identified studies related to EC metabolism in sepsis. The exclusion criteria were duplicate articles according to multiple search criteria. RESULTS Sixty articles were included, and most of them were cell and animal studies. These studies reported the role of glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism in EC homeostasis. including glycolysis, oxidative phosphorylation, fatty acid metabolism and amino acid metabolism. However, dysregulation of EC metabolism can contribute to sepsis progression. CONCLUSION There are few clinical studies on EC metabolism in sepsis. Related research mainly focuses on basic research, but some scientific problems have also been clarified. Therefore, this review may provide an overall comprehension and novel aspects of EC metabolism in sepsis.
Collapse
Affiliation(s)
- Jue-xian Wei
- Emergency Department, the Second Affi liated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Hui-lin Jiang
- Emergency Department, the Second Affi liated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-hui Chen
- Emergency Department, the Second Affi liated Hospital, Guangzhou Medical University, Guangzhou 510260, China,Corresponding Author: Xiao-hui Chen,
| |
Collapse
|
7
|
YANG MINGXUAN, PAN YANXIA, LI KUNHUI, CHEN XIUYUN, LI MINYAN, LIN JIANPING, LI MING, LIN CHENG. Effects of Exercise Training on PPARβ/δ Expression in Skeletal Muscle of Rats with Spontaneous Hypertension. Med Sci Sports Exerc 2022; 54:1309-1316. [PMID: 35389955 PMCID: PMC9301982 DOI: 10.1249/mss.0000000000002925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to identify the relationship and mechanism between skeletal muscle peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and spontaneous hypertension. METHODS Rats were divided into four groups ( n = 10): spontaneous hypertensive rats exercise group (SHR-E), spontaneous hypertensive rats sedentary group (SHR-S), Wistar-Kyoto control rats exercise group (WKY-E), and Wistar-Kyoto control rats sedentary group (WKY-S). Although the sedentary groups were placed on the treadmill without moving during the training sessions, the exercise groups were forced to run on a treadmill for 8 wk, 1 h·d -1 , 5 d·wk -1 . After training, the density and area of gastrocnemius microvessels were observed. PPARβ/δ, vascular endothelial growth factor A (VEGFA), superoxide dismutase 2 (SOD-2), and nitric oxide synthase in gastrocnemius were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. RESULTS Except the sixth week of age, the systolic blood pressure of SHR-S was significantly higher than that of WKY-S at all time periods. Exercise significantly reduced systolic blood pressure in SHR rats. Compared with the SHR-S group, the WKY-S group had significantly higher PPARβ/δ protein level and density of skeletal muscle microvessels. Eight weeks of exercise increased the PPARβ/δ, SOD-2, VEGFA, and microvessel density and area in the skeletal muscle of SHR. CONCLUSIONS Exercise training promoted PPARβ/δ mRNA and protein-level expression of PPARβ/δ, SOD-2 and VEGFA in skeletal muscle, thus increasing the density and area of skeletal muscle blood vessels. These regulations contribute to the reduction of peripheral vascular resistance. This may be a potential mechanism of exercise to reduce blood pressure.
Collapse
Affiliation(s)
- MINGXUAN YANG
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, CHINA
| | - YANXIA PAN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - KUNHUI LI
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - XIUYUN CHEN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - MINYAN LI
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - JIANPING LIN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - MING LI
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - CHENG LIN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| |
Collapse
|
8
|
Cao N, Li X, Zhang W, Wang Q, Liang Y, Zhou F, Xiao X. Research progress of signaling pathways of the natural substances intervene dyslipidemia (Review). Exp Ther Med 2022; 24:494. [PMID: 35813312 PMCID: PMC9257764 DOI: 10.3892/etm.2022.11421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Dyslipidemia is an umbrella term for a range of lipid metabolic disorders in the body. This condition has been widely reported to greatly increase the risk of cardiovascular diseases, threatening human health. In recent years, advances in molecular biology have deepened understanding of the dyslipidemia-related signaling pathways and specific mechanisms underlying dyslipidemia. Signaling pathways possess the ability to transmit an extracellular signal to the inside of the cell, leading to specific biological effects. Lipid metabolism disorders and lipid levels in the blood are frequently affected by aberrant alterations in the dyslipidemia-related signaling pathways. Therefore, further investigations into these pathways are required for the prevention and treatment of dyslipidemia. The present review summarizes the characteristics of six dyslipidemia-associated signaling pathways: Peroxisome proliferator-activated receptor, adenosine monophosphate-activated protein kinase, farnesoid X receptor, forkhead box O, adipocytokine and cyclic adenosine monophosphate signaling pathways. In particular, specific focus was placed on previous experimental studies and reports on the intervention effects of natural substances (compounds from animals, plants, marine organisms and microorganisms) on dyslipidemia.
Collapse
Affiliation(s)
- Ningning Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Xiaoxuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Wanjing Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Qingguo Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Yujuan Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Fujun Zhou
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Binhai, Tianjin 300301, P.R. China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| |
Collapse
|
9
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
10
|
Kamel EM, Ahmed NA, El-Bassuony AA, Hussein OE, Alrashdi B, Ahmed SA, Lamsabhi AM, Mahmoud AM, Arab HH. Xanthine oxidase inhibitory activity of Euphorbia peplus L. phenolics. Comb Chem High Throughput Screen 2021; 25:1336-1344. [PMID: 34151757 DOI: 10.2174/1386207324666210609104456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/05/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various phenolics show inhibitory activity towards xanthine oxidase (XO), an enzyme that generates reactive oxygen species which cause oxidative damage. OBJECTIVE This study investigated the XO inhibitory activity of Euphorbia peplus phenolics. METHODS The dried powdered aerial parts of E. peplus were extracted, fractioned and phenolics were isolated and identified. The XO inhibitory activity of E. peplus extract (EPE) and the isolated phenolics was investigated in vitro and in vivo. RESULTS Three phenolics were isolated from the ethyl acetate fraction of E. peplus. All isolated compounds and the EPE showed inhibitory activity towards XO in vitro. In hyperuricemic rats, EPE and the isolated phenolics decreased uric acid and XO activity. Molecular docking showed the binding modes of isolated phenolics with XO, depicting significant interactions with the active site amino acid residues. Molecular dynamics simulation trajectories confirmed the interaction of isolated phenolics with XO by forming hydrogen bonds with the active site residues. Also, the root mean square (RMS) deviations of XO and phenolics-XO complexes achieved equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration and solvent accessible surface area investigations showed that different systems were stabilized at ≈ 2500 ps. The RMS fluctuations profile depicted that the drug binding site exhibited a rigidity behavior during the simulation. CONCLUSION In vitro, in vivo and computational investigations showed the XO inhibitory activity of E. peplus phenolics. These phenolics might represent promising candidates for the development of XO inhibitors.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Noha A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Omnia E Hussein
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Barakat Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Sayed A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid 28049, Spain
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
11
|
Zhang X, Zhang Z, Wang P, Han Y, Liu L, Li J, Chen Y, Liu D, Wang J, Tian X, Zhao Q, Yan F. Bawei Chenxiang Wan Ameliorates Cardiac Hypertrophy by Activating AMPK/PPAR-α Signaling Pathway Improving Energy Metabolism. Front Pharmacol 2021; 12:653901. [PMID: 34149410 PMCID: PMC8209424 DOI: 10.3389/fphar.2021.653901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022] Open
Abstract
Bawei Chenxiang Wan (BCW), a well-known traditional Chinese Tibetan medicine formula, is effective for the treatment of acute and chronic cardiovascular diseases. In the present study, we investigated the effect of BCW in cardiac hypertrophy and underlying mechanisms. The dose of 0.2, 0.4, and 0.8 g/kg BCW treated cardiac hypertrophy in SD rat model induced by isoprenaline (ISO). Our results showed that BCW (0.4 g/kg) could repress cardiac hypertrophy, indicated by macro morphology, heart weight to body weight ratio (HW/BW), left ventricle heart weight to body weight ratio (LVW/BW), hypertrophy markers, heart function, pathological structure, cross-sectional area (CSA) of myocardial cells, and the myocardial enzymes. Furthermore, we declared the mechanism of BCW anti-hypertrophy effect was associated with activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-α (PPAR-α) signals, which regulate carnitine palmitoyltransferase1β (CPT-1β) and glucose transport-4 (GLUT-4) to ameliorate glycolipid metabolism. Moreover, BCW also elevated mitochondrial DNA-encoded genes of NADH dehydrogenase subunit 1(ND1), cytochrome b (Cytb), and mitochondrially encoded cytochrome coxidase I (mt-co1) expression, which was associated with mitochondria function and oxidative phosphorylation. Subsequently, knocking down AMPK by siRNA significantly can reverse the anti-hypertrophy effect of BCW indicated by hypertrophy markers and cell surface of cardiomyocytes. In conclusion, BCW prevents ISO-induced cardiomyocyte hypertrophy by activating AMPK/PPAR-α to alleviate the disturbance in energy metabolism. Therefore, BCW can be used as an alternative drug for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zhiying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Pengxiang Wang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yiwei Han
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lijun Liu
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jie Li
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yichun Chen
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Duxia Liu
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jinying Wang
- School of Medical Science, Jinan University, Guangzhou, China
| | - Xiaoying Tian
- School of Medical Science, Jinan University, Guangzhou, China
| | - Qin Zhao
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Fengxia Yan
- School of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
de la Visitación N, Robles-Vera I, Toral M, O'Valle F, Moleon J, Gómez-Guzmán M, Romero M, Duarte M, Sánchez M, Jiménez R, Duarte J. Lactobacillus fermentum CECT5716 prevents renal damage in the NZBWF1 mouse model of systemic lupus erythematosus. Food Funct 2021; 11:5266-5274. [PMID: 32458936 DOI: 10.1039/d0fo00578a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this work was to evaluate whether the immune-modulatory bacterium Lactobacillus fermentum CECT5716 (LC40) protects the kidneys in a female mouse model of lupus with hypertension. Twenty-week-old female NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with vehicle or LC40 (5 × 108 colony-forming units day-1) for 13 weeks. LC40 treatment reduced the increased plasma anti-dsDNA, endotoxemia, and high blood pressure in NZBWF1 mice. In parallel, LC40 also prevented alterations in kidney function parameters, measured by reduced creatinine and urea in urine excretion, and kidney injury, evaluated by albumin excretion in lupus mice. The main histological features found in the kidneys of lupus mice, such as glomerular, tubulointerstitial or vascular lesions present in the renal parenchyma, accompanied by immune-complex deposition and inflammatory infiltrates were also reduced by LC40. In addition, LC40 inhibited the increased levels of pro-inflammatory cytokines, NADPH oxidase activity and infiltration of Th17 and Th1 cells in the kidneys of NZBWF1 mice. Interestingly, no significant changes were observed in control mice treated with LC40. In conclusion, these results indicate that the consumption of LC40 can prevent the impairment of kidney function and damage, in part due to its capacity to reduce anti-dsDNA production and circulating levels of lipopolysaccharides, with the subsequent reduction of immune complex deposition, inflammation and oxidative stress. These results open new possibilities for the prevention of renal complications associated with hypertensive systemic lupus erythematosus by the chronic administration of the probiotic LC40.
Collapse
Affiliation(s)
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. and CIBERCV, Granada, Spain
| | - Francisco O'Valle
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain and Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Javier Moleon
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain and Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain and Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Marcos Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain and Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain and CIBERCV, Granada, Spain and Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain and CIBERCV, Granada, Spain and Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| |
Collapse
|
13
|
Mazuecos L, Pintado C, Rubio B, Guisantes-Batán E, Andrés A, Gallardo N. Leptin, Acting at Central Level, Increases FGF21 Expression in White Adipose Tissue via PPARβ/δ. Int J Mol Sci 2021; 22:4624. [PMID: 33924880 PMCID: PMC8124190 DOI: 10.3390/ijms22094624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARβ/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARβ/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARβ/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARβ/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Blanca Rubio
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Eduardo Guisantes-Batán
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Antonio Andrés
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
14
|
Rubio B, Mora C, Pintado C, Mazuecos L, Fernández A, López V, Andrés A, Gallardo N. The nutrient sensing pathways FoxO1/3 and mTOR in the heart are coordinately regulated by central leptin through PPARβ/δ. Implications in cardiac remodeling. Metabolism 2021; 115:154453. [PMID: 33249043 DOI: 10.1016/j.metabol.2020.154453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cardiovascular disease in obese individuals with type 2 diabetes is often associated with hyperleptinemia and leptin resistance, while other studies support that leptin has cardioprotective effects. Besides, the role of leptin in regulating cardiac atrophy or hypertrophy remains to be clearly defined. In fact, in rats with normal leptin sensitivity, the molecular underpinnings of the effects of central leptin regulating cardiac structural pathways remain poorly understood. OBJECTIVE Hence, we assessed the effects of intracerebroventricular (icv) leptin infusion on cardiac remodeling analyzing FOXO1/3 and mTORC1 pathways, focusing special attention to PPARβ/δ as mediator of central leptin's effects on cardiac metabolism. METHODS Male 3-months-old Wistar rats, infused with icv leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally with the specific PPARβ/δ antagonist GSK0660, at 1 mg/kg per day along leptin treatment. RESULTS Central leptin regulated dynamically, in an opposite manner, the network between FOXOs and mTORC1 and induced an atrophy-related gene program in cardiac tissue. Leptin activated the anti-hypertrophic kinase GSK3β and increased the protein levels of muscle-specific ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/Atrogin-1 involved in limiting cardiac hypertrophy. FOXO1 activity and the expression of their target genes, Sod2 and Lpl, were also increased in the heart upon central leptin infusion. Besides, Beclin-1 and LC3B-II, gene products of the autophagic pathway response, were upregulated, while the content and expression levels of phenotypic markers of cardiac hypertrophy as ANP and β-myosin heavy chain, gene product of Myh7 were significantly decreased. On the other hand, mTORC1 activity and OXPHOS protein levels were decreased suggesting a key role of central leptin preventing cardiac oxidative stress. In fact, the content of carbonylated proteins, TBARS and ROS/RSN were not increased in cardiac tissue in response to central leptin infusion. Finally, the pharmacological inhibition of PPARβ/δ, via in vivo administration of the selective antagonist GSK0660, blunted the induction of FOXO1/3, Atrogin-1, MuRF1 and GSK3β in the heart mediated by icv leptin infusion. CONCLUSIONS Our results demonstrate that, in lean rats with normal leptin sensitivity, central leptin regulates nutrient sensing pathways in heart contributing to balance cardiac remodeling through the anti- and pro-hypertrophic programs, and in this process is involved PPARβ/δ.
Collapse
Affiliation(s)
- Blanca Rubio
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Mora
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Lorena Mazuecos
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alejandro Fernández
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Virginia López
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Antonio Andrés
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| | - Nilda Gallardo
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
15
|
Liang H, Yue R, Zhou C, Liu M, Yu X, Lu S, Zeng J, Yu Z, Zhou Z, Hu H. Cadmium exposure induces endothelial dysfunction via disturbing lipid metabolism in human microvascular endothelial cells. J Appl Toxicol 2020; 41:775-788. [PMID: 33205412 DOI: 10.1002/jat.4115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Liang
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Rongchuan Yue
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Chao Zhou
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Mengyu Liu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Xi Yu
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Shengzhong Lu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Jing Zeng
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Zhengping Yu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Zhou Zhou
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Houxiang Hu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
16
|
Faulkner A, Lynam E, Purcell R, Jones C, Lopez C, Board M, Wagner KD, Wagner N, Carr C, Wheeler-Jones C. Context-dependent regulation of endothelial cell metabolism: differential effects of the PPARβ/δ agonist GW0742 and VEGF-A. Sci Rep 2020; 10:7849. [PMID: 32398728 PMCID: PMC7217938 DOI: 10.1038/s41598-020-63900-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator activated receptor β/δ (PPARβ/δ) has pro-angiogenic functions, but whether PPARβ/δ modulates endothelial cell metabolism to support the dynamic phenotype remains to be established. This study characterised the metabolic response of HUVEC to the PPARβ/δ agonist, GW0742, and compared these effects with those induced by VEGF-A. In HUVEC monolayers, flux analysis revealed that VEGF-A promoted glycolysis at the expense of fatty acid oxidation (FAO), whereas GW0742 reduced both glycolysis and FAO. Only VEGF-A stimulated HUVEC migration and proliferation whereas both GW0742 and VEGF-A promoted tubulogenesis. Studies using inhibitors of PPARβ/δ or sirtuin-1 showed that the tubulogenic effect of GW0742, but not VEGF-A, was PPARβ/δ- and sirtuin-1-dependent. HUVEC were reliant on glycolysis and FAO, and inhibition of either pathway disrupted cell growth and proliferation. VEGF-A was a potent inducer of glycolysis in tubulogenic HUVEC, while FAO was maintained. In contrast, GW0742-induced tubulogenesis was associated with enhanced FAO and a modest increase in glycolysis. These novel data reveal a context-dependent regulation of endothelial metabolism by GW0742, where metabolic activity is reduced in monolayers but enhanced during tubulogenesis. These findings expand our understanding of PPARβ/δ in the endothelium and support the targeting of PPARβ/δ in regulating EC behaviour and boosting tissue maintenance and repair.
Collapse
Affiliation(s)
- Ashton Faulkner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Experimental Cardiovascular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eleanor Lynam
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Coleen Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Colleen Lopez
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Mary Board
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Kay-Dietrich Wagner
- Université Côte d'Azur, Institute of Biology Valrose, Nice (iBV), CNRS UMR7277, INSERM U1091, Nice, France
| | - Nicole Wagner
- Université Côte d'Azur, Institute of Biology Valrose, Nice (iBV), CNRS UMR7277, INSERM U1091, Nice, France
| | - Carolyn Carr
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
17
|
Robles-Vera I, Toral M, de la Visitación N, Aguilera-Sánchez N, Redondo JM, Duarte J. Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Front Physiol 2020; 11:277. [PMID: 32372967 PMCID: PMC7176911 DOI: 10.3389/fphys.2020.00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/12/2020] [Indexed: 02/03/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are among the main classes of bacterial metabolic products and are mainly synthesized in the colon through bacterial fermentation. Short-chain fatty acids, such as acetate, butyrate, and propionate, reduce endothelial activation induced by proinflammatory mediators, at least in part, by activation of G protein–coupled receptors (GPRs): GPR41 and GPR43. The objective of the study was to analyze the possible protective effects of SCFAs on endothelial dysfunction induced by angiotensin II (AngII). Rat aortic endothelial cells (RAECs) and rat aortas were incubated with AngII (1 μM) for 6 h in the presence or absence of SCFAs (5–10 mM). In RAECs, we found that AngII reduces the production of nitric oxide (NO) stimulated by calcium ionophore A23187; increases the production of reactive oxygen species (ROS), both from the nicotinamide adenine dinucleotide phosphate oxidase system and the mitochondria; diminishes vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239; reduces GPR41 and GPR43 mRNA level; and reduces the endothelium-dependent relaxant response to acetylcholine in aorta. Coincubation with butyrate and acetate, but not with propionate, increases both NO production and pSer239-VASP, reduces the concentration of intracellular ROS, and improves relaxation to acetylcholine. The beneficial effects of butyrate were inhibited by the GPR41 receptor antagonist, β-hydroxybutyrate, and by the GPR43 receptor antagonist, GLPG0794. Butyrate inhibited the down-regulation of GPR41 and GPR43 induced by AngII, being without effect acetate and propionate. Neither β-hydroxybutyrate nor GLPG0794 affects the protective effect of acetate in endothelial dysfunction. In conclusion, acetate and butyrate improve endothelial dysfunction induced by AngII by increasing the bioavailability of NO. The effect of butyrate seems to be related to GPR41/43 activation, whereas acetate effects were independent of GPR41/43.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBERCV, Madrid, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Nazaret Aguilera-Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBERCV, Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| |
Collapse
|
18
|
Oxidative stress induced by palmitic acid modulates K Ca2.3 channels in vascular endothelium. Exp Cell Res 2019; 383:111552. [PMID: 31415760 DOI: 10.1016/j.yexcr.2019.111552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023]
Abstract
Elevated plasma free fatty acids level has been implicated in the development of insulin resistance, inflammation, and endothelial dysfunction in diabetic and nondiabetic individuals. However, the underlying mechanisms still remain to be defined. Herein, we investigated the effect of palmitic acid (PA), the most abundant saturated fatty acid in the human body, on small-conductance Ca2+-activated potassium channels (KCa2.3)-mediated relaxation in rodent resistance arteries and the underlying molecular mechanism. The effect of PA on KCa2.3 in endothelium was evaluated using real-time PCR, Western blotting, whole-cell patch voltage-clamp, wire and pressure myograph system, and reactive oxygen species (ROS) were measured by using dihydroethidium and 2', 7'-dichlorofluorescein diacetate. KCa2.3-mediated vasodilatation responses to acetylcholine and NS309 (agonist of KCa2.3 and KCa3.1) were impaired by incubation of normal mesenteric arteries with 100 μM PA for 24 h. In cultured human umbilical vein endothelial cells (HUVECs), PA decreased KCa2.3 current and expression at mRNA and protein levels. Incubation with the NADPH oxidase (Nox) inhibitor dibenziodolium (DPI) partly inhibited the PA-induced ROS production and restored KCa2.3 expression. Inhibition of either p38-MAPK or NF-κB using specific inhibitors (SB203580, SB202190 or Bay11-7082, pyrrolidinedithiocarbamate) attenuated PA-induced downregulation of KCa2.3 and inhibition of p38-MAPK also attenuated PA-induced phosphorylation of NF-κB p65. Furthermore, DPI reversed the increment of phospho-p38-MAPK by PA. These results demonstrated that PA downregulated KCa2.3 expressions via Nox/ROS/p38-MAPK/NF-κB signaling leading to endothelial vasodilatory dysfunction.
Collapse
|
19
|
Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5484138. [PMID: 30962863 PMCID: PMC6431442 DOI: 10.1155/2019/5484138] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
The prevalence of cardiovascular disease (CVD) is increasing over time. CVD is a comorbidity in diabetes and contributes to premature death. Citrus flavonoids possess several biological activities and have emerged as efficient therapeutics for the treatment of CVD. Citrus flavonoids scavenge free radicals, improve glucose tolerance and insulin sensitivity, modulate lipid metabolism and adipocyte differentiation, suppress inflammation and apoptosis, and improve endothelial dysfunction. The intake of citrus flavonoids has been associated with improved cardiovascular outcomes. Although citrus flavonoids exerted multiple beneficial effects, their mechanisms of action are not completely established. In this review, we summarized recent findings and advances in understanding the mechanisms underlying the protective effects of citrus flavonoids against oxidative stress, inflammation, diabetes, dyslipidemia, endothelial dysfunction, and atherosclerosis. Further studies and clinical trials to assess the efficacy and to explore the underlying mechanism(s) of action of citrus flavonoids are recommended.
Collapse
|
20
|
Toral M, Robles-Vera I, de la Visitación N, Romero M, Yang T, Sánchez M, Gómez-Guzmán M, Jiménez R, Raizada MK, Duarte J. Critical Role of the Interaction Gut Microbiota - Sympathetic Nervous System in the Regulation of Blood Pressure. Front Physiol 2019; 10:231. [PMID: 30930793 PMCID: PMC6423906 DOI: 10.3389/fphys.2019.00231] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Association between gut dysbiosis and neurogenic diseases, such as hypertension, has been described. The aim of this study was to investigate whether changes in the gut microbiota alter gut-brain interactions inducing changes in blood pressure (BP). Recipient normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were orally gavaged with donor fecal contents from SHR and WKY. We divided the animals into four groups: WKY transplanted with WKY microbiota (W-W), SHR with SHR (S-S), WKY with SHR (W-S) and SHR with WKY (S-W). Basal systolic BP (SBP) and diastolic BP (DBP) were reduced with no change in heart rate as a result of fecal microbiota transplantation (FMT) from WKY rats to SHR. Similarly, FMT from SHR to WKY increased basal SBP and DBP. Increases in both NADPH oxidase-driven reactive oxygen species production and proinflammatory cytokines in brain paraventricular nucleus linked to higher BP drop with pentolinium and plasmatic noradrenaline (NA) levels were found in the S-S group as compared to the W-W group. These parameters were reduced by FMT from WKY to SHR. Increased levels of pro-inflammatory cytokines, tyrosine hydroxylase mRNA levels and NA content in the proximal colon, whereas reduced mRNA levels of gap junction proteins, were found in the S-S group as compared to the W-W group. These changes were inhibited by FMT from WKY to SHR. According to our correlation analyses, the abundance of Blautia and Odoribacter showed a negative correlation with high SBP. In conclusion, in SHR gut microbiota is an important factor involved in BP control, at least in part, as consequence of its effect on neuroinflammation and the sympathetic nervous system activity.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Tao Yang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBERCV, University of Granada, Granada, Spain
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBERCV, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass ES, Soliman HA, Farghali AA. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacother 2018; 109:2527-2538. [PMID: 30551513 DOI: 10.1016/j.biopha.2018.11.093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/01/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) represent one of the most promising drug delivery systems. MSNs have attracted considerable attention in recent years both in industry and biomedicine due to their unique properties. Thus, evaluation of the toxic effects of MSNs is necessary before the biomedical and clinical applications. We investigated the in vivo effect of MSNs on the production of reactive oxygen species (ROS), antioxidant defenses and histology of the heart and lung. Rats received 25, 50, 100 and 200 mg/kg body weight of synthesized MSNs intraperitoneally for 30 days and samples were collected for analysis. MSNs induced significant increase in serum cardiac function markers, tumor necrosis factor alpha and lipids. MSNs-induced rats exhibited anemia, thrombocytopenia, leukocytosis, significantly increased ROS, malondialdehyde and nitric oxide, and declined antioxidant defenses in the heart and lung of rats. In addition, MSNs induced histological alterations in the heart and lung of rats. In conclusion, our results demonstrated that MSNs induce cardiotoxicity and pulmonary toxicity via excessive generation of ROS, suppressed antioxidants, inflammation and histological alterations. Further investigations are recommended to understand the molecular mechanism underlying the toxic effects of MSNs and to improve the performance of nanomedicine.
Collapse
Affiliation(s)
- Walaa G Hozayen
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Ekram M Desouky
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Hanan A Soliman
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| |
Collapse
|
22
|
Robles-Vera I, Toral M, de la Visitación N, Sánchez M, Romero M, Olivares M, Jiménez R, Duarte J. The Probiotic Lactobacillus fermentum
Prevents Dysbiosis and Vascular Oxidative Stress in Rats with Hypertension Induced by Chronic Nitric Oxide Blockade. Mol Nutr Food Res 2018; 62:e1800298. [DOI: 10.1002/mnfr.201800298] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
| | - Marta Toral
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
| | | | - Manuel Sánchez
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
| | - Miguel Romero
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica; Departamento de Investigación BIOSEARCH S.A.; 18004 Granada Spain
| | - Rosario Jiménez
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
- CIBERCV; 18071 Granada Spain
| | - Juan Duarte
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
- Centro de Investigaciones Biomedicas (CIBM); 18100 Granada Spain
| |
Collapse
|
23
|
Theodorou K, Boon RA. Endothelial Cell Metabolism in Atherosclerosis. Front Cell Dev Biol 2018; 6:82. [PMID: 30131957 PMCID: PMC6090045 DOI: 10.3389/fcell.2018.00082] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis and its sequelae, such as myocardial infarction and stroke, are the leading cause of death worldwide. Vascular endothelial cells (EC) play a critical role in vascular homeostasis and disease. Atherosclerosis as well as its independent risk factors including diabetes, obesity, and aging, are hallmarked by endothelial activation and dysfunction. Metabolic pathways have emerged as key regulators of many EC functions, including angiogenesis, inflammation, and barrier function, processes which are deregulated during atherogenesis. In this review, we highlight the role of glucose, fatty acid, and amino acid metabolism in EC functions during physiological and pathological states, specifically atherosclerosis, diabetes, obesity and aging.
Collapse
Affiliation(s)
- Kosta Theodorou
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany
| | - Reinier A Boon
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Rhine-Main, Berlin, Germany.,Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
24
|
Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, García F, Pérez-Vizcaíno F, Gálvez J, Duarte J. Lactobacillus fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Mol Nutr Food Res 2018; 62:e1800033. [PMID: 29851248 DOI: 10.1002/mnfr.201800033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The aim is to analyze whether the probiotic Lactobacillus fermentum CECT5716 (LC40) can prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. METHODS AND RESULTS Tacrolimus increases systolic blood pressure (SBP) and impairs endothelium-dependent relaxation to acetylcholine and these effects are partially prevented by LC40. Endothelial dysfunction induced by tacrolimus is related to both increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) and uncoupled endothelial nitric oxide synthase (eNOS)-driven superoxide production and Rho-kinase-mediated eNOS inhibition. LC40 treatment prevents all the aortic changes induced by tacrolimus. LC40 restores the imbalance between T-helper 17 (Th17)/regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and the spleen. Tacrolimus-induced gut dysbiosis, that is, it decreases microbial diversity, increases the Firmicutes/Bacteroidetes (F/B) ratio and decreases acetate- and butyrate-producing bacteria, and these effects are prevented by LC40. Fecal microbiota transplantation (FMT) from LC40-treated mice to control mice prevents the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. CONCLUSION LC40 treatment prevents hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects are associated with a reduction in vascular oxidative stress, mainly through NOX2 downregulation and prevention of eNOS uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Natalia Chueca-Porcuna
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A., 18004, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, 28040, Spain.,Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007, Madrid, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| |
Collapse
|
25
|
The Role of Nrf2 Signaling in PPAR β/ δ-Mediated Vascular Protection against Hyperglycemia-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5852706. [PMID: 30046379 PMCID: PMC6036815 DOI: 10.1155/2018/5852706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Hyperglycemia induces oxidative stress and plays a substantial role in the progression of vascular diseases. Here, we demonstrated the potentiality of peroxisome proliferator-activated receptor (PPAR)β/δ activation in attenuating high glucose-induced oxidative stress in endothelial cells and diabetic rats, pointing to the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2). HUVECs exposed to high glucose showed increased levels of reactive oxygen species (ROS) and upregulated NOX-2, NOX-4, Nrf2, and NQO-1 effects that were significantly reversed by the PPARβ/δ agonists GW0742 and L165041. Both PPARβ/δ agonists, in a concentration-dependent manner, induced transcriptional and protein upregulation of heme oxygenase-1 (HO-1) under low- and high-glucose conditions. All effects of PPARβ/δ agonists were reversed by either pharmacological inhibition or siRNA-based downregulation of PPARβ/δ. These in vitro findings were confirmed in diabetic rats treated with GW0742. In conclusion, PPARβ/δ activation confers vascular protection against hyperglycemia-induced oxidative stress by suppressing NOX-2 and NOX-4 expression plus a direct induction of HO-1; with the subsequent downregulation of the Nrf2 pathway. Thus, PPARβ/δ activation could be of interest to prevent the progression of diabetic vascular complications.
Collapse
|
26
|
Su H, Wan C, Lei CT, Zhang CY, Ye C, Tang H, Qiu Y, Zhang C. Lipid Deposition in Kidney Diseases: Interplay Among Redox, Lipid Mediators, and Renal Impairment. Antioxid Redox Signal 2018; 28:1027-1043. [PMID: 28325081 DOI: 10.1089/ars.2017.7066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significance: The relationship between lipid disturbances and renal diseases has been studied for several decades, and it is well recognized that when the balance of renal lipid uptake, synthesis, oxidation, and outflow is disrupted, lipids will undergo oxidation, be sequestrated as lipid droplets, generate toxic metabolites, and cause nephrotoxicity in diverse renal diseases. Recent Advances: During renal disorders, redox signaling is a pivotal event promoting or resulting from lipid disorders. Accordingly, a vicious cycle of lipid redox dysregulation could be developed, accelerating the renal damage. Critical Issues: The aim of this concise review is to introduce the connection among redox, lipid abnormalities and kidney damage in various conditions. And we summarized current understanding of the lipid redox loop implicated in acute kidney injury, chronic kidney disease, metabolic abnormalities, aging, and genetic pitfalls. Future Directions: Despite recent advances, further investigations are required to clarify the complicated molecular and regulatory mechanisms among redox, lipid mediators and renal disorders. Moreover, exploring an ideal target for potential therapies should be discussed and studied in future. Antioxid. Redox Signal. 28, 1027-1043.
Collapse
Affiliation(s)
- Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Mora C, Pintado C, Rubio B, Mazuecos L, López V, Fernández A, Salamanca A, Bárcena B, Fernández-Agulló T, Arribas C, Gallardo N, Andrés A. Central leptin regulates heart lipid content by selectively increasing PPAR β/δ expression. J Endocrinol 2018; 236:43-56. [PMID: 29109080 DOI: 10.1530/joe-17-0554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ, encoded by Pparb/d) and their target genes, adipose triglyceride lipase (encoded by Pnpla2, herefater referred to as Atgl), hormone sensitive lipase (encoded by Lipe, herefater referred to as Hsl), pyruvate dehydrogenase kinase 4 (Pdk4) and acyl CoA oxidase 1 (Acox1), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 (Scd1) and diacylglycerol acyltransferase 1 (Dgat1) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal β-oxidation. Finally, the pharmacological inhibition of PPARβ/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARβ/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight.
Collapse
Affiliation(s)
- Cristina Mora
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Cristina Pintado
- BiochemistryFaculty of Environmental Sciences and and CRIB, UCLM, Toledo, Spain
| | - Blanca Rubio
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Lorena Mazuecos
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Virginia López
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Alejandro Fernández
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Aurora Salamanca
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Brenda Bárcena
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | | | - Carmen Arribas
- BiochemistryFaculty of Environmental Sciences and and CRIB, UCLM, Toledo, Spain
| | - Nilda Gallardo
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Antonio Andrés
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| |
Collapse
|
28
|
Bharat D, Cavalcanti RRM, Petersen C, Begaye N, Cutler BR, Costa MMA, Ramos RKLG, Ferreira MR, Li Y, Bharath LP, Toolson E, Sebahar P, Looper RE, Jalili T, Rajasekaran NS, Jia Z, Symons JD, Anandh Babu PV. Blueberry Metabolites Attenuate Lipotoxicity-Induced Endothelial Dysfunction. Mol Nutr Food Res 2017; 62. [PMID: 29024402 DOI: 10.1002/mnfr.201700601] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/18/2017] [Indexed: 01/13/2023]
Abstract
SCOPE Lipotoxicity-induced endothelial dysfunction is an important vascular complication associated with diabetes. Clinical studies support the vascular benefits of blueberry anthocyanins, but the underlying mechanism is unclear. The hypothesis that metabolites of blueberry anthocyanins attenuate lipotoxicity-induced endothelial dysfunction was tested. METHODS AND RESULTS Human aortic endothelial cells (HAECs) were treated for 6 h with either: (i) the parent anthocyanins (malvidin-3-glucoside and cyanidin-3-glucoside); or (ii) the blueberry metabolites (hydroxyhippuric acid, hippuric acid, benzoic acid-4-sulfate, isovanillic acid-3-sulfate, and vanillic acid-4-sulfate), at concentrations known to circulate in humans following blueberry consumption. For the last 5 h HAECs were treated with palmitate or vehicle. HAECs treated with palmitate displayed elevated reactive oxygen species generation, increased mRNA expression of NOX4, chemokines, adhesion molecules, and IκBα, exaggerated monocyte binding, and suppressed nitric oxide production. Of note, the damaging effects of palmitate were ameliorated in HAECs treated with blueberry metabolites but not parent anthocyanins. Further, important translational relevance of these results was provided by our observation that palmitate-induced endothelial dysfunction was lessened in arterial segments that incubated concurrently with blueberry metabolites. CONCLUSION The presented findings indicate that the vascular benefits of blueberry anthocyanins are mediated by their metabolites. Blueberries might complement existing therapies to lessen vascular complications.
Collapse
Affiliation(s)
- Divya Bharat
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | | | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Nathan Begaye
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Brett Ronald Cutler
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Marcella Melo Assis Costa
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | | | - Marina Ramos Ferreira
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Youyou Li
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Leena P Bharath
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Emma Toolson
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Paul Sebahar
- Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, USA
| | - Ryan E Looper
- Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA.,Division of Endocrinology, Metabolism, Diabetes, and Molecular Medicine Program, University of Utah, Salt Lake City, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| |
Collapse
|
29
|
Ajith TA, Jayakumar TG. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease. Clin Exp Pharmacol Physiol 2017; 43:649-58. [PMID: 27115677 DOI: 10.1111/1440-1681.12579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
Abstract
Cardiomyocytes mainly depend on energy produced from the oxidation of fatty acids and mitochondrial oxidative phosphorylation. Shortage of energy or excessive fat accumulation can lead to cardiac disorders. High saturated fat intake and a sedentary life style have a major influence in the development of cardiovascular disease (CVD). Peroxisome proliferator-activated receptors (PPARs), one of the nuclear receptor super family members, play critical role in the metabolism of lipids by regulating their oxidation and storage. Furthermore, they are involved in glucose homeostasis as well. PPARs, mainly alpha (α) and beta/delta (β/δ), have a significant effect on the lipid metabolism and anti-inflammation in endothelial cells (ECs), vascular smooth muscle cells, and also in cardiomyocytes. Pro-inflammatory cytokines, mainly tumour necrosis factor-α, released at the site of inflammation in the sub-ECs of coronary arteries can inactivate the PPARs which can eventually lead to decreased energy production in the myocardium. Various synthetic ligands of PPAR-α and β/δ have many favourable effects in modulating the vascular diseases and heart failure. Despite the adverse effects from therapy using PPAR- gamma ligands, several laboratories are now focused on synthesizing partial activators which may combine their beneficial effects with lowering of undesirable side effects. This review discusses the role of isoforms of PPAR in the cardiomyocytes energy balance and CVD. The knowledge will help in the synthesis of ligands for their partial activation in order to render energy balance and protection from CVD.
Collapse
|
30
|
Mahmoud AM, Wilkinson FL, McCarthy EM, Moreno-Martinez D, Langford-Smith A, Romero M, Duarte J, Alexander MY. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. FASEB J 2017; 31:4636-4648. [PMID: 28687612 PMCID: PMC5714503 DOI: 10.1096/fj.201601244rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Fiona L Wilkinson
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eoghan M McCarthy
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Musculoskeletal Biomedical Research Unit, National Institute for Health Research Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Daniel Moreno-Martinez
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alexander Langford-Smith
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - M Yvonne Alexander
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; .,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
31
|
Romero M, Toral M, Robles-Vera I, Sánchez M, Jiménez R, O'Valle F, Rodriguez-Nogales A, Pérez-Vizcaino F, Gálvez J, Duarte J. Activation of Peroxisome Proliferator Activator Receptor β/δ Improves Endothelial Dysfunction and Protects Kidney in Murine Lupus. Hypertension 2017; 69:641-650. [PMID: 28242713 DOI: 10.1161/hypertensionaha.116.08655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/13/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
Women with systemic lupus erythematosus exhibit a high prevalence of hypertension, endothelial dysfunction, and renal injury. We tested whether GW0742, a peroxisome proliferator activator receptor β/δ (PPARβ/δ) agonist, ameliorates disease activity and cardiovascular complications in a female mouse model of lupus. Thirty-week-old NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with GW0742 or with the PPARβ/δ antagonist GSK0660 plus GW0742 for 5 weeks. Blood pressure, plasma double-stranded DNA autoantibodies and cytokines, nephritis, hepatic opsonins, spleen lymphocyte populations, endothelial function, and vascular oxidative stress were compared in treated and untreated mice. GW0742 treatment reduced lupus disease activity, blood pressure, cardiac and renal hypertrophy, splenomegaly, albuminuria, and renal injury in lupus mice, but not in control. GW0742 increased hepatic opsonins mRNA levels in lupus mice and reduced the elevated T, B, Treg, and Th1 cells in spleens from lupus mice. GW0742 lowered the higher plasma concentration of proinflammatory cytokines observed in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and increased nicotinamide adenine dinucleotide phosphate oxidase-driven vascular reactive oxygen species production, which were normalized by GW0742 treatment. All these effects of GW0742 were inhibited by PPARβ/δ blockade with GSK0660. Pharmacological activation of PPARβ/δ reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, which was associated with reduced plasma antidouble-stranded DNA autoantibodies and anti-inflammatory and antioxidant effects in target tissues. Our findings identify PPARβ/δ as a promising target for an alternative approach in the treatment of systemic lupus erythematosus and its associated vascular damage.
Collapse
Affiliation(s)
- Miguel Romero
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Marta Toral
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Iñaki Robles-Vera
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Manuel Sánchez
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Rosario Jiménez
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Francisco O'Valle
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Alba Rodriguez-Nogales
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Francisco Pérez-Vizcaino
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Julio Gálvez
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.)
| | - Juan Duarte
- From the Department of Pharmacology, School of Pharmacy (M.R., M.T., I.R.-V., M.S., R.J., A.R.-N., F.P.-V., J.G., J.D.), Department of Pathology, School of Medicine (F.O.), and CIBER-EHD, Center for Biomedical Research (CIBM) (J.G.), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Spain (M.R., R.J., F.O., J.G., J.D.); CIBER Enfermedades Cardiovasculares, Granada, Spain (R.J., J.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Spain (F.P.-V.); CIBER Enfermedades Respiratorias, Madrid, Spain (F.P.-V.); and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain (F.P.-V.).
| |
Collapse
|
32
|
A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling. Biochim Biophys Acta Gen Subj 2017; 1861:3311-3322. [DOI: 10.1016/j.bbagen.2016.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
|
33
|
Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol 2016; 312:H189-H200. [PMID: 27881385 DOI: 10.1152/ajpheart.00155.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid. Spain; and.,Ciber Enfermedades Respiratorias (Ciberes). Madrid. Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| |
Collapse
|
34
|
Yang H, Chen H, Hao G, Mei T, Zhang H, Chen W, Chen YQ. Increased fatty acid accumulation following overexpression of glycerol‐3‐phosphate dehydrogenase and suppression of β‐oxidation in oleaginous fungus
Mortierella alpina. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Guangfei Hao
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Tiantian Mei
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
35
|
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res 2016; 64:98-122. [PMID: 27665713 DOI: 10.1016/j.plipres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research, 138673, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore
| | - Hervé Guillou
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France; Center for Integrative Genomics, University of Lausanne, Le Génopode, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
36
|
Namgaladze D, Brüne B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1796-1807. [PMID: 27614008 DOI: 10.1016/j.bbalip.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
37
|
Pircher A, Treps L, Bodrug N, Carmeliet P. Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis 2016; 253:247-257. [PMID: 27594537 DOI: 10.1016/j.atherosclerosis.2016.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a leading cause of morbidity and mortality in Western society. Despite improved insight into disease pathogenesis and therapeutic options, additional treatment strategies are required. Emerging evidence highlights the relevance of endothelial cell (EC) metabolism for angiogenesis, and indicates that EC metabolism is perturbed when ECs become dysfunctional to promote atherogenesis. In this review, we overview the latest insights on EC metabolism and discuss current knowledge on how atherosclerosis deregulates EC metabolism, and how maladaptation of deregulated EC metabolism can contribute to atherosclerosis progression. We will also highlight possible therapeutic avenues, based on targeting EC metabolism.
Collapse
Affiliation(s)
- Andreas Pircher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium
| | - Natalia Bodrug
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium; Laboratory of Adhesion and Angiogenesis, Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium.
| |
Collapse
|
38
|
Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin Sci (Lond) 2016; 130:1823-36. [PMID: 27413020 DOI: 10.1042/cs20160141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.
Collapse
|
39
|
Toral M, Romero M, Jiménez R, Robles-Vera I, Tamargo J, Martínez MC, Pérez-Vizcaíno F, Duarte J. Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochem Pharmacol 2016; 110-111:25-36. [DOI: 10.1016/j.bcp.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
|
40
|
Vázquez-Carrera M. Unraveling the Effects of PPARβ/δ on Insulin Resistance and Cardiovascular Disease. Trends Endocrinol Metab 2016; 27:319-334. [PMID: 27005447 DOI: 10.1016/j.tem.2016.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
Abstract
Insulin resistance precedes dyslipidemia and type 2 diabetes mellitus (T2DM) development. Preclinical evidence suggests that peroxisome proliferator-activated receptor (PPAR) β/δ activators may prevent and treat obesity-induced insulin resistance and T2DM, while clinical trials highlight their potential utility in dyslipidemia. This review summarizes recent mechanistic insights into the antidiabetic effects of PPARβ/δ activators, including their anti-inflammatory actions, their ability to inhibit endoplasmic reticulum (ER) stress and hepatic lipogenesis, and to improve atherogenesis and insulin sensitivity, as well as their capacity to activate pathways that are also stimulated by exercise. Findings from clinical trials are also examined. Dissecting the effects of PPARβ/δ ligands on insulin sensitivity and atherogenesis may provide a basis for the development of therapies for the prevention and treatment of T2DM and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
41
|
Wang X, Zhao S, Su M, Sun L, Zhang S, Wang D, Liu Z, Yuan Y, Liu Y, Li Y. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice. Biochem Biophys Res Commun 2016; 474:182-187. [DOI: 10.1016/j.bbrc.2016.04.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
|