1
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
2
|
Xu Y, Ren Y, Zou W, Ji S, Shen W. Neutrophil extracellular traps promote erectile dysfunction in rats with diabetes mellitus by enhancing NLRP3-mediated pyroptosis. Sci Rep 2024; 14:16457. [PMID: 39014129 PMCID: PMC11252272 DOI: 10.1038/s41598-024-67281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.
Collapse
Affiliation(s)
- Ying Xu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Ren
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wenli Zou
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Shuiyu Ji
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wei Shen
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
3
|
Costantini E, Aielli L, Gualdi G, Baronio M, Monari P, Amerio P, Reale M. Pulsed Radiofrequency Electromagnetic Fields as Modulators of Inflammation and Wound Healing in Primary Dermal Fibroblasts of Ulcers. Bioengineering (Basel) 2024; 11:357. [PMID: 38671778 PMCID: PMC11047973 DOI: 10.3390/bioengineering11040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Venous leg ulcers are one of the most common nonhealing conditions and represent an important clinical problem. The application of pulsed radiofrequency electromagnetic fields (PRF-EMFs), already applied for pain, inflammation, and new tissue formation, can represent a promising approach for venous leg ulcer amelioration. This study aims to evaluate the effect of PRF-EMF exposure on the inflammatory, antioxidant, cell proliferation, and wound healing characteristics of human primary dermal fibroblasts collected from venous leg ulcer patients. The cells' proliferative and migratory abilities were evaluated by means of a BrdU assay and scratch assay, respectively. The inflammatory response was investigated through TNFα, TGFβ, COX2, IL6, and IL1β gene expression analysis and PGE2 and IL1β production, while the antioxidant activity was tested by measuring GSH, GSSG, tGSH, and GR levels. This study emphasizes the ability of PRF-EMFs to modulate the TGFβ, COX2, IL6, IL1β, and TNFα gene expression in exposed ulcers. Moreover, it confirms the improvement of the proliferative index and wound healing ability presented by PRF-EMFs. In conclusion, exposure to PRF-EMFs can represent a strategy to help tissue repair, regulating mediators involved in the wound healing process.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy; (G.G.); (P.A.)
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Giulio Gualdi
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy; (G.G.); (P.A.)
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Novivelli, Department of Clinical and Expermental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Paola Monari
- Department of Dermatology, Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Paolo Amerio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy; (G.G.); (P.A.)
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy; (L.A.); (M.R.)
| |
Collapse
|
4
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
5
|
Zhao Y, Zhao Y, Xu B, Liu H, Chang Q. Microenvironmental dynamics of diabetic wounds and insights for hydrogel-based therapeutics. J Tissue Eng 2024; 15:20417314241253290. [PMID: 38818510 PMCID: PMC11138198 DOI: 10.1177/20417314241253290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
The rising prevalence of diabetes has underscored concerns surrounding diabetic wounds and their potential to induce disability. The intricate healing mechanisms of diabetic wounds are multifaceted, influenced by ambient microenvironment, including prolonged hyperglycemia, severe infection, inflammation, elevated levels of reactive oxygen species (ROS), ischemia, impaired vascularization, and altered wound physicochemical properties. In recent years, hydrogels have emerged as promising candidates for diabetic wound treatment owing to their exceptional biocompatibility and resemblance to the extracellular matrix (ECM) through a three-dimensional (3D) porous network. This review will first summarize the microenvironment alterations occurring in the diabetic wounds, aiming to provide a comprehensive understanding of its pathogenesis, then a comprehensive classification of recently developed hydrogels will be presented, encompassing properties such as hypoglycemic effects, anti-inflammatory capabilities, antibacterial attributes, ROS scavenging abilities, promotion of angiogenesis, pH responsiveness, and more. The primary objective is to offer a valuable reference for repairing diabetic wounds based on their unique microenvironment. Moreover, this paper outlines potential avenues for future advancements in hydrogel dressings to facilitate and expedite the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Yulan Zhao
- Department of Nephropathy Rheumatology, Guizhou Medical University Affiliated Zhijin Hospital, Zhijin, China
| | - Bing Xu
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Lv D, Cao X, Zhong L, Dong Y, Xu Z, Rong Y, Xu H, Wang Z, Yang H, Yin R, Chen M, Ke C, Hu Z, Deng W, Tang B. Targeting phenylpyruvate restrains excessive NLRP3 inflammasome activation and pathological inflammation in diabetic wound healing. Cell Rep Med 2023; 4:101129. [PMID: 37480849 PMCID: PMC10439185 DOI: 10.1016/j.xcrm.2023.101129] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
Moderate inflammation is essential for standard wound healing. In pathological conditions, such as diabetes, protracted and refractory wounds are associated with excessive inflammation, manifested by persistent proinflammatory macrophage states. However, the mechanisms are still unclear. Herein, we perform a metabolomic profile and find a significant phenylpyruvate accumulation in diabetic foot ulcers. Increased phenylpyruvate impairs wound healing and augments inflammatory responses, whereas reducing phenylpyruvate via dietary phenylalanine restriction relieves uncontrolled inflammation and benefits diabetic wounds. Mechanistically, phenylpyruvate is ingested into macrophages in a scavenger receptor CD36-dependent manner, binds to PPT1, and inhibits depalmitoylase activity, thus increasing palmitoylation of the NLRP3 protein. Increased NLRP3 palmitoylation is found to enhance NLRP3 protein stability, decrease lysosome degradation, and promote NLRP3 inflammasome activation and the release of inflammatory factors, such as interleukin (IL)-1β, finally triggering the proinflammatory macrophage phenotype. Our study suggests a potential strategy of targeting phenylpyruvate to prevent excessive inflammation in diabetic wounds.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Li Zhong
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 517108, China
| | - Yunxian Dong
- Department of Plastic Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, Guangdong 510317, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hailin Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhiyong Wang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510080, China
| | - Chao Ke
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510080, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510080, China.
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
7
|
Accipe L, Abadie A, Neviere R, Bercion S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants (Basel) 2023; 12:antiox12051079. [PMID: 37237945 DOI: 10.3390/antiox12051079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic wound healing is a global medical challenge. Several studies showed that delayed healing in diabetic patients is multifactorial. Nevertheless, there is evidence that excessive production of ROS and impaired ROS detoxification in diabetes are the main cause of chronic wounds. Indeed, increased ROS promotes the expression and activity of metalloproteinase, resulting in a high proteolytic state in the wound with significant destruction of the extracellular matrix, which leads to a stop in the repair process. In addition, ROS accumulation increases NLRP3 inflammasome activation and macrophage hyperpolarization in the M1 pro-inflammatory phenotype. Oxidative stress increases the activation of NETosis. This leads to an elevated pro-inflammatory state in the wound and prevents the resolution of inflammation, an essential step for wound healing. The use of medicinal plants and natural compounds can improve diabetic wound healing by directly targeting oxidative stress and the transcription factor Nrf2 involved in the antioxidant response or the mechanisms impacted by the elevation of ROS such as NLRP3 inflammasome, the polarization of macrophages, and expression or activation of metalloproteinases. This study of the diabetic pro-healing activity of nine plants found in the Caribbean highlights, more particularly, the role of five polyphenolic compounds. At the end of this review, research perspectives are presented.
Collapse
Affiliation(s)
- Laura Accipe
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Alisson Abadie
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Remi Neviere
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
- CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Sylvie Bercion
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| |
Collapse
|
8
|
Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022; 11:cells11192953. [PMID: 36230913 PMCID: PMC9564023 DOI: 10.3390/cells11192953] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key immune cells that respond to infections, and modulate pathophysiological conditions such as wound healing. By possessing phagocytic activities and through the secretion of cytokines and growth factors, macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. Macrophages orchestrate the process of wound healing through the transitioning from predominantly pro-inflammatory (M1-like phenotypes), which present early post-injury, to anti-inflammatory (M2-like phenotypes), which appear later to modulate skin repair and wound closure. In this review, different cellular and molecular aspects of macrophage-mediated skin wound healing are discussed, alongside important aspects such as macrophage subtypes, metabolism, plasticity, and epigenetics. We also highlight previous studies demonstrating interactions between macrophages and these factors for optimal wound healing. Understanding and harnessing the activity and capability of macrophages may help to advance new approaches for improving healing of the skin.
Collapse
Affiliation(s)
- Alireza Hassanshahi
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66179-13446, Iran
| | - Saman Ghalamkari
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Moosa Fadaei
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
- Correspondence: (A.J.C.); (M.H.)
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Correspondence: (A.J.C.); (M.H.)
| |
Collapse
|
9
|
Relevance of NLRP3 Inflammasome-Related Pathways in the Pathology of Diabetic Wound Healing and Possible Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9687925. [PMID: 35814271 PMCID: PMC9262551 DOI: 10.1155/2022/9687925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Wound healing is a major secondary complication in type 2 diabetes, which results in significant disability and mortality, imposing a significant clinical and social burden. Sustained activation of the Nod-like receptor protein (NLRP) inflammasome in wounds is responsible for excessive inflammatory responses and aggravates wound damage. The activation of the NLRP3 inflammasome is regulated by a two-step process: the priming/licensing (signal 1) step involved in transcription and posttranslation and the protein complex assembly (signal 2) step triggered by danger molecules. This review focuses on the advances made in understanding the pathophysiological mechanisms underlying wound healing in the diabetic microenvironment. Simultaneously, this review summarizes the molecular mechanisms of the main regulatory pathways associated with signal 1 and signal 2, which trigger the NLRP3 inflammasome complex assembly in the development of diabetic wounds (DW). Activation of the NLRP3 inflammasome-related pathway, involving the disturbance in Nrf2 and the NF-κB/NLRP3 inflammasome, TLR receptor-mediated activation of the NF-κB/NLRP3 inflammasome, and various stimuli inducing NLRP3 inflammasome assembly play a pivotal role in DW healing. Furthermore, therapeutics targeting the NLRP3 inflammasome-related pathways may promote angiogenesis, reprogram immune cells, and improve DW healing.
Collapse
|
10
|
Uribe-Querol E, Rosales C. Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells 2022; 11:1883. [PMID: 35741012 PMCID: PMC9221045 DOI: 10.3390/cells11121883] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is characterized by an increase in body weight associated with an exaggerated enlargement of the adipose tissue. Obesity has serious negative effects because it is associated with multiple pathological complications such as type 2 diabetes mellitus, cardiovascular diseases, cancer, and COVID-19. Nowadays, 39% of the world population is obese or overweight, making obesity the 21st century epidemic. Obesity is also characterized by a mild, chronic, systemic inflammation. Accumulation of fat in adipose tissue causes stress and malfunction of adipocytes, which then initiate inflammation. Next, adipose tissue is infiltrated by cells of the innate immune system. Recently, it has become evident that neutrophils, the most abundant leukocytes in blood, are the first immune cells infiltrating the adipose tissue. Neutrophils then get activated and release inflammatory factors that recruit macrophages and other immune cells. These immune cells, in turn, perpetuate the inflammation state by producing cytokines and chemokines that can reach other parts of the body, creating a systemic inflammatory condition. In this review, we described the recent findings on the role of neutrophils during obesity and the initiation of inflammation. In addition, we discuss the involvement of neutrophils in the generation of obesity-related complications using diabetes as a prime example.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Liu G, Ren X, Li Y, Li H. Midkine promotes kidney injury in diabetic kidney disease by increasing neutrophil extracellular traps formation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:693. [PMID: 35845498 PMCID: PMC9279803 DOI: 10.21037/atm-22-2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
Background We sought to investigate the role of midkine (MK) on neutrophil extracellular trap formation (NETosis) and diabetic kidney disease (DKD) progression. Methods The expression of MK and NETosis in the renal tissue of DKD patients was examined by immunohistochemistry and immunofluorescence, respectively. Neutrophils extracted from mouse bone marrow by gradient centrifugation were treated with MK for this in-vitro study. A mouse diabetes model was induced by a high-fat diet combined with an intraperitoneal injection of streptozocin (STZ). Antisense oligodeoxynucleotide (ODN) for MK inhibition was administered via tail vein injection. Results We found that the expression of MK was increased in the kidney tissue of DKD patients. Additionally, a greater number of neutrophils were primed toward NETosis in the kidney tissue of DKD patients, which was manifested by the increased expression of NETosis biomarkers citrullinated histone H3 (H3Cit) and myeloperoxidase (MPO). In vitro, MK treatment concentration-dependently increased neutrophil proliferation (cell counting kit-8). Further, western blot and enzyme-linked immunosorbent assays showed that MK (100 ng/mL) significantly promoted NETosis and the expression of inflammatory factors interleukin (IL)-1 and IL-6 secretion in high-glucose treated neutrophils. In the mouse diabetes model, MK promoted the pathological damage and fibrosis of kidney tissue, as demonstrated by the reversion of the pathological damage and fibrosis by the MK antisense ODN [diabetes mellitus (DM) + MK – ODN] treatment. Additionally, the inhibition of MK reduced the formation of NETs. Conclusions MK promotes DKD progression by increasing NETosis.
Collapse
Affiliation(s)
- Gaohong Liu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaojun Ren
- Department of Nephrology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yousong Li
- Department of Traditional Chinese Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Zizhu Ointment Accelerates Wound-Healing of Diabetic Ulcers through Promoting M2 Macrophage Polarization via Downregulating the Notch4 Signaling Pathway. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5173836. [PMID: 35619768 PMCID: PMC9129934 DOI: 10.1155/2022/5173836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Objective The long-term clinical practice shows that Zizhu ointment (ZZO) is an empirical formula for the treatment of diabetic ulcers (DUs). In this study, we investigated the underlying mechanism of ZZO in the treatment of DU mice. Methods Through streptozotocin induction and high-fat diet, a DU mouse model was established and ZZO was given for treatment. The activation of Notch4 signaling was examined by immunofluorescence staining, RT-PCR, as well as Western blotting. Flow cytometry was performed to detect the counts of F4/80+ cells, M1 and M2 macrophages, as well as the expression of CD11c, CD206, etc. The role of Notch4 in wound healing in diabetic mice was verified by Notch4 inhibitors and agonists. Results Accelerated wound healing and decreased expression levels of Notch4 and its target genes and ligands were observed in diabetic mice treated with ZZO. ZZO promoted M2 macrophage polarization, downregulated the expression of proinflammatory factors, and upregulated the levels of anti-inflammatory factors. The same tendency was observed in diabetic mice after treatment with Notch4 inhibitors. Knockout of Notch4 accelerated the wound healing rate as well. Conclusions ZZO accelerates wound healing of diabetic mice through inhibiting the activation of Notch4 signaling, promoting M2 macrophage polarization, and alleviating inflammation.
Collapse
|
13
|
Snoderly HT, Freshwater KA, Martinez de la Torre C, Panchal DM, Vito JN, Bennewitz MF. PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation. BIOSENSORS 2022; 12:123. [PMID: 35200382 PMCID: PMC8869785 DOI: 10.3390/bios12020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/01/2023]
Abstract
Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body's first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.T.S.); (K.A.F.); (C.M.d.l.T.); (D.M.P.); (J.N.V.)
| |
Collapse
|
14
|
Mu X, Wu X, He W, Liu Y, Wu F, Nie X. Pyroptosis and inflammasomes in diabetic wound healing. Front Endocrinol (Lausanne) 2022; 13:950798. [PMID: 35992142 PMCID: PMC9389066 DOI: 10.3389/fendo.2022.950798] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic wound is one of the complications of diabetes and is not easy to heal. It often evolves into chronic ulcers, and severe patients will face amputation. Compared with normal wounds, diabetic wounds have an increased proportion of pro-inflammatory cytokines that are detrimental to the normal healing response. The burden of this disease on patients and healthcare providers is overwhelming, and practical solutions for managing and treating diabetic wounds are urgently needed. Pyroptosis, an inflammatory type of programmed cell death, is usually triggered by the inflammasome. The pyroptosis-driven cell death process is primarily mediated by the traditional signaling pathway caused by caspase -1 and the non-classical signaling pathways induced by caspase -4/5/11. Growing evidence that pyroptosis promotes diabetic complications, including diabetic wounds. In addition, inflammation is thought to be detrimental to wound healing. It is worth noting that the activation of the NLRP3 inflammasome plays a crucial role in the recovery of diabetic wounds. This review has described the mechanisms of pyroptosis-related signaling pathways and their impact on diabetic wounds. It has discussed new theories and approaches to promote diabetic wound healing, as well as some potential compounds targeting pyroptosis and inflammasome signaling pathways that could be new approaches to treating diabetic wounds.
Collapse
Affiliation(s)
- Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Faming Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
- *Correspondence: Xuqiang Nie,
| |
Collapse
|
15
|
Guarnotta V, Radellini S, Vigneri E, Cernigliaro A, Pantò F, Scondotto S, Almasio PL, Guercio G, Giordano C. Diabetic foot ulcers: Retrospective comparative analysis from Sicily between two eras. PLoS One 2021; 16:e0259405. [PMID: 34874944 PMCID: PMC8651101 DOI: 10.1371/journal.pone.0259405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Aim The aim of this study was to analyze changes in the incidence, management and mortality of DFU in Sicilian Type 2 diabetic patients hospitalized between two eras, i.e. 2008–2013 and 2014–2019. Methods We compared the two eras, era1: 2008–13, era2: 2014–19. In era 1, n = 149, and in era 2, n = 181 patients were retrospectively enrolled. Results In the population hospitalized for DFU in 2008–2013, 59.1% of males and 40.9% of females died, whilst in 2014–2019 65.9% of males and 34.1% of females died. Moderate chronic kidney disease (CKD) was significantly higher in patients that had died than in ones that were alive (33% vs. 43%, p < 0.001), just as CKD was severe (14.5% vs. 4%, p < 0.001). Considering all together the risk factors associated with mortality, at Cox regression multivariate analysis only moderate-severe CKD (OR 1.61, 95% CI 1.07–2.42, p 0.021), age of onset greater than 69 years (OR 2.01, 95% CI 1.37–2.95, p <0.001) and eGFR less than 92 ml/min (OR 2.84, 95% CI 1.51–5.34, p 0.001) were independently associated with risk of death. Conclusions Patients with DFU have high mortality and reduced life expectancy. Age at onset of diabetic foot ulcer, eGFR values and CKD are the principal risk factors for mortality.
Collapse
Affiliation(s)
- Valentina Guarnotta
- Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università di Palermo, Palermo, Italy
- * E-mail: (CG); (VG)
| | - Stefano Radellini
- Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università di Palermo, Palermo, Italy
| | - Enrica Vigneri
- Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università di Palermo, Palermo, Italy
| | | | - Felicia Pantò
- Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università di Palermo, Palermo, Italy
| | | | - Piero Luigi Almasio
- Sezione di Gastroenterologia ed Epatologia, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Giovanni Guercio
- Sezione di Chirurgia d’Urgenza, Dipartimento di Chirurgia, Oncologia e Scienza Orale, DICHIRONS, Università degli Studi di Palermo, Palermo, Italy
| | - Carla Giordano
- Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università di Palermo, Palermo, Italy
- * E-mail: (CG); (VG)
| |
Collapse
|
16
|
Wolf SJ, Melvin WJ, Gallagher K. Macrophage-mediated inflammation in diabetic wound repair. Semin Cell Dev Biol 2021; 119:111-118. [PMID: 34183242 PMCID: PMC8985699 DOI: 10.1016/j.semcdb.2021.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023]
Abstract
Non-healing wounds in Type 2 Diabetes (T2D) patients represent the most common cause of amputation in the US, with an associated 5-year mortality of nearly 50%. Our lab has examined tissue from both T2D murine models and human wounds in order to explore mechanisms contributing to impaired wound healing. Current published data in the field point to macrophage function serving a pivotal role in orchestrating appropriate wound healing. Wound macrophages in mice and patients with T2D are characterized by a persistent inflammatory state; however, the mechanisms that control this persistent inflammatory state are unknown. Current literature demonstrates that gene regulation through histone modifications, DNA modifications, and microRNA can influence macrophage plasticity during wound healing. Further, accumulating studies reveal the importance of cells such as adipocytes, infiltrating immune cells (PMNs and T cells), and keratinocytes secrete factors that may help drive macrophage polarization. This review will examine the role of macrophages in the wound healing process, along with their function and interactions with other cells, and how it is perturbed in T2D. We also explore epigenetic factors that regulate macrophage polarization in wounds, while highlighting the emerging role of other cell types that may influence macrophage phenotype following tissue injury.
Collapse
Affiliation(s)
- Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA,Correspondence to: Department of Surgery, University of Michigan, 1500 East Medical Center Drive, SPC 5867, Ann Arbor, MI 48109, USA. (K. Gallagher)
| |
Collapse
|
17
|
Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X, Jin L, Hu Y, Zhang H, Miao C, Guo K. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis 2021; 12:984. [PMID: 34686654 PMCID: PMC8536667 DOI: 10.1038/s41419-021-04294-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Delayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|