1
|
Dutta J, Singh S, Greeshma MV, Mahesh PA, Mabalirajan U. Diagnostic Challenges and Pathogenetic Differences in Biomass-Smoke-Induced versus Tobacco-Smoke-Induced COPD: A Comparative Review. Diagnostics (Basel) 2024; 14:2154. [PMID: 39410558 PMCID: PMC11475549 DOI: 10.3390/diagnostics14192154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD) is a major global health challenge, primarily driven by exposures to tobacco smoke and biomass smoke. While Tobacco-Smoke-Induced COPD (TSCOPD) has been extensively studied, the diagnostic challenges and distinct pathogenesis of Biomass-Smoke-Induced COPD (BSCOPD), particularly in low- and middle-income countries, remain underexplored. Objective: To explore the differences in clinical manifestations, pulmonary function, and inflammatory profiles between BSCOPD and TSCOPD and highlight the diagnostic complexities of BSCOPD. Methods: This review analyzes the current literature comparing BSCOPD with TSCOPD, focusing on distinctive pathophysiological mechanisms, inflammatory markers, and oxidative stress processes. Results: BSCOPD presents differences in clinical presentation, with less emphysema, smaller airway damage, and higher rates of pulmonary hypertension compared to TSCOPD. BSCOPD is also characterized by bronchial hyperresponsiveness and significant hypoxemia, unlike TSCOPD, which exhibits severe airflow obstruction and emphysema. Additionally, the inflammatory profile of BSCOPD includes distinct mucous hypersecretion and airway remodeling. Conclusions: The unique genetic, epigenetic, and oxidative stress mechanisms involved in BSCOPD complicate its diagnosis and management. Biomass smoke's underrecognized impact on accelerated lung aging and exacerbation mechanisms emphasizes the need for targeted research to refine diagnostic criteria and management strategies for BSCOPD. Future directions: Further research should focus on identifying specific biomarkers and molecular pathways to enhance early diagnosis and improve clinical outcomes in populations exposed to biomass smoke.
Collapse
Affiliation(s)
- Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| | - Mandya V. Greeshma
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; (M.V.G.); (P.A.M.)
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; (M.V.G.); (P.A.M.)
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| |
Collapse
|
2
|
Zhou Y, Bai F, Li X, Zhou G, Tian X, Li G, Zhang Y, Zhou X, Xu D, Ding Y. Genetic polymorphisms in MIR1208 and MIR5708 are associated with susceptibility to COPD in the Chinese population. Pulmonology 2023; 29:6-12. [PMID: 36115827 DOI: 10.1016/j.pulmoe.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/06/2021] [Accepted: 07/24/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by limited airflow and is influenced by genetic and environmental factors. The purpose of this study was to investigate the effects of gene polymorphisms in MIR5708 and MIR1208 on COPD risk. METHODS Four single nucleotide polymorphisms (SNPs) in MIR5708 (rs6473227 and rs16907751) and MIR1208 (rs2608029 and rs13280095) were selected and genotyped among 315 COPD patients and 314 healthy controls using the Agena MassARRAY platform. SPSS 18.0 was used for statistical analysis and data processing. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between genetic variants of MIR1208 and MIR5708 and COPD risk. RESULTS The results suggested that rs16907751 variants in MIR5708 contributed to an increased susceptibility to COPD in the allelic (P = 0.001), co-dominant (homozygous) (P = 0.001), dominant (P = 0.017), recessive (P = 0.002), and additive (P = 0.002) models. The effects of MIR5708 and MIR1208 gene polymorphisms on the risk of COPD were age-, sex-, smoking status-, and BMI-related. Furthermore, the C-A and G-A haplotypes of rs2608029 and rs13280095 in MIR1208 were identified as risk factors for COPD in the population over 70 years (P = 0.029) and in women (P = 0.049), respectively. Finally, significant associations between rs16907751genotypes with pulse rate and forced expiratory volume in 1 s were found among COPD patients. CONCLUSION Genetic polymorphisms in MIR5708 and MIR1208 are associated with increased risk of COPD in China.
Collapse
Affiliation(s)
- Y Zhou
- Center of Appointment Clinic Service, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Hainan, China
| | - F Bai
- Department of Science and Education Department, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Hainan, China
| | - X Li
- Department of General Practice, People's Hospital of Wanning, Hainan, China
| | - G Zhou
- Department of Nursing, People's Hospital of Wanning, Hainan, China
| | - X Tian
- Department of Medical, People's Hospital of Wanning, Hainan, China
| | - G Li
- Department of General Practice, People's Hospital of Wanning, Hainan, China
| | - Y Zhang
- Department of General Practice, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Hainan, China
| | - X Zhou
- Department of General Practice, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Hainan, China
| | - D Xu
- Department of Emergency, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Hainan, China.
| | - Y Ding
- Department of General Practice, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Hainan, China.
| |
Collapse
|
3
|
Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther 2022; 240:108295. [PMID: 36191777 DOI: 10.1016/j.pharmthera.2022.108295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
COPD affects millions of people and is now ranked as the third leading cause of death worldwide. This largely untreatable chronic airway disease results in irreversible destruction of lung architecture. The small lung hypothesis is now supported by epidemiological, physiological and clinical studies. Accordingly, the early and severe COPD phenotype carries the most dreadful prognosis and finds its roots during lung growth. Pathophysiological mechanisms remain poorly understood and implicate individual susceptibility (genetics), a large part of environmental factors (viral infections, tobacco consumption, air pollution) and the combined effects of those triggers on gene expression. Genetic susceptibility is most likely involved as the disease is severe and starts early in life. The latter observation led to the identification of Mendelian inheritance via disease-causing variants of SERPINA1 - known as the basis for alpha-1 anti-trypsin deficiency, and TERT. In the last two decades multiple genome wide association studies (GWAS) identified many single nucleotide polymorphisms (SNPs) associated with COPD. High significance SNPs are located in 4q31 near HHIP which encodes an evolutionarily highly conserved physiological inhibitor of the Hedgehog signaling pathway (HH). HHIP is critical to several in utero developmental lung processes. It is also implicated in homeostasis, injury response, epithelial-mesenchymal transition and tumor resistance to apoptosis. A few studies have reported decreased HHIP RNA and protein levels in human adult COPD lungs. HHIP+/- murine models led to emphysema. HH pathway inhibitors, such as vismodegib and sonidegib, are already validated in oncology, whereas other drugs have evidenced in vitro effects. Targeting the Hedgehog pathway could lead to a new therapeutic avenue in COPD. In this review, we focused on the early and severe COPD phenotype and the small lung hypothesis by exploring genetic susceptibility traits that are potentially treatable, thus summarizing promising therapeutics for the future.
Collapse
Affiliation(s)
- Z Lahmar
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France
| | - E Ahmed
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Fort
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - I Vachier
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bergougnoux
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France; Laboratoire de Génétique Moléculaire et de Cytogénomique, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Lv MY, Qiang LX, Wang BC, Zhang YP, Li ZH, Li XS, Jin LL, Jin SD. Complex Evaluation of Surfactant Protein A and D as Biomarkers for the Severity of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1537-1552. [PMID: 35811742 PMCID: PMC9259505 DOI: 10.2147/copd.s366988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-β, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1–2 group vs Gold 3–4 group). The worse the patient’s condition, the more pronounced the change. Conclusion This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Bao-Cai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Yue-Peng Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Zhi-Heng Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Xiang-Shun Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Ling-Ling Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Shou-De Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Correspondence: Shou-De Jin, Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People’s Republic of China, Tel/Fax +86 0451-85939123, Email
| |
Collapse
|
5
|
Marcolongo F, Scarlata S, Tomino C, De Dominicis C, Giacconi R, Malavolta M, Bonassi S, Russo P, Prinzi G. Psycho-cognitive assessment and quality of life in older adults with chronic obstructive pulmonary disease-carrying the rs4713916 gene polymorphism (G/A) of gene FKBP5 and response to pulmonary rehabilitation: a proof of concept study. Psychiatr Genet 2022; 32:116-124. [PMID: 35102127 DOI: 10.1097/ypg.0000000000000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary and extra-pulmonary multi-morbidity including depression, anxiety and cognitive disorders. Several studies investigated the association of the FKBP5 gene polymorphisms with susceptibility to anxiety, depression, and behavioral disorders. The FKBP5 gene codifies the FKBP51 protein which modulates the glucocorticoid receptor in the adaptive stress response. Genetic variants of the FKBP5 gene have been associated to a higher risk of developing mental disorders. We analyzed the association of genetic variants and stress exposure investigating the susceptibility to psychological distress and the impact on cognitive balance and quality of life (QoL) of COPD patients carrying the rs4713916 polymorphism (G/A) and we examined its association, with COPD rehabilitative outcomes. MATERIALS AND METHODS A pilot study evaluated cognitive, psychological, clinical alterations/disorders, QoL, and coping strategies in 70 older adults with COPD, undergoing pulmonary rehabilitation, stratified according to the FKBP5 rs4713916 genotype (GG or GA). RESULTS Carriers of rs4713916 polymorphisms (G/A) show better cognitive performances, a higher degree of independence in the daily living activities, better QoL, no presence of depressive mood and anxiety symptoms, no family history of psychiatric disorders, more ability to cope with stressors by avoiding emotions but demanding emotional support, and lesser use of anti-anxiety, anti-depressant, anti-psychotic, hypnotic-sedative drugs. No difference was found in the number of comorbidities. CONCLUSION These results offer valuable insights into the role of FKBP5 in the complex network of mechanisms associated to clinical, psychological and behavioral features of COPD patients.
Collapse
Affiliation(s)
- Federica Marcolongo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
| | - Simone Scarlata
- Unit of Geriatrics, Campus Bio-Medico di Roma, University, Via Alvaro del Portillo
| | - Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Roma, Via di Val Cannuta
| | - Chiara De Dominicis
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta, Rome
| | - Robertina Giacconi
- Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Via Giuseppe Birarelli, Ancona
| | - Marco Malavolta
- Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Via Giuseppe Birarelli, Ancona
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, Rome, Italy
| | - Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, Rome, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
| |
Collapse
|
6
|
Hlavati M, Tomić S, Buljan K, Buljanović V, Feldi I, Butković-Soldo S. Total Antioxidant Status in Stable Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2411-2419. [PMID: 33116456 PMCID: PMC7547784 DOI: 10.2147/copd.s264944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023] Open
Abstract
Objective This study evaluates the total antioxidant status (TAS) in plasma of stable chronic obstructive pulmonary disease (COPD) patients. Earlier studies of their relationship showed inconsistent findings. Patients and Methods We compared TAS between 90 COPD patients and 30 age- and sex-matched controls (mean age 67 ± 7.9, 87 males and 33 females) according to airway obstruction severity, gender, smoking status (current/ former/ non-smoker), smoking-dose, the number of exacerbations in the previous year, nutritional status and hypercapnia. Results There were no differences in pack-years between COPD and controls, neither in COPD groups. The median time from the last exacerbation was 5 months (interquartile range 3-8.3). TAS was significant higher in COPD than controls (1.68 [1.55-1.80] versus 1.59 [1.54-1.68], respectively; P = 0.03). TAS was significantly higher in COPD men than women (1.7 [1.6-1.8] versus 1.57 [1.5-1.7], respectively; P = 0.001). In COPD groups, there were no significant differences between the severity of airway obstruction and TAS. We found significant positive correlation between pack-years and TAS in all participants (Rho = 0.429, P = 0.004) and COPD patients (Rho = 0.359, P = 0.02), but not in controls. TAS was a significant predictor of COPD (β = 3.26; P = 0.04; OR = 26.01; 95% CI: 1.20 to 570.8). We failed to find significant differences between TAS and smoking status, frequency of exacerbations in the previous year, nutritional status and hypercapnia. Conclusion TAS was a significant predictor of COPD. TAS was a significantly higher in stable COPD than controls, higher in COPD men than women, but there was no significant correlation between TAS and the airway obstruction severity. Our results suggest that it could be appropriate to include the time from the last exacerbation in the oxidant-antioxidant balance analysis of COPD patients.
Collapse
Affiliation(s)
- Marina Hlavati
- Department of Diagnostic and Therapeutical Procedures, General Hospital Našice, Našice31500, Croatia,Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Osijek31000, Croatia,Correspondence: Marina Hlavati Department of Diagnostic and Therapeutical Procedures, General Hospital Našice, Bana Jelačića 10, Našice31500, CroatiaTel +385915810485Fax +38531613826 Email
| | - Svetlana Tomić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Osijek31000, Croatia
| | - Krunoslav Buljan
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Osijek31000, Croatia
| | - Vikica Buljanović
- Department for Biochemical Analysis, General Hospital Našice, Našice31500, Croatia
| | - Ivan Feldi
- Department of Internal Medicine, General Hospital Našice, Našice31500, Croatia
| | - Silva Butković-Soldo
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Osijek31000, Croatia
| |
Collapse
|
7
|
Díaz-Peña R, Boekstegers F, Silva RS, Jaime S, Hosgood HD, Miravitlles M, Agustí À, Lorenzo Bermejo J, Olloquequi J. Amerindian Ancestry Influences Genetic Susceptibility to Chronic Obstructive Pulmonary Disease. J Pers Med 2020; 10:jpm10030093. [PMID: 32824824 PMCID: PMC7565405 DOI: 10.3390/jpm10030093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
The contribution of genetic ancestry on chronic obstructive pulmonary disease (COPD) predisposition remains unclear. To explore this relationship, we analyzed the associations between 754,159 single nucleotide polymorphisms (SNPs) and risk of COPD (n = 214 cases, 193 healthy controls) in Talca, Chile, considering the genetic ancestry and established risk factors. The proportion of Mapuche ancestry (PMA) was based on a panel of 45 Mapuche reference individuals. Five PRDM15 SNPs and two PPP1R12B SNPs were associate with COPD risk (p = 0.05 to 5×10-4) in those individuals with lower PMA. Based on linkage disequilibrium and sliding window analyses, an adjacent PRDM15 SNPs were associated with COPD risk in the lower PMA group (p = 10-3 to 3.77×10-8). Our study is the first to report an association between PPP1R12B and COPD risk, as well as effect modification between ethnicity and PRDM15 SNPs in determining COPD risk. Our results are biologically plausible given that PPP1R12B and PRDM15 are involved in immune dysfunction and autoimmunity, providing mechanistic evidence for COPD pathogenesis and highlighting the importance to conduct more genome wide association studies (GWAS) in admixed populations with Amerindian descent.
Collapse
Affiliation(s)
- Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile;
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Felix Boekstegers
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, 69126 Heidelberg, Germany; (F.B.); (J.L.B.)
| | - Rafael S. Silva
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca 3460000, Chile; (R.S.S.); (S.J.)
| | - Sergio Jaime
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca 3460000, Chile; (R.S.S.); (S.J.)
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), CIBER Enfermedades Respiratorias (CIBERES), 08035 Barcelona, Spain;
| | - Àlvar Agustí
- Respiratory Institute, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, CIBER Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain;
| | - Justo Lorenzo Bermejo
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, 69126 Heidelberg, Germany; (F.B.); (J.L.B.)
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile;
- Correspondence: ; Tel.: +56-71-273-5728
| |
Collapse
|
8
|
Yuan Y, Yang S, Deng D, Chen Y, Zhang C, Zhou R, Su Z. Effects of genetic variations in Acads gene on the risk of chronic obstructive pulmonary disease. IUBMB Life 2020; 72:1986-1996. [PMID: 32593204 DOI: 10.1002/iub.2336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), encoded by the Acads gene, functions in the mitochondrial β-oxidation of saturated short-chain fatty acids. SCAD deficiency results in mitochondrial dysfunction, which is one underlying biological mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis. In this case-control study, we aimed to examine the effects of Acads gene polymorphisms on the susceptibility to COPD. A total of 16 tagging single-nucleotide polymorphisms (SNPs) in Acads gene region was identified and genotyped in 646 unrelated ethnic Chinese Han individuals including 279 patients with COPD and 367 healthy controls, their allelic and genotypic associations with COPD were determined by different genetic models. Furthermore, we estimated the linkage disequilibrium and haplotypes from these tested variants and determined the effects of haplotypes on the risk of COPD. The allelic and genotypic frequencies of SNPs rs2239686 and rs487915 in Acads gene were significantly different between COPD patients and controls, no statistically significant results were observed for other SNPs. Minor alleles A of rs2239686 and T of rs487915 were associated with a decreased pulmonary function and an increased COPD risk in a dominant manner. Functional analysis indicated that the risk allele A of rs2239686 could increase Acads expressions and the intracellular reactive oxygen species content. Haplotype analysis revealed that the haplotypes CTCCT in block 2 (rs3794216-rs3794215-rs34491494-rs558314-rs7312316) as well as GC in block 3 (rs2239686-rs487915) were protective against COPD, while haplotypes CTCGC in block 2 and AT in block 3 exhibited significant associations with the increased susceptibility to COPD. Our results suggest that Acads gene could potentially be a risk factor of COPD and thus its genetic variants might be as genetic biomarkers to predict the COPD susceptibility.
Collapse
Affiliation(s)
- Yiming Yuan
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Deng
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Oakes JM, Xu J, Morris TM, Fried ND, Pearson CS, Lobell TD, Gilpin NW, Lazartigues E, Gardner JD, Yue X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension 2020; 75:1305-1314. [PMID: 32172623 DOI: 10.1161/hypertensionaha.119.14608] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases; however, the role of nicotine in the pathogenesis of these diseases is incompletely understood. The purpose of this study was to examine the effects of chronic nicotine inhalation on the development of cardiovascular and pulmonary disease with a focus on blood pressure and cardiac remodeling. Male C57BL6/J mice were exposed to air (control) or nicotine vapor (daily, 12 hour on/12 hour off) for 8 weeks. Systemic blood pressure was recorded weekly by radio-telemetry, and cardiac remodeling was monitored by echocardiography. At the end of the 8 weeks, mice were subjected to right heart catheterization to measure right ventricular systolic pressure. Nicotine-exposed mice exhibited elevated systemic blood pressure from weeks 1 to 3, which then returned to baseline from weeks 4 to 8, indicating development of tolerance to nicotine. At 8 weeks, significantly increased right ventricular systolic pressure was detected in nicotine-exposed mice compared with the air controls. Echocardiography showed that 8-week nicotine inhalation resulted in right ventricular (RV) hypertrophy with increased RV free wall thickness and a trend of increase in RV internal diameter. In contrast, there were no significant structural or functional changes in the left ventricle following nicotine exposure. Mechanistically, we observed increased expression of angiotensin-converting enzyme and enhanced activation of mitogen-activated protein kinase pathways in the RV but not in the left ventricle. We conclude that chronic nicotine inhalation alters both systemic and pulmonary blood pressure with the latter accompanied by RV remodeling, possibly leading to progressive and persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Joshua M Oakes
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Tamara M Morris
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Nicholas D Fried
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Charlotte S Pearson
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Thomas D Lobell
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Nicholas W Gilpin
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (E.L., J.D.G.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Jason D Gardner
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (E.L., J.D.G.), Louisiana State University Health Sciences Center, New Orleans
| | - Xinping Yue
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
10
|
Belgacemi R, Luczka E, Ancel J, Diabasana Z, Perotin JM, Germain A, Lalun N, Birembaut P, Dubernard X, Mérol JC, Delepine G, Polette M, Deslée G, Dormoy V. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 2020; 51:102572. [PMID: 31877414 PMCID: PMC6931110 DOI: 10.1016/j.ebiom.2019.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hedgehog (HH) pathway is constantly under scrutiny in the context of organ development. Lung morphogenesis requires HH signalling which participates thereafter to the pulmonary homeostasis by regulating epithelial cell quiescence and repair. Since epithelial remodelling is a hallmark of Chronic Obstructive Pulmonary Disease (COPD), we investigated whether the main molecular actors of HH pathway participate to airway epithelial cell differentiation and we analysed their alterations in COPD patients. METHODS Sonic HH (Shh) secretion was assessed by ELISA in airway epithelial cell (AEC) air-liquid interface culture supernatants. HH pathway activation was evaluated by RT-qPCR, western blot and immunostaining. Inhibition of HH signalling was achieved upon Shh chelation during epithelial cell differentiation. HH pathway core components localization was investigated in lung tissues from non-COPD and COPD patients. FINDINGS We demonstrate that progenitors of AEC produced Shh responsible for the activation of HH signalling during the process of differentiation. Preventing the ligand-induced HH activation led to the establishment of a remodelled epithelium with increased number of basal cells and reduced ciliogenesis. Gli2 activating transcription factor was demonstrated as a key-element in the regulation of AEC differentiation. More importantly, Gli2 and Smo were lost in AEC from COPD patients. INTERPRETATION Our data suggest that HH pathway is crucial for airway epithelial cell differentiation and highlight its role in COPD-associated epithelial remodelling.
Collapse
Affiliation(s)
- Randa Belgacemi
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Emilie Luczka
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Zania Diabasana
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Adeline Germain
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Nathalie Lalun
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Philippe Birembaut
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Laboratoire de biopathologie, Reims 51092, France
| | - Xavier Dubernard
- CHU Reims, Hôpital Robert Debré, Service d'oto-rhino-laryngologie, Reims 51092, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Robert Debré, Service d'oto-rhino-laryngologie, Reims 51092, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Robert Debré, Service de chirurgie cardio-vasculaire et thoracique, Reims 51092, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Laboratoire de biopathologie, Reims 51092, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France.
| |
Collapse
|
11
|
To Evaluate the Effect of Chronic Obstructive Pulmonary Disease on Retinal and Choroidal Thicknesses Measured by Optical Coherence Tomography. J Ophthalmol 2019; 2019:7463815. [PMID: 31687202 PMCID: PMC6800936 DOI: 10.1155/2019/7463815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose To evaluate the retinal and choroidal thicknesses in patients with chronic obstructive pulmonary disease using optical coherence tomography. Methods The study included 26 patients with chronic obstructive pulmonary disease (COPD) and 26 age-matched healthy control groups. Detailed ocular examinations were performed on all participants. Cirrus EDI-OCT (enhanced depth imaging-optical coherence tomography) was used for choroidal thickness measurements with frame enhancement software. The subfoveal area was used for choroidal thickness measurements. Results The patients with the chronic obstructive pulmonary disease had an average 239.13 ± 57.77 μm subfoveal choroidal thickness, and the control group had an average 285.02 ± 25 μm subfoveal choroidal thickness. The subfoveal choroidal thickness measurements revealed a statistically significant difference between patients and the control group (p < 0.05). There were no statistically significant differences between patients and control group regarding mean macular thickness, central macular thickness, and GCIPL (ganglion cell-inner plexiform layer) thickness. Also, there was no statistically significant difference between patients and control group regarding mean, superior, nasal, inferior, and temporal RNFL (retinal nerve fiber layer) thicknesses. Conclusion Chronic hypoxemia seems to cause decreased choroidal thickness in patients with chronic obstructive pulmonary disease.
Collapse
|
12
|
Russo P, Tomino C, Santoro A, Prinzi G, Proietti S, Kisialiou A, Cardaci V, Fini M, Magnani M, Collacchi F, Provinciali M, Giacconi R, Bonassi S, Malavolta M. FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting. Int J Mol Sci 2019; 20:ijms20082024. [PMID: 31022961 PMCID: PMC6514776 DOI: 10.3390/ijms20082024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a common, preventable, and manageable lung disease characterized by large heterogeneity in disease presentation and grades impairment. Inhaled corticosteroids (ICS) are commonly used to manage COPD/COPD-exacerbation. The patient's response is characterized by interindividual variability without disease progression/survival modification. Objectives: We hypothesize that a therapeutic intervention may be more effective if single nucleotide polymorphisms (SNPs) are investigated. Methods: In 71 COPD patients under pulmonary rehabilitation, a small number of powerful SNPs, selected according to current literature, were analyzed; namely the glucocorticoid receptor gene NR3C1 (rs6190/rs6189/rs41423247), the glucocorticoid-induced transcript 1 gene (GLCCI1 rs37972), and the related co-chaperone FKBP5 gene (rs4713916). MDR1 rs2032582 was also evaluated. Lung function outcomes were assessed. Results: A significant association with functional outcomes, namely FEV1 (forced expiration volume/one second) and 6MWD (six-minutes walking distance), was found for rs4713916 and weakly for rs37972. The genotype rs4713916(GA) and, in a lesser extent, the genotype rs37972(TT), were more favorable than the wild-type. Conclusions: Our study supports a possible picture of pharmacogenomic control for COPD intervention. rs4713916 and, possibly, rs37972 may be useful predictors of clinical outcome. These results may help to tailor an optimal dose for individual COPD patients based on their genetic makeup.
Collapse
Affiliation(s)
- Patrizia Russo
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Valcannuta, 247 00166 Rome, Italy.
| | - Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Pisana, 0166 Rome, Italy.
| | - Alessia Santoro
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Valcannuta, 247 00166 Rome, Italy.
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Valcannuta, 247 00166 Rome, Italy.
| | | | - Aliaksei Kisialiou
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Valcannuta, 247 00166 Rome, Italy.
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, 00166 Rome, Italy.
| | - Massimo Fini
- Scientific Direction, IRCCS San Raffaele Pisana, 0166 Rome, Italy.
| | - Mauro Magnani
- Department of Biomolecular Science-Section of Biotechnology, University of Urbino "Carlo Bo", 61032 Fano, Italy.
| | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60124 Ancona, Italy.
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60124 Ancona, Italy.
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Valcannuta, 247 00166 Rome, Italy.
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60124 Ancona, Italy.
| |
Collapse
|
13
|
Russo P, Lamonaca P, Milic M, Rojas E, Prinzi G, Cardaci V, Vitiello L, Proietti S, Santoro A, Tomino C, Fini M, Bonassi S. Biomarkers of DNA damage in COPD patients undergoing pulmonary rehabilitation: Integrating clinical parameters with genomic profiling. Mutat Res 2019; 843:111-117. [PMID: 31421732 DOI: 10.1016/j.mrgentox.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by severe respiratory symptoms. COPD shows several hallmarks of aging, and an increased oxidative stress, which is responsible for different clinical and molecular COPD features, including an increased frequency of DNA damage. The current pharmacological treatment options for COPD are mostly symptomatic, and generally do not influence disease progression and survival. In this framework, pulmonary rehabilitation is the most effective therapeutic strategy to improve physical performance, reducing hospital readmissions and mortality. Response to rehabilitation may greatly differ among patients calling for a personalized treatment. In this paper we will investigate in a group of COPD patients those variables that may predict the response to a program of pulmonary rehabilitation, integrating clinical parameters with cellular and molecular measurements, offering the potential for more effective and individualized treatment options. A group of 89 consecutive COPD patients admitted to a 3-weeks Pulmonary Rehabilitation (PR) program were evaluated for clinical and biological parameters at baseline and after completion of PR. DNA fragmentation in cryopreserved lymphocytes was compared by visual scoring and using the Comet Assay IV analysis system. The comparison of DNA damage before and after PR showed a highly significant increase from 19.6 ± 7.3 at admission to 21.8 ± 7.2 after three weeks of treatment, with a significant increase of 2.46 points (p < 0.001). Higher levels of DNA damage were observed in the group of non- responders and in those patients receiving oxygen therapy. The overall variation of %TI during treatment significantly correlated with the level of pCO2 at admission and negatively with the level of IL-6 at admission. Measuring the frequency of DNA damage in COPD patients undergoing pulmonary rehabilitation may provide a meaningful biological marker of response and should be considered as additional diagnostic and prognostic criterion for personalized rehabilitation programs.
Collapse
Affiliation(s)
- Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Palma Lamonaca
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Mirta Milic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Emilio Rojas
- Departamento de Medicina Genòmica y Toxicologìa Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autònoma de México, Ciudad Universitaria, Mexico
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Vittorio Cardaci
- Unit of Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vitiello
- Unit of Flow Cytometry IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Alessia Santoro
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Pisana, Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.
| |
Collapse
|