1
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
2
|
Nielsen VW, Bundgaard Vad O, Holgersen N, Paludan-Müller C, Meseguer Monfort L, Beyer AF, Jemec GBE, Kjærsgaard Andersen R, Egeberg A, Thyssen JP, Svendsen JH, Rosenø NAL, Hansen PR, Thomsen SF, Salling Olesen M. Genetic Susceptibility to Hidradenitis Suppurativa and Predisposition to Cardiometabolic Disease. JAMA Dermatol 2025; 161:22-30. [PMID: 39382891 PMCID: PMC11465120 DOI: 10.1001/jamadermatol.2024.3779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024]
Abstract
Importance Hidradenitis suppurativa (HS) is associated with an increased prevalence of cardiovascular diseases compared with the general population. Any association between polygenic risk for HS, risk of incident cardiometabolic outcomes, and the plasma proteome is unclear. Objective To investigate the genetic correlation between HS and cardiometabolic disease. Design, Setting, and Participants This cohort study used a polygenic risk score (PRS) for HS to examine the risks of coronary artery disease (CAD) and diabetes and identify changes in the plasma proteome in individuals of European ancestry from the UK Biobank. Participants were enrolled from January 1, 2006, to December 31, 2010. End of follow-up was January 1, 2023. Correlations were assessed between HS susceptibility and cardiometabolic traits using linkage disequilibrium score regression. Odds ratios were assessed in logistic regressions. The risk of incident CAD and diabetes was estimated in cause-specific survival models designed as time-to-event analyses. Exposure The PRS for HS. Main Outcomes and Measures Main outcomes were CAD and diabetes diagnosis measured by logistic regressions and incident disease measured by Cox proportional hazards regression models adjusted for sex, age, body mass index, and smoking status. Results The study included 391 481 individuals (median [IQR] age, 58 [51-64] years; 209 235 [53%] female). Genetic variants for HS correlated significantly with variants associated with CAD, diabetes, and plasma levels of high-density lipoprotein cholesterol, triglycerides, and C-reactive protein. Compared with the low-risk group, a high PRS for HS (≥75th percentile) conferred odds ratios of 1.09 (95% CI, 1.06-1.12; P < .001) for CAD and 1.13 (95% CI, 1.10-1.17; P < .001) for diabetes. Estimates remained consistent when examining only incident CAD and diabetes. The PRS for HS was significantly associated with altered expression of 58 plasma proteins. Integrating this proteomic profile and the PRS for HS in a machine learning model improved prediction of CAD and diabetes compared with a reference model based on sex, age, and body mass index. Conclusions and Relevance These findings suggest that a high genetic risk of HS is associated with increased risk of subsequent CAD and diabetes and altered composition of the plasma proteome. Additional investigation into the identified proteins and their potential roles as drug targets is warranted.
Collapse
Affiliation(s)
- Valdemar Wendelboe Nielsen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Oliver Bundgaard Vad
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Holgersen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christian Paludan-Müller
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Meseguer Monfort
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Filt Beyer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Borut Ernst Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Kjærsgaard Andersen
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Egeberg
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- LEO Pharma, Ballerup, Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- LEO Pharma, Ballerup, Denmark
| | - Jesper Hastrup Svendsen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nana Aviaaja Lippert Rosenø
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Simon Francis Thomsen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Fu H, Kong B, Shuai W, Zhu J, Wang X, Tang Y, Huang H, Huang C. Leukocyte Ig-like receptor B4 (Lilrb4a) alleviates cardiac dysfunction and isoproterenol-induced arrhythmogenic remodeling associated with cardiac fibrosis and inflammation. Heart Rhythm 2024; 21:1998-2009. [PMID: 38636927 DOI: 10.1016/j.hrthm.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Heart failure is usually accompanied by activation of the sympathetic nerve, and excessive activation of the sympathetic nerve promotes cardiac remodeling and cardiac dysfunction. In the isoproterenol (ISO)-induced animal model, it is often accompanied by myocardial hypertrophy, fibrosis, and inflammation. Leukocyte immunoglobulin-like receptor B4a (Lilrb4a), an immunosuppressive regulatory receptor, plays a vital role in cardiovascular disease. However, the effect of Lilrb4a on ventricular arrhythmia in an ISO-induced mouse model remains unclear. OBJECTIVE The purpose of this study was to explore the role and molecular mechanism of Lilrb4a in ISO-induced arrhythmogenic remodeling. METHODS Lilrb4a knockout mice and Lilrb4a overexpression mice were infused with ISO (15 mg/kg per 24 hours, 4 weeks). Echocardiography and histology evaluations of myocardial hypertrophy and cardiac structural remodeling were conducted. Surface electrocardiography and electrophysiologic examination were used to evaluate cardiac electrical remodeling and susceptibility to ventricular arrhythmias. Quantitative reverse transcriptase-polymerase chain reaction analysis and Western blotting were used to detect the expression levels of ion channel proteins and signal pathway proteins. RESULTS The results discovered that ISO induced cardiac hypertrophy, fibrosis, and inflammation and led to electrical remodeling and the occurrence of ventricular arrhythmias. Lilrb4a alleviated cardiac structural and electrical remodeling and protected against the occurrence of ventricular arrhythmias in ISO-induced mice by gain-of-function or loss-of-function approaches. The mechanism is that Lilrb4a inhibited NF-κB signaling and MAPK signaling activation mediated by transforming growth factor kinase 1. CONCLUSION Lilrb4a alleviates cardiac dysfunction and ISO-induced arrhythmogenic remodeling associated with cardiac fibrosis and inflammation through the regulation of NF-κB signaling and MAPK signaling activation.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
4
|
Ma Y, Zheng K, Zhao C, Chen J, Chen L, Zhang Y, Chen T, Yao X, Cai Y, Wu J. Microglia LILRB4 upregulation reduces brain damage after acute ischemic stroke by limiting CD8 + T cell recruitment. J Neuroinflammation 2024; 21:214. [PMID: 39217343 PMCID: PMC11366150 DOI: 10.1186/s12974-024-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor B4 (LILRB4) plays a significant role in regulating immune responses. LILRB4 in microglia might influence the infiltration of peripheral T cells. However, whether and how LILRB4 expression aggravates brain damage after acute ischemic stroke remains unclear. This study investigates the role of LILRB4 in modulating the immune response and its potential protective effects against ischemic brain injury in mice. METHODS AND RESULTS Microglia-specific LILRB4 conditional knockout (LILRB4-KO) and overexpression transgenic (LILRB4-TG) mice were constructed by a Cre-loxP system. Then, they were used to investigate the role of LILRB4 after ischemic stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Spatial transcriptomics analysis revealed increased LILRB4 expression in the ischemic hemisphere. Single-cell RNA sequencing (scRNA-seq) identified microglia-cluster3, an ischemia-associated microglia subcluster with elevated LILRB4 expression in the ischemic brain. Flow cytometry and immunofluorescence staining showed increased CD8+ T cell infiltration into the brain in LILRB4-KO-tMCAO mice. Behavioral tests, cortical perfusion maps, and infarct size measurements indicated that LILRB4-KO-tMCAO mice had more severe functional deficits and larger infarct sizes compared to Control-tMCAO and LILRB4-TG-tMCAO mice. T cell migration assays demonstrated that LILRB4-KD microglia promoted CD8+ T cell recruitment and activation in vitro, which was mitigated by CCL2 inhibition and recombinant arginase-1 addition. The scRNA-seq and spatial transcriptomics identified CCL2 was predominantly secreted from activated microglia/macrophage and increased CCL2 expression in LILRB4-KD microglia, suggesting a chemokine-mediated mechanism of LILRB4. CONCLUSION LILRB4 in microglia plays a crucial role in modulating the post-stroke immune response by regulating CD8+ T cell infiltration and activation. Knockout of LILRB4 exacerbates ischemic brain injury by promoting CD8+ T cell recruitment. Overexpression of LILRB4, conversely, offers neuroprotection. These findings highlight the therapeutic potential of targeting LILRB4 and its downstream pathways to mitigate immune-mediated damage in ischemic stroke.
Collapse
Affiliation(s)
- Yilin Ma
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Kai Zheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chengcheng Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jieli Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Lin Chen
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Tao Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xiuhua Yao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
5
|
Xiong J, Ling J, Yan J, Duan Y, Yu J, Li W, Yu W, Gao J, Xie D, Liu Z, Deng Y, Liao Y. LILRB4 knockdown inhibits aortic dissection development by regulating pyroptosis and the JAK2/STAT3 signaling pathway. Sci Rep 2024; 14:15564. [PMID: 38971897 PMCID: PMC11227527 DOI: 10.1038/s41598-024-66482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianxian Xiong
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jiayuan Ling
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jie Yan
- Department of Thoracic Surgery, Nankang District First People's Hospital, Ganzhou City, 341400, Jiangxi Province, China
| | - Yanyu Duan
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Junjian Yu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Wentong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Wenbo Yu
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jianfeng Gao
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Dilin Xie
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Ziyou Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, Taiyuan, 030024, China.
| | - Yongling Liao
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
6
|
Jin H, Huan Z, Wu Y, Yao H, Zhang L, Ge X. Lilrb4 ameliorates ileal injury in rats with hemorrhagic shock and suppresses the activation of NF-κB signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167082. [PMID: 38367899 DOI: 10.1016/j.bbadis.2024.167082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Hemorrhagic shock (HS) leads to intestinal damage and subsequent multiple organ dysfunction syndrome. Intestinal barrier dysfunction is the main cause of multiple organ failure associated with HS. Leukocyte immunoglobulin-like receptor B4 (Lilrb4) belongs to the Ig superfamily and is a vital natural immunomodulatory receptor. The purpose of this study was to identify the role and molecular mechanism of Lilrb4 in HS-induced ileal injury. In this work, HS was established by femoral artery cannula and 90 min of HS (blood pressure, 35-40 mmHg), followed by resuscitation. RNA sequencing analysis showed that Lilrb4 was highly expressed in the ileum of HS rats. As observed, HS rats exhibited severe ileal injury, characterized by enlarged subepithelial space, edema, exfoliation and extensive loss of villi. Whereas, lentivirus system-mediated Lilrb4 overexpression considerably mitigated these alterations. HS led to increased release of markers associated with intestinal injury, which was effectively reversed by Lilrb4 overexpression. In addition, after resuscitation, Lilrb4 overexpression inhibited HS-triggered inflammatory response, as evidenced by decreased levels of proinflammatory cytokines. Lilrb4 also inhibited the activation of NF-κB signal induced by HS. Notably, Lilrb4 modulated the balance of regulatory T (Treg)-T helper 17 (Th17) cells in the mesenteric lymph node (MLN), which may also contribute to its protective role in HS progression. In aggregate, these findings confirmed that Lilrb4 overexpression protected against ileal injury caused by HS, indicating that Lilrb4 may be a potential candidate for the treatment of HS.
Collapse
Affiliation(s)
- Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Leyao Zhang
- Department of Gastroenterology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
7
|
Xiong J, Wang L, Xiong X, Deng Y. Downregulation of LILRB4 Promotes Human Aortic Smooth Muscle Cell Contractile Phenotypic Switch and Apoptosis in Aortic Dissection. Cardiovasc Toxicol 2024; 24:225-239. [PMID: 38324114 DOI: 10.1007/s12012-023-09824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
Aortic dissection (AD) is a severe vascular disease with high rates of mortality and morbidity. However, the underlying molecular mechanisms of AD remain unclear. Differentially expressed genes (DEGs) were screened by bioinformatics methods. Alterations of histopathology and inflammatory factor levels in β-aminopropionitrile (BAPN)-induced AD mouse model were evaluated through Hematoxylin-Eosin (HE) staining and Enzyme-linked immunosorbent assay (ELISA), respectively. Reverse transcription quantitative real-time polymerase chain reaction was performed to detect DEGs expression. Furthermore, the role of LILRB4 in AD was investigated through Cell Counting Kit-8 (CCK-8), wound healing, and flow cytometry. Western blotting was employed to assess the phenotypic switch and extracellular matrix (ECM)-associated protein expressions in platelet-derived growth factor-BB (PDGF-BB)-stimulated in vitro model of AD. In the AD mouse model, distinct dissection formation was observed. TNF-α, IL-1β, IL-8, and IL-6 levels were higher in the AD mouse model than in the controls. Six hub genes were identified, including LILRB4, TIMP1, CCR5, CCL7, MSR1, and CLEC4D, all of which were highly expressed. Further exploration revealed that LILRB4 knockdown inhibited the cell vitality and migration of PDGF-BB-induced HASMCs while promoting apoptosis and G0/G1 phase ratio. More importantly, LILRB4 knockdown promoted the protein expression of α-SMA and SM22α, while decreasing the expression of Co1, MMP2, and CTGF, which suggested that LILRB4 silencing promoted contractile phenotypic transition and ECM stability. LILRB4 knockdown inhibits the progression of AD. Our study provides a new potential target for the clinical treatment of AD.
Collapse
Affiliation(s)
- Jianxian Xiong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Linyuan Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China
| | - Xin Xiong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China.
| |
Collapse
|
8
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
9
|
Mahjoubin-Tehran M, Santos RD, Almahmeed W, Al-Rasadi K, Sahebkar A. Identification of Critical Genes Differentiating Stable and Unstable Atherosclerotic Plaques: A Bioinformatic and Computational Analysis. Curr Vasc Pharmacol 2024; 22:273-286. [PMID: 38639275 DOI: 10.2174/0115701611282362240409035233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Identification of biomarkers to distinguish between stable and unstable plaque formation would be very useful to predict plaque vulnerability. METHODS We downloaded microarray profiles of gene set enrichment (GSE) accession numbers including GSE71226 and GSE20680 (group A: containing healthy vs stable plaque samples) and GSE62646 and GSE34822 (group B: containing stable vs unstable plaque samples) from Gene expression omnibus (GEO) database. Differentially expressed genes were compared in both data sets of each group. RESULTS Ten and 12 key genes were screened in groups A and B, respectively. Gene Ontology (GO) enrichment was applied by the plugin "BiNGO" (Biological networks gene ontology tool) of the Cytoscape. The key genes were mostly enriched in the biological process of positive regulation of the cellular process. The protein-protein interaction and co-expression network were analyzed by the STRING (search tool for the retrieval of interacting genes/proteins) and GeneMANIA (gene multiple association network integration algorithm) plugin of Cytoscape, respectively, which showed that Epidermal growth factor (EGF), Heparin-binding EGF like growth factor (HBEGF), and Matrix metalloproteinase 9 (MMP9) were at the core of the network. Further validation of key genes using two datasets showed that Phosphodiesterase 5A (PDE5A) and Protein S (PROS1) were decreased in unstable plaques, while Suppressor of cytokine signaling (SOCS3), HBEGF, and Leukocyte immunoglobulin-like receptor B4 (LILRB4) were increased. CONCLUSION The present study used several datasets to identify key genes associated with stable and unstable atherosclerotic plaque.
Collapse
Affiliation(s)
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi P.O. Box 124140, United Arab Emirates
| | - Khalid Al-Rasadi
- Medical Research Centre, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Cao Z, Lu P, Li L, Geng Q, Lin L, Yan L, Zhang L, Shi C, Li L, Zhao N, He X, Tan Y, Lu C. Bioinformatics-led discovery of liver-specific genes and macrophage infiltration in acute liver injury. Front Immunol 2023; 14:1287136. [PMID: 38130716 PMCID: PMC10733525 DOI: 10.3389/fimmu.2023.1287136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Acute liver injury (ALI) is an important global health concern, primarily caused by widespread hepatocyte cell death, coupled with a complex immune response and a lack of effective remedies. This study explores the underlying mechanisms, immune infiltration patterns, and potential targets for intervention and treatment ALI. Methods The datasets of acetaminophen (APAP), carbon tetrachloride (CCl4), and lipopolysaccharide (LPS)-induced ALI were obtained from the GEO database. Differentially expressed genes (DEGs) were individually identified using the limma packages. Functional enrichment analysis was performed using KEGG, GO, and GSEA methods. The overlapping genes were extracted from the three datasets, and hub genes were identified using MCODE and CytoHubba algorithms. Additionally, PPI networks were constructed based on the String database. Immune cell infiltration analysis was conducted using ImmuCellAI, and the correlation between hub genes and immune cells was determined using the Spearman method. The relationship between hub genes, immune cells, and biochemical indicators of liver function (ALT, AST) was validated using APAP and triptolide (TP) -induced ALI mouse models. Results Functional enrichment analysis indicated that all three ALI models were enriched in pathways linked to fatty acid metabolism, drug metabolism, inflammatory response, and immune regulation. Immune analysis revealed a significant rise in macrophage infiltration. A total of 79 overlapping genes were obtained, and 10 hub genes were identified that were consistent with the results of the biological information analysis after screening and validation. Among them, Clec4n, Ms4a6d, and Lilrb4 exhibited strong associations with macrophage infiltration and ALI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an inhibitory receptor in the LILR family mainly expressed on normal and malignant human cells of myeloid origin. By binding to ligands, LILRB4 is activated and subsequently recruits adaptors to cytoplasmic immunoreceptor tyrosine inhibitory motifs to initiate different signaling cascades, thus playing an important role in physiological and pathological conditions, including autoimmune diseases, microbial infections, and cancers. In normal myeloid cells, LILRB4 regulates intrinsic cell activation and differentiation. In disease-associated or malignant myeloid cells, LILRB4 is significantly correlated with disease severity or patient survival and suppresses T cells, thereby participating in the pathogenesis of various diseases. In summary, LILRB4 functions as an immune checkpoint on myeloid cells and may be a promising therapeutic target for various human immune diseases, especially for cancer immunotherapy.
Collapse
|
13
|
Lee HN, Manangeeswaran M, Lewkowicz AP, Engel K, Chowdhury M, Garige M, Eckhaus MA, Sourbier C, Ireland DD, Verthelyi D. NK cells require immune checkpoint receptor LILRB4/gp49B to control neurotropic Zika virus infections in mice. JCI Insight 2022; 7:151420. [PMID: 35132958 PMCID: PMC8855830 DOI: 10.1172/jci.insight.151420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Immune cells express an array of inhibitory checkpoint receptors that are upregulated upon activation and limit tissue damage associated with excessive response to pathogens or allergens. Mouse leukocyte immunoglobulin like receptor B4 (LILRB4), also known as glycoprotein 49B (gp49B), is an inhibitory checkpoint receptor constitutively expressed in myeloid cells and upregulated in B cells, T cells, and NK cells upon activation. Here, we report that expression of LILRB4, which binds Zika virus (ZIKV), was increased in microglia and myeloid cells infiltrating the brains of neonatal mice with ZIKV-associated meningoencephalitis. Importantly, while C57BL/6 mice developed transient neurological symptoms but survived infection, mice lacking LILRB4/gp49B (LILRB4 KO) exhibited more severe signs of neurological disease and succumbed to disease. Their brains showed increased cellular infiltration but reduced control of viral burden. The reduced viral clearance was associated with altered NK cell function in the absence of LILRB4/gp49B. In naive animals, this manifested as reduced granzyme B responses to stimulation, but in ZIKV-infected animals, NK cells showed phenotypic changes that suggested altered maturation, diminished glucose consumption, reduced IFN-γ and granzyme B production, and impaired cytotoxicity. Together, our data reveal LILRB4/gp49B as an important regulator of NK cell function during viral infections.
Collapse
Affiliation(s)
- Ha-Na Lee
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Mohanraj Manangeeswaran
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Aaron P Lewkowicz
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Kaliroi Engel
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Monica Chowdhury
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Mamatha Garige
- Laboratory of Molecular Oncology, Division of Biotechnology Review and Research-I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Michael A Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carole Sourbier
- Laboratory of Molecular Oncology, Division of Biotechnology Review and Research-I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Derek Dc Ireland
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Daniela Verthelyi
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| |
Collapse
|
14
|
Ceelen D, Voors AA, Tromp J, van Veldhuisen DJ, Dickstein K, de Boer RA, Lang CC, Anker SD, Ng LL, Metra M, Ponikowski P, Figarska SM. Pathophysiological pathways related to high plasma GDF-15 concentrations in patients with heart failure. Eur J Heart Fail 2022; 24:308-320. [PMID: 34989084 PMCID: PMC9302623 DOI: 10.1002/ejhf.2424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS Elevated concentrations of Growth Differentiation factor 15 (GDF-15) in patients with heart failure (HF) have been consistently associated with worse clinical outcomes, but what disease mechanisms high GDF-15 concentrations represent remains unclear. Here, we aim to identify activated pathophysiological pathways related to elevated GDF-15 expression in patients with HF. METHODS AND RESULTS In 2279 patients with HF, we measured circulating levels of 363 biomarkers. Then, we performed a pathway over-representation analysis to identify key biological pathways between patients in the highest and lowest GDF-15 concentration quartiles. Data were validated in an independent cohort of 1705 patients with HF. In both cohorts, the strongest up-regulated biomarkers in those with high GDF-15 were fibroblast growth factor 23 (FGF-23), death receptor 5 (TRAIL-R2), WNT1-inducible-signaling pathway protein 1 (WISP-1), TNF Receptor Superfamily Member 11a (TNFRSF11A), leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4), and Trefoil Factor 3 (TFF3). Pathway over-representation analysis revealed that high GDF-15 patients had increased activity of pathways related to inflammatory processes, notably positive regulation of chemokine production; response to interleukin 6 (IL-6); tumour necrosis factor (TNF) and death receptor activity; and positive regulation of T cell differentiation and inflammatory response. Furthermore, we found pathways involved in regulation of insulin-like growth factor (IGF) receptor signalling and regulatory pathways of tissue, bones, and branching structures. GDF-15 quartiles significantly predicted all-cause mortality and HF hospitalization. CONCLUSION Patients with HF and high plasma concentrations of GDF-15 are characterized by increased activation of inflammatory pathways and pathways related to IGF-1 regulation and bone/tissue remodelling.
Collapse
Affiliation(s)
- Daan Ceelen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jasper Tromp
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,National Heart Centre Singapore, Singapore
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Stefan D Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin; Charité Universitätsmedizin Berlin, Germany
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, Wroclaw, Poland; Center for Heart Diseases, University Hospital in Wrocław, Wroclaw, Poland
| | - Sylwia M Figarska
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Kretzschmar F, Piecha R, Jahn J, Potru PS, Spittau B. Characterization of the Leucocyte Immunoglobulin-like Receptor B4 (Lilrb4) Expression in Microglia. BIOLOGY 2021; 10:biology10121300. [PMID: 34943215 PMCID: PMC8698765 DOI: 10.3390/biology10121300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In the present study, we provide a detailed characterization of Lilrb4 expression in microglia and peripheral myeloid cells. Our data demonstrate that LILRB4 is a marker for microglia activation, as evidenced by upregulation after lipopolysaccharide treatment and inhibition of microglial TGFβ signaling. Moreover, we provide evidence that microglia express low levels of Lilrb4 in vivo and high levels in vitro, and we clearly demonstrate that LILRB4 is also expressed by bone marrow-derived monocytes and, to a greater extent, by peritoneal macrophages, defining LILRB4 as a surface marker of myeloid cells and not as a microglia-specific marker. Abstract As resident innate immune cells of the CNS, microglia play important essential roles during physiological and pathological situations. Recent reports have described the expression of Lilrb4 in disease-associated and aged microglia. Here, we characterized the expression of Lilrb4 in microglia in vitro and in vivo in comparison with bone marrow-derived monocytes and peritoneal macrophages in mice. Using BV2 cells, primary microglia cultures as well as ex vivo isolated microglia and myeloid cells in combination with qPCR and flow cytometry, we were able to provide a comprehensive characterization of Lilrb4 expression in distinct mouse myeloid cells. Whereas microglia in vivo display low expression of Lilrb4, primary microglia cultures present high levels of surface LILRB4. Among the analyzed peripheral myeloid cells, peritoneal macrophages showed the highest expression levels of Lilrb4. Moreover, LPS treatment and inhibition of microglial TGFβ signaling resulted in significant increases of LILRB4 cell surface levels. Taken together, our data indicate that LILRB4 is a reliable surface marker for activated microglia and further demonstrate that microglial TGFβ signaling is involved in the regulation of Lilrb4 expression during LPS-induced microglia activation.
Collapse
Affiliation(s)
- Felix Kretzschmar
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Robin Piecha
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Jannik Jahn
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Phani Sankar Potru
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Björn Spittau
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
16
|
Puca AA, Carrizzo A, Spinelli C, Damato A, Ambrosio M, Villa F, Ferrario A, Maciag A, Fornai F, Lenzi P, Valenti V, di Nonno F, Accarino G, Madonna M, Forte M, Calì G, Baragetti A, Norata GD, Catapano AL, Cattaneo M, Izzo R, Trimarco V, Montella F, Versaci F, Auricchio A, Frati G, Sciarretta S, Madeddu P, Ciaglia E, Vecchione C. Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism. Eur Heart J 2021; 41:2487-2497. [PMID: 31289820 PMCID: PMC7340354 DOI: 10.1093/eurheartj/ehz459] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/13/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Aims Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. Methods and results ApoE knockout mice (ApoE−/−) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE−/− mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1β, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. Conclusion Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease. ![]()
Collapse
Affiliation(s)
- Annibale Alessandro Puca
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy.,Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | | | - Chiara Spinelli
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Antonio Damato
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| | | | - Francesco Villa
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Anna Ferrario
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Anna Maciag
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | | | | | - Giulio Accarino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | | | - Maurizio Forte
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| | - Gaetano Calì
- Department of Endocrinology and Experimental Oncology Institute, CNR, Via Sergio Pansini, 80131 Naples, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy.,Società Italiana per lo Studio della Arteriosclerosi (SISA) Centro Aterosclerosi, Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy.,IRCCS Multimedica Hospital, 20099 Sesto San Giovanni Milan, Italy
| | - Monica Cattaneo
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy
| | - Valentina Trimarco
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Francesco Versaci
- UOC Cardiologia Ospedale Santa Maria Goretti, 04100 Latina, Italy.,Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli (Na), Italy.,Department of Advanced Biomedicine, Federico II University, 80131 Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, via Faggiana, 40100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, via Faggiana, 40100 Latina, Italy
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.,IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| |
Collapse
|
17
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Yang R, Dong Q, Xu H, Gao X, Zhao Z, Qin J, Chen C, Luo D. Identification of Phomoxanthone A and B as Protein Tyrosine Phosphatase Inhibitors. ACS OMEGA 2020; 5:25927-25935. [PMID: 33073119 PMCID: PMC7557999 DOI: 10.1021/acsomega.0c03315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Phomoxanthone A and B (PXA and PXB) are xanthone dimers and isolated from the endophytic fungus Phomopsis sp. By254. The results demonstrated that PXB and PXA are noncompetitive inhibitors of SHP2 and PTP1B and competitive inhibitors of SHP1. Molecular docking studies showed that PXB and PXA interact with conserved domains of protein tyrosine phosphatases such as the β5-β6 loop, WPD loop, P loop, and Q loop. PXA and PXB could significantly inhibit the cell proliferation in MCF7 cells. Our results indicated that these two compounds do not efficiently inhibit PTP1B and SHP2 activity. RNA sequencing showed that PXA and PXB may inhibit SHP1 activity in MCF7 cells leading to the upregulation of inflammatory factors. In addition to PTP inhibition, PXA and PXB are multitarget compounds to inhibit the proliferation of tumor cells. In conclusion, both compounds show inhibition of cancer cells and a certain degree of inflammatory stimulation, which make them promising for tumor immunotherapy.
Collapse
Affiliation(s)
- Runlei Yang
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qian Dong
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Huibin Xu
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - XueHui Gao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ziyue Zhao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jianchun Qin
- College
of Plant Science, Jilin University, Changchun, Jilin 130062, China
| | - Chuan Chen
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Duqiang Luo
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
19
|
New Insights for BPIFB4 in Cardiovascular Therapy. Int J Mol Sci 2020; 21:ijms21197163. [PMID: 32998388 PMCID: PMC7583974 DOI: 10.3390/ijms21197163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is the most relevant risk factor for cardiovascular diseases which are the main cause of mortality in industrialized countries. In this context, there is a progressive loss of cardiovascular homeostasis that translates in illness and death. The study of long living individuals (LLIs), which show compression of morbidity toward the end of their life, is a valuable approach to find the key to delay aging and postpone associate cardiovascular events. A contribution to the age-related decline of cardiovascular system (CVS) comes from the immune system; indeed, it is dysfunctional during aging, a process described as immunosenescence and comprises the combination of several processes overpowering both innate and adaptative immune system. We have recently discovered a longevity-associated variant (LAV) in bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4), which is a secreted protein able to enhance endothelial function through endothelial nitric oxide synthase (eNOS) activation and capable to protect from hypertension, atherosclerosis, diabetic cardiopathy, frailty, and inflammaging. Here, we sum up the state of the art of the mechanisms involved in the main pathological processes related to CVD (atherosclerosis, aging, diabetic cardiopathy, and frailty) and shed light on the therapeutic effects of LAV-BPIFB4 in these contexts.
Collapse
|
20
|
Kumar S, Nanduri R, Bhagyaraj E, Kalra R, Ahuja N, Chacko AP, Tiwari D, Sethi K, Saini A, Chandra V, Jain M, Gupta S, Bhatt D, Gupta P. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 2020; 17:2273-2289. [DOI: 10.1080/15548627.2020.1822088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sumit Kumar
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ravikanth Nanduri
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ella Bhagyaraj
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rashi Kalra
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nancy Ahuja
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anuja P. Chacko
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Drishti Tiwari
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kanupriya Sethi
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ankita Saini
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Vemika Chandra
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Monika Jain
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shalini Gupta
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Bhatt
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pawan Gupta
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
21
|
Zhou H, Li N, Yuan Y, Jin YG, Wu Q, Yan L, Bian ZY, Deng W, Shen DF, Li H, Tang QZ. Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-κB pathway. J Mol Med (Berl) 2020; 98:691-705. [PMID: 32280997 DOI: 10.1007/s00109-020-01896-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is a complex pathological process, and the molecular mechanisms underlying hypertrophic remodeling have not been clearly elucidated. Leukocyte immunoglobulin-like receptor B4 (lilrb4) is an inhibitory transmembrane protein that is necessary for the regulation of various cellular signaling pathways. To investigate whether lilrb4 plays a role in cardiac hypertrophy, we performed aortic banding in lilrb4 knockout mice, lilrb4 cardiac-specific transgenic mice, and their wild-type littermates. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. We found that lilrb4 was expressed both in myocardial tissue and on cultured cardiomyocytes under basal conditions, but the expression was obviously decreased in mouse hearts following aortic banding and in cardiomyocytes treated with angiotensin II. Lilrb4 disruption aggravated cardiac hypertrophy, fibrosis, and dysfunction in response to pressure overload. Conversely, the cardiac overexpression of lilrb4 led to the opposite effects. Moreover, lilrb4 overexpression inhibited angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we determined that the cardioprotective effect of lilrb4 was mediated through an interaction with SHP-2, the preservation of phosphorylated SHP-2, and the inhibition of the NF-κB pathway. In addition, SHP-2 knockdown in cardiomyocytes eliminated the inhibitory effects of lilrb4 on angiotensin II-induced hypertrophy and NF-κB activation. Our results suggest that lilrb4 protects against pathological cardiac hypertrophy via the SHP-2-dependent inhibition of the NF-κB pathway and may act as a potential therapeutic target for cardiac hypertrophy. KEY MESSAGES: Lilrb4 expression is decreased by hypertrophic stimuli. Lilrb4 protects against pathological cardiac hypertrophy. Lilrb4 interacts with SHP-2 and inhibits NF-κB pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease and a major cause of related complications such as cirrhosis and hepatocellular carcinoma (HCC). NAFLD progresses through the stages of simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and HCC. However, NAFLD usually cannot be diagnosed in a timely manner, which is largely attributed to the asymptomatic features of NAFLD patients and the lack of an effective and accurate noninvasive screening approach. Although liver biopsy has been recognized as a gold standard for diagnosing NAFLD, this approach is not suitable for screening and monitoring NAFLD because of its high cost and invasiveness. Several noninvasive screening and diagnostic systemic assessments have been developed in recent years for NAFLD evaluation. Here we summarize the current status and methods for NAFLD diagnosis, including both noninvasive (imaging, biomarkers) and invasive (liver biopsy) assessments. We further discuss the advantages and disadvantages of these developed diagnostic approaches for NAFLD.
Collapse
Affiliation(s)
- Jia-Zhen Zhang
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
23
|
Leukocyte immunoglobulin-like receptor B4 deficiency exacerbates acute lung injury via NF-κB signaling in bone marrow-derived macrophages. Biosci Rep 2019; 39:BSR20181888. [PMID: 31138763 PMCID: PMC6566464 DOI: 10.1042/bsr20181888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Acute lung injury (ALI) is an acute inflammatory disease. Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing inhibitory receptor that is implicated in various pathological processes. However, the function of LILRB4 in ALI remains largely unknown. The aim of the present study was to explore the role of LILRB4 in ALI. LILRB4 knockout mice (LILRB4 KO) were used to construct a model of ALI. Bone marrow cell transplantation was used to identify the cell source of the LILRB4 deficiency-aggravated inflammatory response in ALI. The effect on ALI was analyzed by pathological and molecular analyses. Our results indicated that LILRB4 KO exacerbated ALI triggered by LPS. Additionally, LILRB4 deficiency can enhance lung inflammation. According to the results of our bone marrow transplant model, LILRB4 regulates the occurrence and development of ALI by bone marrow-derived macrophages (BMDMs) rather than by stromal cells in the lung. The observed inflammation was mainly due to BMDM-induced NF-κB signaling. In conclusion, our study demonstrates that LILRB4 deficiency plays a detrimental role in ALI-associated BMDM activation by prompting the NF-κB signal pathway.
Collapse
|
24
|
Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019; 33:8782-8798. [PMID: 31063705 DOI: 10.1096/fj.201900092r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efavirenz (EFV) is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is the major brain cholesterol hydroxylase. Previously, we discovered that EFV activates CYP46A1 and improves behavioral performance in 5XFAD mice, an Alzheimer's disease model. Herein, the unbiased omics and other approaches were used to study 5XFAD mice in the amyloid-decreasing paradigm of CYP46A1 activation by EFV. These approaches revealed increases in the brain levels of postsynaptic density protein 95, gephyrin, synaptophysin, synapsin, glial fibrillary acidic protein, and CYP46A1 and documented altered expression and phosphorylation of 66 genes and 77 proteins, respectively. The data obtained pointed to EFV effects at the synaptic level, plasmin-depended amyloid clearance, inflammation and microglia phenotype, oxidative stress and cellular hypoxia, autophagy and ubiquitin-proteasome systems as well as apoptosis. These effects could be realized in part via changes in the Ca2+-, small GTPase, and catenin signaling. A model is proposed, in which CYP46A1-dependent lipid raft rearrangement and subsequent decrease of protein phosphorylation are central in EFV effects and explain behavioral improvements in EFV-treated 5XFAD mice.-Petrov, A. M., Mast, N., Li, Y., Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Yu Y, Cai J, She Z, Li H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801585. [PMID: 30828530 PMCID: PMC6382298 DOI: 10.1002/advs.201801585] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease which affects ≈25% of the adult population worldwide, placing a tremendous burden on human health. The disease spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and ultimately, cirrhosis and carcinoma, which are becoming leading reasons for liver transplantation. NAFLD is a complex multifactorial disease involving myriad genetic, metabolic, and environmental factors; it is closely associated with insulin resistance, metabolic syndrome, obesity, diabetes, and many other diseases. Over the past few decades, countless studies focusing on the investigation of noninvasive diagnosis, pathogenesis, and therapeutics have revealed different aspects of the mechanism and progression of NAFLD. However, effective pharmaceuticals are still in development. Here, the current epidemiology, diagnosis, animal models, pathogenesis, and treatment strategies for NAFLD are comprehensively reviewed, emphasizing the outstanding breakthroughs in the above fields and promising medications in and beyond phase II.
Collapse
Affiliation(s)
- Yao Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Zhigang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| |
Collapse
|
26
|
Li Q, Wei G, Tao T. Leukocyte immunoglobulin-like receptor B4 (LILRB4) negatively mediates the pathological cardiac hypertrophy by suppressing fibrosis, inflammation and apoptosis via the activation of NF-κB signaling. Biochem Biophys Res Commun 2019; 509:16-23. [DOI: 10.1016/j.bbrc.2018.11.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022]
|
27
|
Zöller T, Attaai A, Potru PS, Ruß T, Spittau B. Aged Mouse Cortical Microglia Display an Activation Profile Suggesting Immunotolerogenic Functions. Int J Mol Sci 2018; 19:E706. [PMID: 29494550 PMCID: PMC5877567 DOI: 10.3390/ijms19030706] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/19/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and participate in physiological and pathological processes. Their unique developmental nature suggests age-dependent structural and functional impairments that might contribute to neurodegenerative diseases. In the present study, we addressed the age-dependent changes in cortical microglia gene expression patterns and the expression of M1- and M2-like activation markers. Iba1 immunohistochemistry, isolation of cortical microglia followed by fluorescence-activated cell sorting and RNA isolation to analyze transcriptional changes in aged cortical microglia was performed. We provide evidence that aging is associated with decreased numbers of cortical microglia and the establishment of a distinct microglia activation profile including upregulation of Ifi204, Lilrb4, Arhgap, Oas1a, Cd244 and Ildr2. Moreover, flow cytometry revealed that aged cortical microglia express increased levels of Cd206 and Cd36. The data presented in the current study indicate that aged mouse cortical microglia adopt a distinct activation profile, which suggests immunosuppressive and immuno-tolerogenic functions.
Collapse
Affiliation(s)
- Tanja Zöller
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.
| | - Abdelraheim Attaai
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | | | - Tamara Ruß
- Institute of Anatomy, University of Rostock, Rostock 18057, Germany.
| | - Björn Spittau
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.
- Institute of Anatomy, University of Rostock, Rostock 18057, Germany.
| |
Collapse
|