1
|
Rossi GP, Rossi FB, Guarnieri C, Rossitto G, Seccia TM. Clinical Management of Primary Aldosteronism: An Update. Hypertension 2024; 81:1845-1856. [PMID: 39045687 DOI: 10.1161/hypertensionaha.124.22642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite carrying an excess risk of cardiovascular events, primary aldosteronism (PA) is a commonly overlooked secondary form of arterial hypertension. An increased awareness of its high prevalence and broader screening strategies are urgently needed to improve its detection rate and allow early diagnosis and targeted treatment. For patients with unilateral PA, these measures can correct hyperaldosteronism and ensure cure of hypertension, even when resistant to drug treatment, thus preventing adverse cardiovascular events. Among these, atrial fibrillation is the most common, but left ventricular hypertrophy, stroke, chronic kidney disease, and myocardial infarction also occur more often than in patients with hypertension and no PA. Young patients, who have higher chances of being cured long term, and high-risk patients, such as those with stage III or resistant hypertension, are those who will benefit most from an early diagnosis of PA. Therefore, the implementation of strategies to detect PA by a simplified diagnostic algorithm is necessary. In the patients who seek for surgical cure, adrenal vein sampling is key for the identification of unilateral PA and the achievement of optimal outcomes. Unfortunately, being technically demanding and poorly available, adrenal vein sampling represents the bottleneck in the workup of PA. Considering the novel knowledge generated in the past 5 years in many studies, particularly in the AVIS-2 study (Adrenal Vein Sampling International Study-2), based on 4 decades of experience at our center and on the last guidelines, we herein provide an update on the management of PA with recommendations for drug treatment and strategies to avoid adrenal vein sampling wherever it is poorly, or not, available.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| | - Federico Bernardo Rossi
- International PhD Program in Arterial Hypertension and Vascular Biology, University of Rome, 'La Sapienza' Rome, Italy (F.B.R.)
| | - Chiara Guarnieri
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| | - Giacomo Rossitto
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| | - Teresa M Seccia
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| |
Collapse
|
2
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Caroccia B, Seccia TM, Pallafacchina G, Piazza M, Caputo I, Zamberlan S, Rizzuto R, Rossi GP. Aldosterone Biosynthesis Is Potently Stimulated by Perfluoroalkyl Acids: A Link between Common Environmental Pollutants and Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24119376. [PMID: 37298327 DOI: 10.3390/ijms24119376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The large environmental contamination of drinking water by perfluoroalkyl substances (PFAS) markedly increased the plasma levels of pentadecafluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in a Northern Italy population with a high prevalence of arterial hypertension and cardiovascular disease. As the link between PFAS and arterial hypertension is unknown, we investigated if they enhance the biosynthesis of the well-known pressor hormone aldosterone. We found that PFAS increased aldosterone synthase (CYP11B2) gene expression by three-fold and doubled aldosterone secretion and cell and mitochondria reactive oxygen species (ROS) production over controls (p < 0.01 for all) in human adrenocortical carcinoma cells HAC15. They also enhanced the effects of Ang II on CYP11B2 mRNA and aldosterone secretion (p < 0.01 for all). Moreover, when added 1 h before, the ROS scavenger tempol abolished the effect of PFAS on CYP11B2 gene expression. These results indicate that at concentrations mimicking those found in human plasma of exposed individuals, PFAS are potent disruptors of human adrenocortical cell function, and might act as causative factors of human arterial hypertension via increased aldosterone production.
Collapse
Affiliation(s)
- Brasilina Caroccia
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine-DIMED, University of Padua, 35131 Padua, Italy
| | - Teresa Maria Seccia
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine-DIMED, University of Padua, 35131 Padua, Italy
| | - Giorgia Pallafacchina
- Department of Biomedical Sciences-DSB, University of Padua, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Maria Piazza
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine-DIMED, University of Padua, 35131 Padua, Italy
| | - Ilaria Caputo
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine-DIMED, University of Padua, 35131 Padua, Italy
| | - Stefania Zamberlan
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine-DIMED, University of Padua, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences-DSB, University of Padua, 35131 Padua, Italy
| | - Gian Paolo Rossi
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine-DIMED, University of Padua, 35131 Padua, Italy
| |
Collapse
|
4
|
Takeda Y, Demura M, Kometani M, Karashima S, Yoneda T, Takeda Y. Molecular and Epigenetic Control of Aldosterone Synthase, CYP11B2 and 11-Hydroxylase, CYP11B1. Int J Mol Sci 2023; 24:ijms24065782. [PMID: 36982850 PMCID: PMC10054571 DOI: 10.3390/ijms24065782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular diseases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes without changing the gene sequence. Steroid hormone synthase gene expression is regulated by transcription factors specific to each gene, and methylation has been reported to be involved in steroid hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recognition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet, treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and an increased CYP11B1 expression is seen in Cushing's adenoma and aldosterone-producing adenoma with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important role in autonomic aldosterone or cortisol synthesis.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mitsuhiro Kometani
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiyu Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Endocrine and Diabetes Center, Asanogawa General Hospital, Kanazawa 920-0811, Japan
| |
Collapse
|
5
|
Lenzini L, Caroccia B, Seccia TM, Rossi GP. Peptidergic G Protein-Coupled Receptor Regulation of Adrenal Function: Bench to Bedside and Back. Endocr Rev 2022; 43:1038-1050. [PMID: 35436330 DOI: 10.1210/endrev/bnac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/19/2022]
Abstract
An altered secretion of adrenocortical and adrenomedullary hormones plays a role in the clinical syndromes of primary aldosteronism (PA), Cushing, and pheochromocytoma. Moreover, an altered production of adrenocortical hormones and/or an abnormal release of factors by the adrenal medulla are involved in several other diseases, including high blood pressure, congestive heart failure, liver cirrhosis, nephrotic syndrome, primary reninism, renovascular hypertension, Addison disease, Bartter, Gitelman, and virilization syndromes. Understanding the regulation of adrenal function and the interactions between adrenal cortex and medulla is, therefore, the prerequisite for mechanistic understanding of these disorders. Accumulating evidence indicates that the modulation of adrenal hormone biosynthesis is a process far more complex than originally thought, as it involves several factors, each cooperating with the other. Moreover, the tight vascular and neural interconnections between the adrenal cortex and medulla underlie physiologically relevant autocrine/paracrine interactions involving several peptides. Besides playing a pathophysiological role in common adrenal diseases, these complex mechanisms could intervene also in rare diseases, such as pheochromocytoma concomitant with adrenal Cushing or with PA, and PA co-occurring with Cushing, through mechanisms that remain to be fully understood at the molecular levels. Heterodimerization of G protein-coupled receptors (GPCRs) induced by peptide signaling is a further emerging new modulatory mechanism capable of finely tuning adrenal hormones synthesis and release. In this review we will examine current knowledge on the role of peptides that act via GPCRs in the regulation of adrenal hormone secretion with a particular focus on autocrine-paracrine signals.
Collapse
Affiliation(s)
- Livia Lenzini
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Brasilina Caroccia
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Teresa Maria Seccia
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Gian Paolo Rossi
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| |
Collapse
|
6
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
7
|
Poor Performance of Angiotensin II Enzyme-Linked Immuno-Sorbent Assays in Mostly Hypertensive Cohort Routinely Screened for Primary Aldosteronism. Diagnostics (Basel) 2022; 12:diagnostics12051124. [PMID: 35626280 PMCID: PMC9139787 DOI: 10.3390/diagnostics12051124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Primary aldosteronism (PA) is the most common, but broadly underdiagnosed, form of hormonal hypertension. To improve screening procedures, current biochemical approaches aim to determine newly appreciated angiotensin II (Ang II) and calculate the aldosterone-to-angiotensin II ratio (AA2R). Thus, the aim of this study was to assess the diagnostic performance of these screening tests in comparison to the aldosterone-to-direct renin ratio (ADRR), which is routinely used. Cheap and available ELISA was used for Ang II measurement. To our knowledge, this is the first study of this laboratory method’s usage in PA. The study cohort included 20 PA patients and 80 controls. Ang II concentrations were comparable between PA and non-PA patients (773.5 vs. 873.2 pg/mL, p = 0.23, respectively). The AA2R was statistically significantly higher in PA group when compared with non-PA (0.024 vs. 0.012 ng/dL/pg/mL, p < 0.001). However, the diagnostic performance of the AA2R was significantly worse than that of the ADRR (AUROC 0.754 vs. 0.939, p < 0.01). The sensitivity and specificity of the AA2R were 70% and 76.2%, respectively. Thus, the AA2R was not effective as a screening tool for PA. Our data provide important arguments in the discussion on the unsatisfactory accuracy of renin−angiotensin system evaluation by recently repeatedly used ELISA tests.
Collapse
|
8
|
Knížatová N, Massányi M, Roychoudhury S, Guha P, Greifová H, Tokárová K, Jambor T, Massányi P, Lukáč N. Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility? Physiol Res 2021; 70:S161-S175. [PMID: 34913350 DOI: 10.33549/physiolres.934756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In December of 2019, several cases of unknown atypical respiratory diseases emerged in Wuhan, Hubei Province in China. After preliminary research, it was stated that the disease is transmittable between humans and was named COVID-19. Over the course of next months, it spread all over the world by air and sea transport and caused a global pandemic which affects life of everyone now-a-days. A large number of countries, have since been forced to take precautions such as curfews, lockdowns, wearing facemasks etc. Even with vaccines being produced in mass numbers, lack of targeted therapy continues to be a major problem. According to studies so far it seems that elderly people are more vulnerable to severe symptoms while children tend to by asymptomatic or have milder form the disease. In our review, we focused on gathering data about the virus itself, its characteristics, paths of transmission, and its effect on hormone production and secretion. In such, there is insufficient information in the literature worldwide, especially the ones that focus on the effect of COVID-19 on individual organs systems within the human body. Hence, the present evidence-based study focused on the possible effects of COVID-19 on adrenal gland and gonads i.e. on the process of steroidogenesis and fertility.
Collapse
Affiliation(s)
- N Knížatová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhu R, Shagjaa T, Seccia TM, Rossi GP. Letter to the Editor from Rui Zhu et al: "Performance of the Aldosterone-to-Renin Ratio as a Screening Test for Primary Aldosteronism: A Systematic Review and Meta-Analysis". J Clin Endocrinol Metab 2021; 106:e4292-e4293. [PMID: 34197581 DOI: 10.1210/clinem/dgab485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 02/13/2023]
Affiliation(s)
- Rui Zhu
- International PhD Program in Arterial Hypertension and Vascular Biology (ARHYVAB), University of Padua, Padua, Italy
| | - Tungalagtamir Shagjaa
- International PhD Program in Arterial Hypertension and Vascular Biology (ARHYVAB), University of Padua, Padua, Italy
- Department of Neurology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Teresa Maria Seccia
- Hypertension and Emergency Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Gian Paolo Rossi
- Hypertension and Emergency Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
10
|
Caroccia B, Vanderriele PE, Seccia TM, Piazza M, Lenzini L, Prisco S, Torresan F, Domenig O, Iacobone M, Poglitsch M, Rossi GP. Aldosterone and cortisol synthesis regulation by angiotensin-(1-7) and angiotensin-converting enzyme 2 in the human adrenal cortex. J Hypertens 2021; 39:1577-1585. [PMID: 33657582 PMCID: PMC9904433 DOI: 10.1097/hjh.0000000000002816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The branch of the renin--angiotensin system constituting angiotensin-(1-7) [Ang-(1-7)], the Ang II type 2 receptor, the Mas receptors and the Ang-(1-7)-forming enzyme ACE-2, by counteracting the Ang II type 1 receptor (AT1R)-mediated effects, are held to be cardiovascular protective in several conditions. However, whether Ang-(1-7) and ACE-2 are detectable in human adrenocortical tissues and whether they affect aldosterone and cortisol biosynthesis was unknown. METHODS We measured angiotensin peptides with liquid chromatography tandem-mass spectrometry and ACE-2 mRNA with digital droplet (dd)PCR in human aldosterone-producing adenoma (APA) and APA-adjacent tissue obtained from patients with primary aldosteronism. We also investigated the effects of Ang-(1-7) and the ACE-2 activator diminazene aceturate (DIZE) on aldosterone synthase (CYP11B2) and 11β-hydroxylase (CYP11B1) gene expression, in the absence or presence of the AT1R antagonist irbesartan, or of the MasR antagonist A779. RESULTS APA and APA-adjacent adrenocortical tissues express ACE-2 mRNA and contain detectable amounts of Ang II and Ang-(2-8), but not of Ang I, Ang-(1-5), Ang (3-8) and Ang-(1-7). Under unstimulated and Ang II- stimulated conditions Ang-(1-7) did not blunt CYP11B1 and CYP11B2 mRNA. At supraphysiological concentrations (10-4 mol/l), Ang-(1-7) stimulated both CYP11B1 and CYP11B2 mRNA via the AT1R. The ACE-2 activator DIZE increased by 1.5-fold ACE-2 mRNA but did not blunt Ang II- upregulated CYP11B1 and CYP11B2 expression. CONCLUSION These results do not support the hypothesis that the ACE-2/Ang-(1-7)/MasR axis play a protective role by counteracting enhanced aldosterone secretion in humans.
Collapse
Affiliation(s)
- Brasilina Caroccia
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| | - Paul-Emmanuel Vanderriele
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| | - Teresa Maria Seccia
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| | - Maria Piazza
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| | - Livia Lenzini
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| | - Selene Prisco
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| | - Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | | | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | | | - Gian Paolo Rossi
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Emergency-Hypertension Unit, Department of Medicine-DIMED, University of Padua
| |
Collapse
|
11
|
Rossi GP, Lenzini L, Caroccia B, Rossitto G, Seccia TM. Angiotensin peptides in the regulation of adrenal cortical function. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The adrenal cortex plays a key role in the regulation of metabolism, salt and water homeostasis and sex differentiation by synthesizing glucocorticoid, mineralocorticoid and androgen hormones. Evidence exists that angiotensin II regulates adrenocortical function and it has been contended that angiotensin peptides of the non-canonical branch of the renin angiotensin system (RAS) might also modulate steroidogenesis in adrenals. Thus, the aim of this review is to examine the role of the RAS, and particularly of the angiotensin peptides and their receptors, in the regulation of adrenocortical hormones with particular focus on aldosterone production.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Italy
| | - Livia Lenzini
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Italy
| | - Brasilina Caroccia
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Italy
| | - Giacomo Rossitto
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Italy
| | - Teresa Maria Seccia
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Italy
| |
Collapse
|
12
|
DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22094587. [PMID: 33925539 PMCID: PMC8123855 DOI: 10.3390/ijms22094587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Angiotensinogen (AGT) and aldosterone play key roles in the regulation of blood pressure and are implicated in the pathogenesis of cardiovascular diseases. DNA methylation typically acts to repress gene transcription. The aldosterone synthase gene CYP11B2 is regulated by angiotensin II and potassium. DNA methylation negatively regulates AGT and CYP11B2 expression and dynamically changes in response to continuous promoter stimulation of each gene. High salt intake and excess circulating aldosterone cause DNA demethylation around the CCAAT-enhancer-binding-protein (CEBP) sites of the ATG promoter region, thereby converting the phenotype of AGT expression from an inactive to an active state in visceral adipose tissue and heart. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in salt-sensitive hypertensive rats. Salt-dependent hypertension may be partially affected by increased cardiac AGT expression. CpG dinucleotides in the CYP11B2 promoter are hypomethylated in aldosterone-producing adenomas. Methylation of recognition sequences of transcription factors, including CREB1, NGFIB (NR4A1), and NURR1 (NR4A2) diminish their DNA-binding activity. The methylated CpG-binding protein MECP2 interacts directly with the methylated CYP11B2 promoter. Low salt intake and angiotensin II infusion lead to upregulation of CYP11B2 expression and DNA hypomethylation in the adrenal gland. Treatment with the angiotensin II type 1 receptor antagonist decreases CYP11B2 expression and leads to DNA hypermethylation. A close association between low DNA methylation and increased CYP11B2 expression are seen in the hearts of patients with hypertrophic cardiomyopathy. These results indicate that epigenetic regulation of both AGT and CYP11B2 contribute to the pathogenesis of cardiovascular diseases.
Collapse
|
13
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Satoh F, Sasano H. Gender differences in human adrenal cortex and its disorders. Mol Cell Endocrinol 2021; 526:111177. [PMID: 33582213 DOI: 10.1016/j.mce.2021.111177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
The adrenal cortex plays pivotal roles in the maintenance of blood volume, responsiveness to stress and the development of gender characteristics. Gender differences of human adrenal cortex have been recently reported and attracted increasing interests. Gender differences occur from the developing stage of the adrenal, in which female subjects had more activated stem cells with higher renewal capacity resulting in gender-associated divergent structures and functions of cortical zonations of human adrenal. Female subjects generally have the lower blood pressure with the lower renin levels and ACE activities than male subjects. In addition, HPA axis was more activated in female than male, which could possibly contribute to gender differences in coping with various stressful events in our life. Of particular interest, estrogens were reported to suppress RAAS but activate HPA axis, whereas androgens had opposite effects. In addition, adrenocortical disorders in general occur more frequently in female with more pronounced adrenocortical hormonal abnormalities possibly due to their more activated WNT and PRK signaling pathways with more abundant activated adrenocortical stem cells present in female adrenal glands. Therefore, it has become pivotal to clarify the gender influence on both clinical and biological features of adrenocortical disorders. We herein reviewed recent advances in these fields.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan.
| |
Collapse
|
14
|
Rossi GP. Primary Aldosteronism: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 74:2799-2811. [PMID: 31779795 DOI: 10.1016/j.jacc.2019.09.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Primary aldosteronism (PA) is a common, but frequently overlooked, cause of arterial hypertension and excess cardiovascular events, particularly atrial fibrillation. As timely diagnosis and treatment can provide a cure of hyperaldosteronism and hypertension, even when the latter is resistant to drug treatment, strategies to screen patients for PA early with a simplified diagnostic algorithm are justified. They can be particularly beneficial in some subgroups of hypertensive patients, as those who are at highest cardiovascular risk. However, identification of the surgically curable cases of PA and achievement of optimal results require subtyping with adrenal vein sampling, which, as it is technically challenging and currently performed only in tertiary referral centers, represents the bottleneck in the work-up of PA. Measures aimed at improving the clinical use of adrenal vein sampling and at developing alternative techniques for subtyping, alongside recommendations for drug treatment, including new development in the field, and for follow-up are discussed.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Hypertension Unit, Department of Medicine, DIMED, University of Padova, Padova, Italy.
| |
Collapse
|
15
|
Piazza M, Seccia TM, Caroccia B, Rossitto G, Scarpa R, Persichitti P, Basso D, Rossi GP. AT1AA (Angiotensin II Type-1 Receptor Autoantibodies): Cause or Consequence of Human Primary Aldosteronism? Hypertension 2019; 74:793-799. [PMID: 31476908 DOI: 10.1161/hypertensionaha.119.13388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AT1AA (Angiotensin II type-1 receptor autoantibodies) were first detected in patients with primary aldosteronism (PA) because of aldosterone-producing adenoma (APA) with an in-house developed assay, but it remained unclear if they can be ascertained also with commercially available assays and if they have a functional role. Aims of our study were to investigate if (1) commercially available kits allow detection of raised AT1AA titer in APA; (2) this titer is normalized by adrenalectomy; and (3) AT1AA display any biological roles in vitro. We measured with 2 ELISA kits the AT1AA titer in serum of APA patients and its changes after adrenalectomy. We also investigated AT1AA bioactivity by using AT1-R (angiotensin type-1 receptor)-transfected Chinese hamster ovary and human adrenocortical carcinoma cells, and by measuring aldosterone synthase (CYP11B2) expression in human adrenocortical carcinoma cells after incubation with IgG. Both kits allowed detection of higher AT1AA levels in APA patients than in healthy subjects; surgical cure of PA did not decrease this titer at 1-month follow-up. Human adrenocortical carcinoma cells stimulation with IgG purified from sera of APA patients increased both CYP11B2 expression and aldosterone release (+40% and +76%, respectively, versus healthy subjects). However, no detectable effect of IgG was seen in Chinese hamster ovary cells expressing AT1-R. These findings support the contentions that (1) the raised AT1AA titer does not seem to be a consequence of hyperaldosteronism as it did not normalize after its cure; (2) AT1AA act as weak stimulators of aldosterone biosynthesis, but this effect can be identified only by using a sensitive in vitro technique.
Collapse
Affiliation(s)
- Maria Piazza
- From the Department of Medicine-DIMED, University of Padua, Italy
| | | | | | - Giacomo Rossitto
- From the Department of Medicine-DIMED, University of Padua, Italy
| | - Riccardo Scarpa
- From the Department of Medicine-DIMED, University of Padua, Italy
| | | | - Daniela Basso
- From the Department of Medicine-DIMED, University of Padua, Italy
| | - Gian Paolo Rossi
- From the Department of Medicine-DIMED, University of Padua, Italy
| |
Collapse
|
16
|
Lenzini L, Prisco S, Vanderriele PE, Lerco S, Torresan F, Maiolino G, Seccia TM, Iacobone M, Rossi GP. PTH Modulation by Aldosterone and Angiotensin II is Blunted in Hyperaldosteronism and Rescued by Adrenalectomy. J Clin Endocrinol Metab 2019; 104:3726-3734. [PMID: 30865228 DOI: 10.1210/jc.2019-00143] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Accumulating evidence suggests a link between adrenocortical zona glomerulosa and parathyroid gland through mechanisms that remain unexplored. OBJECTIVES To test the hypothesis that in vivo angiotensin II blockade affects PTH secretion in patients with hypertension and that aldosterone and angiotensim II directly stimulate PTH secretion ex vivo. DESIGN AND SETTING We investigated the changes of serum PTH levels induced by oral captopril (50 mg) administration in patients with primary essential hypertension (EH) and with primary aldosteronism (PA) caused by bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA), the latter before and after adrenalectomy. We also exposed primary cultures of human parathyroid cells from patients with primary hyperparathyroidism to angiotensin II (10-7 M) and/or aldosterone (10-7 M). RESULTS Captopril lowered PTH levels (in nanograms per liter) both in patients with EH (n = 63; 25.9 ± 8.3 baseline vs 24.4 ± 8.0 postcaptopril, P < 0.0001) and in patients with APA after adrenalectomy (n = 27; 26.3 ± 11.6 vs 24.0 ± 9.7 P = 0.021). However, it was ineffective in patients with full-blown PA caused by APA and BAH. In primary culture of human parathyroid cells, both aldosterone (P < 0.001) and angiotensin II (P = 0.002) markedly increased PTH secretion from baseline, by acting through mineralocorticoid receptor and angiotensin type 1 receptor, as these effects were abolished by canrenone and irbesartan, respectively. CONCLUSION These results collectively suggest an implication of the renin-angiotensin-aldosterone system in PTH regulation in humans, at least in PTH-secreting cells obtained from parathyroid tumors. Moreover, they further support the concept that mild hyperparathyroidism is a feature of human PA that is correctable with adrenalectomy.
Collapse
Affiliation(s)
- Livia Lenzini
- Hypertension Unit, Department of Medicine-DIMED, University of Medicine of Padova, Padova, Italy
| | - Selene Prisco
- Hypertension Unit, Department of Medicine-DIMED, University of Medicine of Padova, Padova, Italy
| | | | - Silvia Lerco
- Hypertension Unit, Department of Medicine-DIMED, University of Medicine of Padova, Padova, Italy
| | - Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterolgy, University of Padua, Padova, Italy
| | - Giuseppe Maiolino
- Hypertension Unit, Department of Medicine-DIMED, University of Medicine of Padova, Padova, Italy
| | - Teresa Maria Seccia
- Hypertension Unit, Department of Medicine-DIMED, University of Medicine of Padova, Padova, Italy
| | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterolgy, University of Padua, Padova, Italy
| | - Gian Paolo Rossi
- Hypertension Unit, Department of Medicine-DIMED, University of Medicine of Padova, Padova, Italy
| |
Collapse
|