1
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Xia H, Zahra A, Jia M, Wang Q, Wang Y, Campbell SL, Wu J. Na +/H + Exchanger 1, a Potential Therapeutic Drug Target for Cardiac Hypertrophy and Heart Failure. Pharmaceuticals (Basel) 2022; 15:ph15070875. [PMID: 35890170 PMCID: PMC9318128 DOI: 10.3390/ph15070875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiac hypertrophy is defined as increased heart mass in response to increased hemodynamic requirements. Long-term cardiac hypertrophy, if not counteracted, will ultimately lead to heart failure. The incidence of heart failure is related to myocardial infarction, which could be salvaged by reperfusion and ultimately invites unfavorable myocardial ischemia-reperfusion injury. The Na+/H+ exchangers (NHEs) are membrane transporters that exchange one intracellular proton for one extracellular Na+. The first discovered NHE isoform, NHE1, is expressed almost ubiquitously in all tissues, especially in the myocardium. During myocardial ischemia-reperfusion, NHE1 catalyzes increased uptake of intracellular Na+, which in turn leads to Ca2+ overload and subsequently myocardial injury. Numerous preclinical research has shown that NHE1 is involved in cardiac hypertrophy and heart failure, but the exact molecular mechanisms remain elusive. The objective of this review is to demonstrate the potential role of NHE1 in cardiac hypertrophy and heart failure and investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Huiting Xia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan 440070, China;
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
- Correspondence:
| |
Collapse
|
3
|
Ma LL, Kong FJ, Ma YJ, Guo JJ, Wang SJ, Dong Z, Sun AJ, Zou YZ, Ge JB. Hypertrophic preconditioning attenuates post-myocardial infarction injury through deacetylation of isocitrate dehydrogenase 2. Acta Pharmacol Sin 2021; 42:2004-2015. [PMID: 34163022 PMCID: PMC8633015 DOI: 10.1038/s41401-021-00699-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic preconditioning induced by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischemic insult. In this study we investigated whether a short-term nonischemic stimulation of hypertrophy renders the heart resistant to subsequent ischemic injury. Male mice were subjected to transient transverse aortic constriction (TAC) for 3 days followed aortic debanding on D4 (T3D4), as well as ligation of the left coronary artery to induce myocardial infarction (MI). The TAC preconditioning mice showed markedly improved contractile function and significantly reduced myocardial fibrotic area and apoptosis following MI. We revealed that TAC preconditioning significantly reduced MI-induced oxidative stress, evidenced by increased NADPH/NADP ratio and GSH/GSSG ratio, as well as decreased mitochondrial ROS production. Furthermore, TAC preconditioning significantly increased the expression and activity of SIRT3 protein following MI. Cardiac-specific overexpression of SIRT3 gene through in vivo AAV-SIRT3 transfection partially mimicked the protective effects of TAC preconditioning, whereas genetic ablation of SIRT3 in mice blocked the protective effects of TAC preconditioning. Moreover, expression of an IDH2 mutant mimicking deacetylation (IDH2 K413R) in cardiomyocytes promoted myocardial IDH2 activation, quenched mitochondrial reactive oxygen species (ROS), and alleviated post-MI injury, whereas expression of an acetylation mimic (IDH2 K413Q) in cardiomyocytes inactivated IDH2, exacerbated mitochondrial ROS overload, and aggravated post-MI injury. In conclusion, this study identifies TAC preconditioning as a novel strategy for induction of an endogenous self-defensive and cardioprotective mechanism against cardiac injury. Therapeutic strategies targeting IDH2 are promising treatment approaches for cardiac ischemic injury.
Collapse
Affiliation(s)
- Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Fei-Juan Kong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200071, China
| | - Yuan-Ji Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266101, China
- Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), Qingdao, 266101, China
| | - Shi-Jun Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| | - Zheng Dong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Ai-Jun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| | - Jun-Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Majumder N, Velayutham M, Bitounis D, Kodali VK, Hasan Mazumder MH, Amedro J, Khramtsov VV, Erdely A, Nurkiewicz T, Demokritou P, Kelley EE, Hussain S. Oxidized carbon black nanoparticles induce endothelial damage through C-X-C chemokine receptor 3-mediated pathway. Redox Biol 2021; 47:102161. [PMID: 34624601 PMCID: PMC8502956 DOI: 10.1016/j.redox.2021.102161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 01/19/2023] Open
Abstract
Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) as a model particle. Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). Colloidal characterization and in vitro dosimetry modeling (particle kinetics, fate and transport modeling) were performed. Lung inflammation was assessed following oropharyngeal aspiration of CB or oxidized CBox particles (20 μg per mouse) in C57BL/6J mice. Toxicity and functional assays were also performed on murine macrophage (RAW 264.7) and endothelial cell lines (C166) with and without pharmacological inhibitors. Oxidant generation was assessed by electron paramagnetic resonance spectroscopy (EPR) and via flow cytometry. Endothelial toxicity was evaluated by quantifying pro-inflammatory mRNA expression, monolayer permeability, and wound closure. XPS and FTIR spectra indicated surface modifications, the appearance of new functionalities, and greater oxidative potential (both acellular and in vitro) of CBox particles. Treatment with CBox demonstrated greater in vivo inflammatory potentials (lavage neutrophil counts, secreted cytokine, and lung tissue mRNA expression) and air-blood barrier disruption (lavage proteins). Oxidant-dependent pro-inflammatory signaling in macrophages led to the production of CXCR3 ligands (CXCL9,10,11). Conditioned medium from CBox-treated macrophages induced significant elevation in endothelial cell pro-inflammatory mRNA expression, enhanced monolayer permeability and impairment of scratch healing in CXCR3 dependent manner. In summary, this study mechanistically demonstrated an increased biological potency of CBox particles and established the role of macrophage-released chemical mediators in endothelial damage.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Murugesan Velayutham
- Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; Department of Biochemistry, West Virginia University, School of Medicine, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Md Habibul Hasan Mazumder
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Jessica Amedro
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Valery V Khramtsov
- Department of Biochemistry, West Virginia University, School of Medicine, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA.
| |
Collapse
|
5
|
Ma L, Shi H, Li Y, Gao W, Guo J, Zhu J, Dong Z, Sun A, Zou Y, Ge J. Hypertrophic preconditioning attenuates myocardial ischemia/reperfusion injury through the deacetylation of isocitrate dehydrogenase 2. Sci Bull (Beijing) 2021; 66:2099-2114. [PMID: 36654268 DOI: 10.1016/j.scib.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023]
Abstract
To test the hypothesis that transient nonischemic stimulation of hypertrophy would render the heart resistant to subsequent ischemic stress, short-term transverse aortic constriction (TAC) was performed in mice and then withdrawn for several days by aortic debanding, followed by subsequent myocardial exposure to ischemia/reperfusion (I/R). Following I/R injury, the myocardial infarct size and apoptosis were markedly reduced, and contractile function was significantly improved in the TAC preconditioning group compared with the control group. Mechanistically, hypertrophic preconditioning remarkably alleviated I/R-induced oxidative stress, as evidenced by the increased reduced nicotinamide adenine dinucleotide phosphate (NADPH)/nicotinamide adenine dinucleotide phosphate (NADP) ratio, increase in the reduced glutathione (GSH)/oxidized glutathione (GSSH) ratio, and reduced mitochondrial reactive oxygen species (ROS) production. Moreover, TAC preconditioning inhibited caspase-3 activation and mitigated the mitochondrial impairment by deacetylating isocitrate dehydrogenase 2 (IDH2) via a sirtuin 3 (SIRT3)-dependent mechanism. In addition, the expression of a genetic deacetylation mimetic IDH2 mutant (IDH2 K413R) in cardiomyocytes, which increased IDH2 enzymatic activity and decreased mitochondrial ROS production, and ameliorated I/R injury, whereas the expression of a genetic acetylation mimetic (IDH2 K413Q) in cardiomyocytes abolished these protective effects of hypertrophic preconditioning. Furthermore, both the activity and expression of the SIRT3 protein were markedly increased in preconditioned mice exposed to I/R. Treatment with an adenovirus encoding SIRT3 partially emulated the actions of hypertrophic preconditioning, whereas genetic ablation of SIRT3 in mice blocked the cardioprotective effects of hypertrophic preconditioning. The present study identifies hypertrophic preconditioning as a novel endogenous self-defensive and cardioprotective strategy for cardiac I/R injury that induces IDH2 deacetylation through a SIRT3-dependent mechanism. A therapeutic strategy targeting IDH2 may be a promising treatment for cardiac ischemic injury.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hongtao Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Yang Li
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Wei Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266101, China; Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), Qingdao 266101, China
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Hypertension Research Institute, Nanchang 330006, China
| | - Zheng Dong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Majumder N, Goldsmith WT, Kodali VK, Velayutham M, Friend SA, Khramtsov VV, Nurkiewicz TR, Erdely A, Zeidler-Erdely PC, Castranova V, Harkema JR, Kelley EE, Hussain S. Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. Redox Biol 2021; 46:102092. [PMID: 34418598 PMCID: PMC8385153 DOI: 10.1016/j.redox.2021.102092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes. Interaction with O3 mediates free radical production on the surface of carbon black (CB) particles. Oxidants mediate co-exposure (CB + O3)-induced lung function decline. EUK-134 (a synthetic superoxide-catalase mimetic) abrogates CB + O3-induced lung inflammation. CB + O3 co-exposure induces greater lung inflammation than individual exposures. Epithelial alarmin (TSLP) contributes significantly to the CB + O3 toxicity.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | | | - Sherri A Friend
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Valery V Khramtsov
- Department of Biochemistry, School of Medicine, West Virginia University, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Patti C Zeidler-Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Vince Castranova
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, School of Veterinary Medicine, Michigan State University, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA.
| |
Collapse
|
7
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Targeting mitochondrial reactive oxygen species-mediated oxidative stress attenuates nicotine-induced cardiac remodeling and dysfunction. Sci Rep 2021; 11:13845. [PMID: 34226619 PMCID: PMC8257608 DOI: 10.1038/s41598-021-93234-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023] Open
Abstract
Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague–Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia–reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia–reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Anand Ramalingam
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Program of Biomedical Science, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Siti HN, Jalil J, Asmadi AY, Kamisah Y. Rutin Modulates MAPK Pathway Differently from Quercetin in Angiotensin II-Induced H9c2 Cardiomyocyte Hypertrophy. Int J Mol Sci 2021; 22:ijms22105063. [PMID: 34064664 PMCID: PMC8151787 DOI: 10.3390/ijms22105063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Rutin is a flavonoid with antioxidant property. It has been shown to exert cardioprotection against cardiomyocyte hypertrophy. However, studies regarding its antihypertrophic property are still lacking, whether it demonstrates similar antihypertrophic effect to its metabolite, quercetin. Hence, this study aimed to investigate the effects of both flavonoids on oxidative stress and mitogen-activated protein kinase (MAPK) pathway in H9c2 cardiomyocytes that were exposed to angiotensin II (Ang II) to induce hypertrophy. Cardiomyocytes were exposed to Ang II (600 nM) with or without quercetin (331 μM) or rutin (50 μM) for 24 h. A group given vehicle served as the control. The concentration of the flavonoids was chosen based on the reported effective concentration to reduce cell hypertrophy or cardiac injury in H9c2 cells. Exposure to Ang II increased cell surface area, intracellular superoxide anion level, NADPH oxidase and inducible nitric oxide synthase activities, and reduced cellular superoxide dismutase activity and nitrite level, which were similarly reversed by both rutin and quercetin. Rutin had no significant effects on phosphorylated proteins of extracellular signal-related kinases (ERK1/2) and p38 but downregulated phosphorylated c-Jun N-terminal kinases (JNK1/2), which were induced by Ang II. Quercetin, on the other hand, had significantly downregulated the phosphorylated proteins of ERK1/2, p38, and JNK1/2. The quercetin inhibitory effect on JNK1/2 was stronger than the rutin. In conclusion, both flavonoids afford similar protective effects against Ang II-induced cardiomyocyte hypertrophy, but they differently modulate MAPK pathway.
Collapse
Affiliation(s)
- Hawa Nordin Siti
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Department of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-3-9145-9575
| |
Collapse
|
9
|
Ma LL, Kong FJ, Dong Z, Xin KY, Wang XX, Sun AJ, Zou YZ, Ge JB. Hypertrophic Preconditioning Attenuates Myocardial Ischaemia-Reperfusion Injury by Modulating SIRT3-SOD2-mROS-Dependent Autophagy. Cell Prolif 2021; 54:e13051. [PMID: 33973685 PMCID: PMC8249780 DOI: 10.1111/cpr.13051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Background Ischaemic preconditioning elicited by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischaemic insult. Here, we test the hypothesis that short‐term non‐ischaemic stimulation of hypertrophy renders the heart resistant to subsequent ischaemic injury. Methods and Results Transient transverse aortic constriction (TAC) was performed for 3 days in mice and then withdrawn for 4 days by aortic debanding, followed by subsequent exposure to myocardial ischaemia‐reperfusion (I/R) injury. Following I/R injury, myocardial infarct size and apoptosis were significantly decreased, and cardiac dysfunction was markedly improved in the TAC preconditioning group compared with the control group. Mechanistically, TAC preconditioning markedly suppressed I/R‐induced autophagy and preserved autophagic flux by deacetylating SOD2 via a SIRT3‐dependent mechanism. Moreover, treatment with an adenovirus encoding SIRT3 partially mimicked the effects of hypertrophic preconditioning, whereas genetic ablation of SIRT3 in mice blocked the cardioprotective effects of hypertrophic preconditioning. Furthermore, in vivo lentiviral‐mediated knockdown of Beclin 1 in the myocardium ameliorated the I/R‐induced impairment of autophagic flux and was associated with a reduction in cell death, whereas treatment with a lentivirus encoding Beclin 1 abolished the cardioprotective effect of TAC preconditioning. Conclusions The present study identifies TAC preconditioning as a novel strategy for induction of an endogenous self‐defensive and cardioprotective mechanism against cardiac injury. Specifically, TAC preconditioning reduced myocardial autophagic cell death in a SIRT3/SOD2 pathway‐dependent manner.
Collapse
Affiliation(s)
- Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Fei-Juan Kong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Dong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai-Yue Xin
- Department of Cardiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xing-Xu Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Ma LL, Ding ZW, Yin PP, Wu J, Hu K, Sun AJ, Zou YZ, Ge JB. Hypertrophic preconditioning cardioprotection after myocardial ischaemia/reperfusion injury involves ALDH2-dependent metabolism modulation. Redox Biol 2021; 43:101960. [PMID: 33910156 PMCID: PMC8099646 DOI: 10.1016/j.redox.2021.101960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Brief episodes of ischaemia and reperfusion render the heart resistant to subsequent prolonged ischaemic insult, termed ischaemic preconditioning. Here, we hypothesized that transient non-ischaemic stress by hypertrophic stimulation would induce endogenous cardioprotective signalling and enhance cardiac resistance to subsequent ischaemic damage. Transient transverse aortic constriction (TAC) or Ang-Ⅱ treatment was performed for 3-7 days in male mice and then withdrawn for several days by either aortic debanding or discontinuing Ang-Ⅱ treatment, followed by subsequent exposure to regional myocardial ischaemia by in situ coronary artery ligation. Following ischaemia/reperfusion (I/R) injury, myocardial infarct size and apoptosis were markedly reduced and contractile function was significantly improved in the TAC preconditioning group compared with that in the control group. Similar results were observed in mice receiving Ang-Ⅱ infusion. Mechanistically, TAC preconditioning enhanced ALDH2 activity, promoted AMPK activation and improved mitochondrial energy metabolism by increasing myocardial OXPHOS complex expression, elevating the mitochondrial ATP content and improving viable myocardium glucose uptake. Moreover, TAC preconditioning significantly mitigated I/R-induced myocardial iNOS/gp91phox activation, inhibited endoplasmic reticulum stress and ameliorated mitochondrial impairment. Using a pharmacological approach to inhibit AMPK signalling in the presence or absence of preconditioning, we demonstrated AMPK-dependent protective mechanisms of TAC preconditioning against I/R injury. Furthermore, treatment with adenovirus-encoded ALDH2 partially emulated the actions of hypertrophic preconditioning, as evidenced by improved mitochondrial metabolism, inhibited oxidative stress-induced mitochondrial damage and attenuated cell death through an AMPK-dependent mechanism, whereas genetic ablation of ALDH2 abrogated the aforementioned actions of TAC preconditioning. The present study demonstrates that preconditioning with hypertrophic stress protects the heart from I/R injury via mechanisms that improve mitochondrial metabolism, reduce oxidative/nitrative stress and inhibit apoptosis. ALDH2 is obligatorily required for the development of cardiac hypertrophic preconditioning and acts as the mediator of this process.
Collapse
Affiliation(s)
- Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhi-Wen Ding
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Pei-Pei Yin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jun-Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
11
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
12
|
Wang F, Yuan Q, Chen F, Pang J, Pan C, Xu F, Chen Y. Fundamental Mechanisms of the Cell Death Caused by Nitrosative Stress. Front Cell Dev Biol 2021; 9:742483. [PMID: 34616744 PMCID: PMC8488117 DOI: 10.3389/fcell.2021.742483] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Nitrosative stress, as an important oxygen metabolism disorder, has been shown to be closely associated with cardiovascular diseases, such as myocardial ischemia/reperfusion injury, aortic aneurysm, heart failure, hypertension, and atherosclerosis. Nitrosative stress refers to the joint biochemical reactions of nitric oxide (NO) and superoxide (O2 -) when an oxygen metabolism disorder occurs in the body. The peroxynitrite anion (ONOO-) produced during this process can nitrate several biomolecules, such as proteins, lipids, and DNA, to generate 3-nitrotyrosine (3-NT), which further induces cell death. Among these, protein tyrosine nitration and polyunsaturated fatty acid nitration are the most studied types to date. Accordingly, an in-depth study of the relationship between nitrosative stress and cell death has important practical significance for revealing the pathogenesis and strategies for prevention and treatment of various diseases, particularly cardiovascular diseases. Here, we review the latest research progress on the mechanisms of nitrosative stress-mediated cell death, primarily involving several regulated cell death processes, including apoptosis, autophagy, ferroptosis, pyroptosis, NETosis, and parthanatos, highlighting nitrosative stress as a unique mechanism in cardiovascular diseases.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Fengying Chen
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Fengying Chen,
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Feng Xu,
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
- Yuguo Chen,
| |
Collapse
|
13
|
Chen Y, Liu F, Chen BD, Li XM, Huang Y, Yu ZX, Gao XL, He CH, Yang YN, Ma YT, Gao XM. rAAV9-Mediated MEK1 Gene Expression Restores Post-conditioning Protection Against Ischemia Injury in Hypertrophic Myocardium. Cardiovasc Drugs Ther 2020; 34:3-14. [PMID: 32103377 DOI: 10.1007/s10557-020-06936-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE We investigated whether increased expression of activated mitogen-activated protein kinase (MAPK) kinases 1 (MEK1) restores ischemic post-conditioning (IPostC) protection in hypertrophic myocardium following ischemia/reperfusion (I/R) injury. METHODS C57Bl/6 mice received recombinant adeno-associated virus type 9 (rAAV9)-mediated activated MEK1 gene delivery systemically, then following the induction of cardiac hypertrophy via transverse aortic constriction for 4 weeks. In a Langendorff model, hypertrophic hearts were subjected to 40 min/60 min I/R or with IPostC intervention consisting of 6 cycles of 10 s reperfusion and 10 s no-flow before a 60-min reperfusion. Hemodynamics, infarct size (IS), myocyte apoptosis and changes in expression of reperfusion injury salvage kinase (RISK) pathway were examined. RESULTS rAAV9-MEK1 gene delivery led to a 4.3-fold and 2.7-fold increase in MEK1 mRNA and protein expression in the heart versus their control values. I/R resulted in a larger IS in hypertrophic than in non-hypertrophic hearts (52.3 ± 4.7% vs. 40.0 ± 2.5%, P < 0.05). IPostC mediated IS reduction in non-hypertrophic hearts (27.6 ± 2.6%, P < 0.05), while it had no significant effect in hypertrophic hearts (46.5 ± 3.1%, P=NS) compared with the IS in non-hypertrophic or hypertrophic hearts subjected to I/R injury only, respectively. Hemodynamic decline induced by I/R was preserved by IPostC in non-hypertrophic hearts but not in hypertrophic hearts. rAAV9-MEK1 gene delivery restored IPostC protection in hypertrophic hearts evidenced by reduced IS (32.0 ± 2.8% vs. 46.5 ± 3.1%) and cardiac cell apoptosis and largely preserved hemodynamic parameters. These protective effects were associated with significantly increased phosphorylation of ERK1/2 and ribosomal protein S6 kinases (p70S6K), but it had no influence on Akt and glycogen synthase kinase-3β. CONCLUSION These results demonstrated that rAAV9-mediated activated MEK1 expression restores IPostC protection in the hypertrophic heart against I/R injury through the activation of ERK pathway.
Collapse
Affiliation(s)
- You Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China.,Clinical Medical Research Institute, Xinjiang Medical University, Urumqi, 830054, China
| | - Bang-Dang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China.,Clinical Medical Research Institute, Xinjiang Medical University, Urumqi, 830054, China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China
| | - Ying Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China
| | - Zi-Xiang Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China
| | - Xiao-Li Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chun-Hui He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China
| | - Yi-Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China.
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China.
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, China. .,Clinical Medical Research Institute, Xinjiang Medical University, Urumqi, 830054, China. .,Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, 830054, China.
| |
Collapse
|
14
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Angiotensin II Type I Receptor Antagonism Attenuates Nicotine-Induced Cardiac Remodeling, Dysfunction, and Aggravation of Myocardial Ischemia-Reperfusion Injury in Rats. Front Pharmacol 2019; 10:1493. [PMID: 31920673 PMCID: PMC6920178 DOI: 10.3389/fphar.2019.01493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Increased exposure to nicotine contributes to the development of cardiac dysfunction by promoting oxidative stress, fibrosis, and inflammation. These deleterious events altogether render cardiac myocytes more susceptible to acute cardiac insults such as ischemia-reperfusion (I/R) injury. This study sought to elucidate the role of angiotensin II type I (AT1) receptors in cardiac injury resulting from prolonged nicotine administration in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg ip) for 28 days to induce cardiac dysfunction, alone or in combination with the AT1 receptor antagonist, irbesartan (10 mg/kg, po). Vehicle-treated rats were used as controls. Rat hearts isolated from each experimental group at study endpoint were examined for changes in function, histology, gene expression, and susceptibility against acute I/R injury determined ex vivo. Rats administered nicotine alone exhibited significantly increased cardiac expression of angiotensin II and angiotensin-converting enzyme (ACE) in addition to elevated systolic blood pressure (SBP) and heart rate. Furthermore, nicotine administration markedly reduced left ventricular (LV) performance with concomitant increases in myocardial oxidative stress, fibrosis, and inflammation. Concomitant treatment with irbesartan attenuated these effects, lowering blood pressure, heart rate, oxidative stress, and expression of fibrotic and inflammatory genes. Importantly, the irbesartan-treated group also manifested reduced susceptibility to I/R injury ex vivo. These findings suggest that AT1 receptors play an important role in nicotine-induced cardiac dysfunction, and pharmacological approaches targeting cardiac AT1 receptors may thus benefit patients with sustained exposure to nicotine.
Collapse
Affiliation(s)
- Anand Ramalingam
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|