1
|
Stenvinkel P, Shiels PG, Kotanko P, Evenepoel P, Johnson RJ. Harnessing Evolution and Biomimetics to Enhance Planetary Health: Kidney Insights. J Am Soc Nephrol 2025; 36:311-321. [PMID: 39607684 PMCID: PMC11801751 DOI: 10.1681/asn.0000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Planetary health encompasses the understanding that the long-term well-being of humanity is intrinsically linked to the health of global ecological systems. Unfortunately, current practices often overlook this principle, leading to a human-oriented (anthropocentric) worldview that has resulted in heightened greenhouse gas emissions, increased heat stress, lack of access to clean water, and pollution, threatening both the environment and health and survival of Homo sapiens and countless other species. One significant consequence of these environmental changes is the exacerbation of inflammatory and oxidative stressors, which not only contributes to common lifestyle diseases but also accelerates the aging process. We advocate for a shift away from our current anthropocentric frameworks to an approach that focuses on nature's solutions that developed from natural selection over the eons. This approach, which encompasses the field of biomimicry, may provide insights that can help protect against an inflammatory phenotype to mitigate physiological and cellular senescence and provide a buffer against environmental stressors. Gaining insights from how animals have developed ingenious approaches to combat adversity through the evolutionary process of natural selection not only provides solutions for climate change but also confronts the rising burden of lifestyle diseases that accumulate with age.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Glasgow Geroscience Group, School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Kotanko
- Renal Research Institute, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Zargari A, Nejatian M, Abbaszadeh S, Jahanbin K, Bagheri T, Hedayati A, Sheykhi M. Modulation of toxicity effects of CuSO 4 by sulfated polysaccharides extracted from brown algae (Sargassum tenerrimum) in Danio rerio as a model. Sci Rep 2023; 13:11429. [PMID: 37454230 PMCID: PMC10349887 DOI: 10.1038/s41598-023-38549-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Copper is widely used in agriculture and aquaculture due to its high disinfection properties and relatively low cost. However, the increase in copper concentration due to evaporation can lead to water reservoir pollution, which can harm the health of consumers. The present study aimed to determine the role of sulfated polysaccharides (SPs) extracted from Sargassum tenerimum algae in reducing lesions caused by the heavy metal copper. Zebrafish (Danio rerio) were used as a human model in five treatments. The negative and positive control groups were fed a diet containing zero percent of SPs, while the experimental groups were fed 0.5%, 1%, and 1.5% of SPs in three treatments for 56 days, finally CuSO4 was exposed only to the positive control group and the groups fed with SPs. Results showed a significant decrease in the activity level of ALT enzymes (39-16 U/mL), AST (67-46 U/mL), and ALP (485-237 U/mL), confirming the results obtained from histopathological studies in CuSO4 exposed groups. The addition of SPs to the diet resulted in a significant reduction (sig < 0.05) of mortalities due to the decrease of tissue damage. Additionally, due to the anti-inflammatory properties and the protective effect of SPs, a significant decrease (sig < 0.05) was observed in the relative expression of Il-1β and Tnf-α genes.
Collapse
Affiliation(s)
- Ashkan Zargari
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sepideh Abbaszadeh
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kambiz Jahanbin
- Faculty of Agricultural Engineering, Department of Food Science and Technology, Shahrood University of Technology, Shahrood, Iran
| | - Tahereh Bagheri
- Offshore Water Research Center (OWRC), Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran
| | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Monireh Sheykhi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Dai L, Mafra D, Shiels PG, Hackeng TM, Stenvinkel P, Schurgers LJ. Vitamin K and Hallmarks of Ageing: Focus on Diet and Gut Microbiome. Nutrients 2023; 15:2727. [PMID: 37375631 DOI: 10.3390/nu15122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin K and vitamin K-dependent proteins have been reported to be associated with a large spectrum of age-related diseases. While most of these associations have been deduced from observational studies, solid evidence for the direct impact of vitamin K on cellular senescence remains to be proven. As vitamin K status reflects the complexity of interactions between dietary intake, gut microbiome activity and health, we will demonstrate the pivotal role of the diet-microbiome-health axis in human ageing and exemplify how vitamin K is implicated therein. We propose that food quality (i.e., food pattern) should be highlighted beyond the quantity of total vitamin K intake. Instead of focusing on a single nutrient, exploring a healthy diet containing vitamin K may be more strategic. As such, healthy eating patterns can be used to make dietary recommendations for the public. Emerging evidence suggests that dietary vitamin K is a modulator of the diet-microbiome-health axis, and this needs to be incorporated into the investigation of the impact of vitamin K on gut microbial composition and metabolic activities, along with host health outcomes. In addition, we highlight several critical caveats that need to be acknowledged regarding the interplay between diet, vitamin K, gut microbiome and host health that is pivotal for elucidating the role of vitamin K in ageing and responding to the urgent call of healthy eating concerning public health.
Collapse
Affiliation(s)
- Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17165 Stockholm, Sweden
- Department of Clinical Science, Division of Renal Medicine, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói 24020-141, RJ, Brazil
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G12 8QQ, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G12 8QQ, UK
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Peter Stenvinkel
- Department of Clinical Science, Division of Renal Medicine, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6211 LK Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
4
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
5
|
Stenvinkel P, Shiels PG, Johnson RJ. Lessons from evolution by natural selection: An unprecedented opportunity to use biomimetics to improve planetary health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116981. [PMID: 36508982 DOI: 10.1016/j.jenvman.2022.116981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Planetary health embraces the concept that long-term human welfare depends on the well-being of its ecological systems. Current practices, however, have often ignored this concept and have led to an anthropocentric world, with the consequence of increased greenhouse gas emissions, heat stress, lack of clean water and pollution, that are threatening the environment as well as the health and life of Homo sapiens and many other species. One consequence of environmental stressors has been the stimulation of inflammatory and oxidative stress that may not only promote common lifestyle diseases, but the ageing process. Despite the harshness of the current reality, treatment opportunities may exist 'in our backyard'. Biomimicry is an emerging field of research that explores how nature is structured and aims to mimic ingenious solutions that have evolved in nature for different applications that benefit human life. As nature always counteracts excesses from within, biodiversity could be a source of solutions that have evolved through the natural selection of animal species that have survived polluted, warm, and arid environments - i.e. the same presumptive changes that now threaten human health. One example from the emerging science suggests that animals use the cytoprotective Nrf2 antioxidant pathway to combat environmental stress and this may be a case example that we can apply to better human health. Learning from nature may provide opportunities for environmental management and solutions to the most challenging issue that face the future of the planet.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Paul G Shiels
- School of Molecular Biosystems, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, 12700 East 19th Ave, RC-2 Research Building, Rm 7012, Mail Stop C281, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
6
|
Ebert T, Tran N, Schurgers L, Stenvinkel P, Shiels PG. Ageing - Oxidative stress, PTMs and disease. Mol Aspects Med 2022; 86:101099. [PMID: 35689974 DOI: 10.1016/j.mam.2022.101099] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) have been proposed as a link between the oxidative stress-inflammation-ageing trinity, thereby affecting several hallmarks of ageing. Phosphorylation, acetylation, and ubiquitination cover >90% of all the reported PTMs. Several of the main PTMs are involved in normal "healthy" ageing and in different age-related diseases, for instance neurodegenerative, metabolic, cardiovascular, and bone diseases, as well as cancer and chronic kidney disease. Ultimately, data from human rare progeroid syndromes, but also from long-living animal species, imply that PTMs are critical regulators of the ageing process. Mechanistically, PTMs target epigenetic and non-epigenetic pathways during ageing. In particular, epigenetic histone modification has critical implications for the ageing process and can modulate lifespan. Therefore, PTM-based therapeutics appear to be attractive pharmaceutical candidates to reduce the burden of ageing-related diseases. Several phosphorylation and acetylation inhibitors have already been FDA-approved for the treatment of other diseases and offer a unique potential to investigate both beneficial effects and possible side-effects. As an example, the most well-studied senolytic compounds dasatinib and quercetin, which have already been tested in Phase 1 pilot studies, also act as kinase inhibitors, targeting cellular senescence and increasing lifespan. Future studies need to carefully determine the best PTM-based candidates for the treatment of the "diseasome of ageing".
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden; University of Leipzig Medical Center, Medical Department III - Endocrinology, Nephrology, Rheumatology, Leipzig, Germany.
| | - Ngoc Tran
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research School Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden
| | - Paul G Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| |
Collapse
|