1
|
Hong SW, Lee J, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Docosahexanoic Acid Attenuates Palmitate-Induced Apoptosis by Autophagy Upregulation via GPR120/mTOR Axis in Insulin-Secreting Cells. Endocrinol Metab (Seoul) 2024; 39:353-363. [PMID: 38254294 PMCID: PMC11066451 DOI: 10.3803/enm.2023.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGRUOUND Polyunsaturated fatty acids (PUFAs) reportedly have protective effects on pancreatic β-cells; however, the underlying mechanisms are unknown. METHODS To investigate the cellular mechanism of PUFA-induced cell protection, mouse insulinoma 6 (MIN6) cells were cultured with palmitic acid (PA) and/or docosahexaenoic acid (DHA), and alterations in cellular signaling and apoptosis were examined. RESULTS DHA treatment remarkably repressed caspase-3 cleavage and terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL)-positive red dot signals in PA-treated MIN6 cells, with upregulation of autophagy, an increase in microtubule- associated protein 1-light chain 3 (LC3)-II, autophagy-related 5 (Atg5), and decreased p62. Upstream factors involved in autophagy regulation (Beclin-1, unc51 like autophagy activating kinase 1 [ULK1], phosphorylated mammalian target of rapamycin [mTOR], and protein kinase B) were also altered by DHA treatment. DHA specifically induced phosphorylation on S2448 in mTOR; however, phosphorylation on S2481 decreased. The role of G protein-coupled receptor 120 (GPR120) in the effect of DHA was demonstrated using a GPR120 agonist and antagonist. Additional treatment with AH7614, a GPR120 antagonist, significantly attenuated DHA-induced autophagy and protection. Taken together, DHA-induced autophagy activation with protection against PA-induced apoptosis mediated by the GPR120/mTOR axis. CONCLUSION These findings indicate that DHA has therapeutic effects on PA-induced pancreatic β-cells, and that the cellular mechanism of β-cell protection by DHA may be a new research target with potential pharmacotherapeutic implications in β-cell protection.
Collapse
Affiliation(s)
- Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
2
|
Rodrigues PB, Dátilo MN, Sant'Ana MR, Nogueira GADS, Marin RM, Nakandakari SCBR, de Moura LP, da Silva ASR, Ropelle ER, Pauli JR, Cintra DE. The Early Impact of Diets Enriched with Saturated and Unsaturated Fatty Acids on Intestinal Inflammation and Tight Junctions. J Nutr Biochem 2023:109410. [PMID: 37364793 DOI: 10.1016/j.jnutbio.2023.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days. HF and FS increased the total body weight mass compared with the CT group, but FS reduced the epididymal fat depot compared to HF. The bioinformatics from mice and human databases showed the Zo1-Ocln-Cldn7 tight junctions as the main protein-triad. In the ileum, the HF diet has increased IL1β transcript and IL1β, TNFα, and CD11b proteins, but reduced the tight junctions (Zo1, Ocln, and Cld7) compared to the CT group. Despite the FS diet being partially efficient in protecting the ileum against inflammation, the tight junctions were increased, compared to the HF group. The GPR120 and GPR40 receptors were unaffected by diets, but GPR120 was co-localized on the surface of ileum macrophages. The short period of a high-fat diet was enough to start the obesogenic process, ileum inflammation, and reduce the tight junctions. Flaxseed oil did not protect efficiently against dysmetabolism. Still, it increased the tight junctions, even without alteration on inflammatory parameters, suggesting the protection against gut permeability during early obesity development.
Collapse
Affiliation(s)
- Patrícia Brito Rodrigues
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil; Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Marcella Neves Dátilo
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil; Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - Rodrigo Miguel Marin
- Laboratory of Clinical Investigation in Resistance to Insulin - LICRI - Department of Internal Medicine - UNICAMP, São Paulo, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil; Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, LaBMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - Eduardo Rochete Ropelle
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil; Laboratory of Molecular Biology of Exercise, LaBMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - José Rodrigo Pauli
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil; Laboratory of Molecular Biology of Exercise, LaBMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil; Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.
| |
Collapse
|
3
|
Ma S, Li Z, Yang Y, Zhang L, Li M, Du L. Fluorescent Ligand-Based Discovery of Small-Molecule Sulfonamide Agonists for GPR120. Front Chem 2022; 10:816014. [PMID: 35174139 PMCID: PMC8841740 DOI: 10.3389/fchem.2022.816014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
As a critical member of G protein-coupled receptors (GPCRs), G protein-coupled receptor 120 (GPR120) is a potential target for many physiological diseases, such as type 2 diabetes mellitus, inflammation, and obesity. Considering that small-molecule fluorescent ligands can combine the advantages of visualization, high sensitivity and selectivity, we initially undertook an effort to develop a series of fluorescent ligands to track GPR120 and establish a method to screen GPR120 agonists. The representative fluorescent ligand N1 possesses suitable optical property, equitable biological activity, and high fluorescence imaging feasibility, therefore, based on compound N1, we subsequently founded a bioluminescence resonance energy transfer (BRET) competition binding assay to screen three series of sulfonamide GPR120 agonists we developed herein. The activity evaluation results revealed that compound D5 was a potent GPR120 agonist with high activity and selectivity. Moreover, compound D5 exhibited a significant glucose-lowering effect in db/db mice, which indicates its potential application in the treatment of type 2 diabetes mellitus in vivo. It is anticipated that our fluorescent ligand-based method is a useful toolbox and will find broad applications in the discovery of small-molecule agonists for GPR120.
Collapse
|
4
|
Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free Fatty Acid Receptors as Mediators and Therapeutic Targets in Liver Disease. Front Physiol 2021; 12:656441. [PMID: 33897464 PMCID: PMC8058363 DOI: 10.3389/fphys.2021.656441] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Free fatty acid receptors (FFARs) are a class of G protein-coupled receptors (GPCRs) that have wide-ranging effects on human physiology. The four well-characterized FFARs are FFAR1/GPR40, FFAR2/GPR43, FFAR3/GPR41, and FFAR4/GPR120. Short-chain (<6 carbon) fatty acids target FFAR2/GPR43 and FFAR3/GPR41. Medium- and long-chain fatty acids (6-12 and 13-21 carbon, respectively) target both FFAR1/GPR40 and FFAR4/GPR120. Signaling through FFARs has been implicated in non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), intestinal failure-associated liver disease (IFALD), and a variety of other liver disorders. FFARs are now regarded as targets for therapeutic intervention for liver disease, diabetes, obesity, hyperlipidemia, and metabolic syndrome. In this review, we provide an in-depth, focused summary of the role FFARs play in liver health and disease.
Collapse
Affiliation(s)
- Jordan D. Secor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
5
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Croze ML, Guillaume A, Ethier M, Fergusson G, Tremblay C, Campbell SA, Maachi H, Ghislain J, Poitout V. Combined Deletion of Free Fatty-Acid Receptors 1 and 4 Minimally Impacts Glucose Homeostasis in Mice. Endocrinology 2021; 162:6128704. [PMID: 33543237 DOI: 10.1210/endocr/bqab002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/16/2022]
Abstract
The free fatty-acid receptors FFAR1 (GPR40) and FFAR4 (GPR120) are implicated in the regulation of insulin secretion and insulin sensitivity, respectively. Although GPR120 and GPR40 share similar ligands, few studies have addressed possible interactions between these 2 receptors in the control of glucose homeostasis. Here we generated mice deficient in gpr120 (Gpr120KO) or gpr40 (Gpr40KO), alone or in combination (Gpr120/40KO), and metabolically phenotyped male and female mice fed a normal chow or high-fat diet. We assessed insulin secretion in isolated mouse islets exposed to selective GPR120 and GPR40 agonists singly or in combination. Following normal chow feeding, body weight and energy intake were unaffected by deletion of either receptor, although fat mass increased in Gpr120KO females. Fasting blood glucose levels were mildly increased in Gpr120/40KO mice and in a sex-dependent manner in Gpr120KO and Gpr40KO animals. Oral glucose tolerance was slightly reduced in male Gpr120/40KO mice and in Gpr120KO females, whereas insulin secretion and insulin sensitivity were unaffected. In hyperglycemic clamps, the glucose infusion rate was lower in male Gpr120/40KO mice, but insulin and c-peptide levels were unaffected. No changes in glucose tolerance were observed in either single or double knock-out animals under high-fat feeding. In isolated islets from wild-type mice, the combination of selective GPR120 and GPR40 agonists additively increased insulin secretion. We conclude that while simultaneous activation of GPR120 and GPR40 enhances insulin secretion ex vivo, combined deletion of these 2 receptors only minimally affects glucose homeostasis in vivo in mice.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | | | - Mélanie Ethier
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | | | | | - Hasna Maachi
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Croze ML, Flisher MF, Guillaume A, Tremblay C, Noguchi GM, Granziera S, Vivot K, Castillo VC, Campbell SA, Ghislain J, Huising MO, Poitout V. Free fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice. Mol Metab 2021; 45:101166. [PMID: 33484949 PMCID: PMC7873385 DOI: 10.1016/j.molmet.2021.101166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release. METHODS Glucose tolerance tests were performed in mice after administration of selective GPR120 agonist Compound A. Insulin, glucagon, and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knock-out of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β, and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively. RESULTS Acute exposure to Compound A increased glucose tolerance, circulating insulin, and glucagon levels in vivo. Endogenous and/or pharmacological GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin. CONCLUSIONS Inhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part by mitigating somatostatin release.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Marcus F Flisher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | | | - Glyn M Noguchi
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Kevin Vivot
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent C Castillo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Mark O Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
8
|
A novel GPR120-selective agonist promotes insulin secretion and improves chronic inflammation. Life Sci 2021; 269:119029. [PMID: 33450256 DOI: 10.1016/j.lfs.2021.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
AIMS The present study aimed to disclose a potent and selective GPR120 agonist LXT34 and its anti-diabetic effects. MAIN METHODS Calcium mobilization assay was used to measure the agonistic potency and selectivity of LXT34 in GPR120 or GPR40-overexpression Chinese hamster ovary (CHO) cells. Glucagon-like peptide-1 (GLP-1) release and glucose-stimulated insulin secretion (GSIS) were evaluated in human colonic epithelial cell line NCI-H716 and mouse insulinoma cell line MIN6 by enzyme-linked immunosorbent assay (ELISA), respectively. The anti-inflammatory effect was determined in lipopolysaccharide (LPS)-induced murine macrophage cell line RAW264.7. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to assess the anti-diabetic effects of LXT34 in db/db mice, and chronic inflammation in liver and adipose tissues were investigated using histomorphology, immunoblot and gene expression analysis. KEY FINDINGS LXT34 was a potent GPR120 agonist with negligible activity toward human and mouse GPR40. LXT34 could potentiate GSIS and suppress LPS-induced inflammation in macrophages. LXT34 not only markedly improved glucose tolerance and insulin resistance, but also distinctly reduced macrophages infiltration, pro-inflammatory cytokines expression and JNK phosphorylation of both liver and adipose tissues in db/db mice. SIGNIFICANCE LXT34, a novel and potent GPR120-selective agonist, showed beneficial effects on improving glucose homeostasis in obesity-related type 2 diabetes.
Collapse
|
9
|
Bai T, Yang H, Wang H, Zhi L, Liu T, Cui L, Liu W, Wang Y, Zhang M, Liu Y, Zhang Y. Inhibition of voltage-gated K+ channels mediates docosahexaenoic acid-stimulated insulin secretion in rat pancreatic β-cells. Food Funct 2020; 11:8893-8904. [DOI: 10.1039/d0fo01891k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kv channels play a vital role in DHA-augmented insulin secretion through GPR40/AC/cAMP/PLC signaling pathway in rat pancreatic β-cells.
Collapse
|
10
|
Liu P, Ma S, Yan C, Qin X, Zhao P, Li Q, Cui Y, Li M, Du L. Discovery of Small-Molecule Sulfonamide Fluorescent Probes for GPR120. Anal Chem 2019; 91:15235-15239. [DOI: 10.1021/acs.analchem.9b04157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pan Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Siyue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Chongzheng Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Pei Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuanyuan Cui
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
11
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
12
|
Heikkilä E, Hermant A, Thevenet J, Bermont F, Kulkarni SS, Ratajczak J, Santo-Domingo J, Dioum EH, Canto C, Barron D, Wiederkehr A, De Marchi U. The plant product quinic acid activates Ca 2+ -dependent mitochondrial function and promotes insulin secretion from pancreatic beta cells. Br J Pharmacol 2019; 176:3250-3263. [PMID: 31166006 DOI: 10.1111/bph.14757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/07/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Quinic acid (QA) is an abundant natural compound from plant sources which may improve metabolic health. However, little attention has been paid to its effects on pancreatic beta-cell functions, which contribute to the control of metabolic health by lowering blood glucose. Strategies targeting beta-cell signal transduction are a new approach for diabetes treatment. This study investigated the efficacy of QA to stimulate beta-cell function by targeting the basic molecular machinery of metabolism-secretion coupling. EXPERIMENTAL APPROACH We measured bioenergetic parameters and insulin exocytosis in a model of insulin-secreting beta-cells (INS-1E), together with Ca2+ homeostasis, using genetically encoded sensors, targeted to different subcellular compartments. Islets from mice chronically infused with QA were also assessed. KEY RESULTS QA triggered transient cytosolic Ca2+ increases in insulin-secreting cells by mobilizing Ca2+ from intracellular stores, such as endoplasmic reticulum. Following glucose stimulation, QA increased glucose-induced mitochondrial Ca2+ transients. We also observed a QA-induced rise of the NAD(P)H/NAD(P)+ ratio, augmented ATP synthase-dependent respiration, and enhanced glucose-stimulated insulin secretion. QA promoted beta-cell function in vivo as islets from mice infused with QA displayed improved glucose-induced insulin secretion. A diet containing QA improved glucose tolerance in mice. CONCLUSIONS AND IMPLICATIONS QA modulated intracellular Ca2+ homeostasis, enhancing glucose-stimulated insulin secretion in both INS-1E cells and mouse islets. By increasing mitochondrial Ca2+ , QA activated the coordinated stimulation of oxidative metabolism, mitochondrial ATP synthase-dependent respiration, and therefore insulin secretion. Bioactive agents raising mitochondrial Ca2+ in pancreatic beta-cells could be used to treat diabetes.
Collapse
Affiliation(s)
- Eija Heikkilä
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Aurelie Hermant
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Flavien Bermont
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | - El Hadji Dioum
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | |
Collapse
|
13
|
GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin Sci (Lond) 2019; 133:101-116. [PMID: 30523046 DOI: 10.1042/cs20180836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
G-protein coupled receptor 120 (GPR120) has been shown to act as an omega-3 unsaturated fatty acid sensor and is involved in insulin secretion. However, the underlying mechanism in pancreatic β cells remains unclear. To explore the potential link between GPR120 and β-cell function, its agonists docosahexaenoic acid (DHA) and GSK137647A were used in palmitic acid (PA)-induced pancreatic β-cell dysfunction, coupled with GPR120 knockdown (KD) in MIN6 cells and GPR120 knockout (KO) mice to identify the underlying signaling pathways. In vitro and ex vivo treatments of MIN6 cells and islets isolated from wild-type (WT) mice with DHA and GSK137647A restored pancreatic duodenal homeobox-1 (PDX1) expression levels and β-cell function via inhibiting PA-induced elevation of proinflammatory chemokines and activation of nuclear factor κB, c-Jun amino (N)-terminal kinases1/2 and p38MAPK signaling pathways. On the contrary, these GPR120 agonism-mediated protective effects were abolished in GPR120 KD cells and islets isolated from GPR120 KO mice. Furthermore, GPR120 KO mice displayed glucose intolerance and insulin resistance relative to WT littermates, and β-cell functional related genes were decreased while inflammation was exacerbated in islets with increased macrophages in pancreas from GPR120 KO mice. DHA and GSK137647A supplementation ameliorated glucose tolerance and insulin sensitivity, as well as improved Pdx1 expression and islet inflammation in diet-induced obese WT mice, but not in GPR120 KO mice. These findings indicate that GPR120 activation is protective against lipotoxicity-induced pancreatic β-cell dysfunction, via the mediation of PDX1 expression and inhibition of islet inflammation, and that GPR120 activation may serve as a preventative and therapeutic target for obesity and diabetes.
Collapse
|
14
|
Chen Y, Zhang D, Ho KW, Lin S, Suen WCW, Zhang H, Zha Z, Li G, Leung PS. GPR120 is an important inflammatory regulator in the development of osteoarthritis. Arthritis Res Ther 2018; 20:163. [PMID: 30075737 PMCID: PMC6091098 DOI: 10.1186/s13075-018-1660-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to investigate the regulatory role of G-protein coupled receptor 120 (GPR120) in the development and progression of osteoarthritis (OA). Methods GPR120 knockout (KO) and wild-type (WT) mice were used to create an animal model of OA by means of anterior cruciate ligament transection (ACLT) surgery. The severity of OA was staged and evaluated by histological examination, microcomputed tomography scan and enzyme-linked immunosorbent assay (ELISA). The anti-inflammatory effects of the GPR120 agonist docosahexaenoic acid (DHA) on human chondrocytes were further evaluated by specific inflammatory markers. In addition, the healing progression of a skin defect model was determined with histological assays. Results The GPR120-KO mice displayed an accelerated development of OA after ACLT. The secondary inflammation, cartilage degeneration, and subchondral bone aberrant changes were significantly elevated in the early phase of OA in KO mice relative to those in WT mice. In addition, we found that GPR120 levels were downregulated in OA patients compared with control subjects, whereas GPR120 activation with DHA exhibited anti-inflammatory effects in primary human chondrocytes in vitro. Moreover, results from the skin defect model showed that GPR120 agonism with DHA enhanced wound repair in mice, as shown by the downregulation of the number of CD68+ cells. Conclusions Our study suggests that GPR120 is an important inflammatory mediator during the development of OA, and that it is a potential marker for the diagnosis of high-risk patients with OA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1660-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Dan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ki Wai Ho
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Wade Chun-Wai Suen
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.,Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Huantian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
15
|
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2017; 64:92-108. [PMID: 28887275 DOI: 10.1016/j.mam.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
Unsaturated long-chain fatty acids have been suggested to be beneficial in the context of cardiovascular disorders based in epidemiologic studies conducted in Greenland and Mediterranean. DHA and EPA are omega-3 polyunsaturated fatty acids that are plentiful in fish oil, and oleic acid is an omega-9 monounsaturated fatty acid, rich in olive oil. Dietary intake of these unsaturated long-chain fatty acids have been associated with insulin sensitivity and weight loss, which contrasts with the impairment of insulin sensitivity and weight gain associated with high intakes of saturated long-chain fatty acids. The recent discovery that free fatty acid receptor 4 (FFA4, also known as GPR120) acts as a sensor for unsaturated long-chain fatty acids started to unveil the molecular mechanisms underlying the beneficial functions played by these unsaturated long-chain fatty acids in various physiological processes, which include the secretions of gastrointestinal peptide hormones and glucose homeostasis. In this review, the physiological roles and therapeutic significance of FFA4 in appetite control, insulin sensitization, and inflammation reduction are discussed in relation to obesity and type 2 diabetes from pharmacological viewpoints.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|