1
|
Li XC, Wang CH, Hassan R, Katsurada A, Sato R, Zhuo JL. Deletion of AT 1a receptors selectively in the proximal tubules of the kidney alters the hypotensive and natriuretic response to atrial natriuretic peptide via NPR A/cGMP/NO signaling. Am J Physiol Renal Physiol 2024; 327:F946-F956. [PMID: 39361722 PMCID: PMC11687850 DOI: 10.1152/ajprenal.00160.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
In the proximal tubules of the kidney, angiotensin II (ANG II) binds and activates ANG II type 1 (AT1a) receptors to stimulate proximal tubule Na+ reabsorption, whereas atrial natriuretic peptide (ANP) binds and activates natriuretic peptide receptors (NPRA) to inhibit ANG II-induced proximal tubule Na+ reabsorption. These two vasoactive systems play important counteracting roles to control Na+ reabsorption in the proximal tubules and help maintain blood pressure homeostasis. However, how AT1a and NPRA receptors interact in the proximal tubules and whether natriuretic effects of NPRA receptor activation by ANP may be potentiated by deletion of AT1 (AT1a) receptors selectively in the proximal tubules have not been studied previously. The present study used a novel mouse model with proximal tubule-specific knockout of AT1a receptors, PT-Agtr1a-/-, to test the hypothesis that deletion of AT1a receptors selectively in the proximal tubules augments the hypotensive and natriuretic responses to ANP. Basal blood pressure was about 16 ± 3 mmHg lower (P < 0.01), fractional proximal tubule Na+ reabsorption was significantly lower (P < 0.05), whereas 24-h urinary Na+ excretion was significantly higher, in PT-Agtr1a-/- mice than in wild-type mice (P < 0.01). Infusion of ANP via osmotic minipump for 2 wk (0.5 mg/kg/day ip) further significantly decreased blood pressure and increased the natriuretic response in PT-Agtr1a-/- mice by inhibiting proximal tubule Na+ reabsorption compared with wild-type mice (P < 0.01). These augmented hypotensive and natriuretic responses to ANP in PT-Agtr1a-/- mice were associated with increased plasma and kidney cGMP levels (P < 0.01), kidney cortical NPRA and NPRC mRNA expression (P < 0.05), endothelial nitric oxide (NO) synthase (eNOS) and phosphorylated eNOS proteins (P < 0.01), and urinary NO excretion (P < 0.01). Taken together, the results of the present study provide further evidence for important physiological roles of intratubular ANG II/AT1a and ANP/NPRA signaling pathways in the proximal tubules to regulate proximal tubule Na+ reabsorption and maintain blood pressure homeostasis.NEW & NOTEWORTHY This study used a mutant mouse model with proximal tubule-selective deletion of angiotensin II (ANG II) type 1 (AT1a) receptors to study, for the first time, important interactions between ANG II/AT1 (AT1a) receptor/Na+/H+ exchanger 3 and atrial natriuretic peptide (ANP)/natriuretic peptide receptor (NPRA)/cGMP/nitric oxide signaling pathways in the proximal tubules. The results of the present study provide further evidence for important physiological roles of proximal tubule ANG II/AT1a and ANP/NPRA signaling pathways in the regulation of proximal tubule Na+ reabsorption and blood pressure homeostasis.
Collapse
MESH Headings
- Animals
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/drug effects
- Cyclic GMP/metabolism
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/deficiency
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Mice, Knockout
- Signal Transduction
- Nitric Oxide/metabolism
- Blood Pressure/drug effects
- Male
- Natriuresis/drug effects
- Sodium/metabolism
- Sodium/urine
- Hypotension/metabolism
- Hypotension/genetics
- Hypotension/physiopathology
- Renal Reabsorption/drug effects
- Mice
- Nitric Oxide Synthase Type III/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Akemi Katsurada
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Ryosuke Sato
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Yan Z, Yang T, Li X, Jiang Z, Jia W, Zhou J, Fang H. Apelin-13: a novel approach to suppressing renin production in RVHT. Am J Physiol Cell Physiol 2024; 326:C1683-C1696. [PMID: 38646785 DOI: 10.1152/ajpcell.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Renovascular hypertension (RVHT) is characterized by renal artery stenosis and overactivated renin-angiotensin system (RAS). Apelin, known for its negative modulation of RAS, has protective effects against cardiovascular diseases. The role and mechanisms of the primary active form of apelin, apelin-13, in RVHT are unclear. In this study, male Sprague-Dawley rats were divided into control, two-kidney one-clip (2K1C) model, and 2K1C with apelin-13 treatment groups. Renin expression was analyzed using immunohistochemistry and molecular techniques. Full-length (pro)renin receptor (fPRR) and soluble PRR (sPRR) levels were assessed via Western blotting, and cAMP levels were measured using ELISA. Plasma renin content, plasma renin activity (PRA), angiotensin II (ANG II), and sPRR levels were determined by ELISA. Human Calu-6 and mouse As4.1 cells were used to investigate renin production mechanisms. The 2K1C model exhibited increased systolic blood pressure, plasma renin content, PRA, sPRR, and ANG II levels, while apelin-13 treatment reduced these elevations. Apelin-13 inhibited cAMP production, renin mRNA expression, protein synthesis, and PRR/sPRR protein expression in renal tissue. In Calu-6 cells, cAMP-induced fPRR and site-1 protease (S1P)-derived sPRR expression, which was blocked by cAMP-responsive element-binding protein (CREB) inhibition. Apelin-13 suppressed cAMP elevation, CREB phosphorylation, fPRR/sPRR protein expression, and renin production. Recombinant sPRR (sPRR-His) stimulated renin production, which was inhibited by the PRR decoy peptide PRO20 and S1P inhibitor PF429242. These findings suggest that apelin-13 inhibits plasma renin expression through the cAMP/PKA/sPRR pathway, providing a potential therapeutic approach for RVHT. Understanding the regulation of renin production is crucial for developing effective treatments.NEW & NOTEWORTHY Our research elucidated that apelin-13 inhibits renin production through the cAMP/PKA/soluble (pro)renin receptor pathway, presenting a promising therapeutic approach for renovascular hypertension (RVHT) by targeting renin expression mechanisms. These findings underscore the potential of apelin-13 as a novel strategy to address RVHT.
Collapse
Affiliation(s)
- Ziqing Yan
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Teng Yang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Xinxuan Li
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Zipeng Jiang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Wankun Jia
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Jin Zhou
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Hui Fang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Coelho-Junior HJ, Calvani R, Tosato M, Russo A, Landi F, Picca A, Marzetti E. Associations between hypertension and cognitive, mood, and behavioral parameters in very old adults: results from the IlSIRENTE study. Front Public Health 2024; 11:1268983. [PMID: 38533244 PMCID: PMC10964923 DOI: 10.3389/fpubh.2023.1268983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 03/28/2024] Open
Abstract
Introduction Studies on the associations between hypertension-related parameters and cognitive function, mood, and behavioral symptoms in older adults have produced mixed findings. A possible explanation for these divergent results is that investigations have not adequately adjusted their analyses according to the use of angiotensin-converting enzyme inhibitors (ACEIs). Therefore, the present study examined the cross-sectional associations between hypertension-related parameters, ACEI use, and cognitive function, mood, and behavioral symptoms in very old adults. Methods This study was conducted by analyzing the IlSIRENTE database, a prospective cohort study that collected data on all individuals aged 80 years and older residing in the Sirente geographic area (n = 364). Blood pressure (BP) was assessed after 20 to 40 min of rest, while participants sat in an upright position. Drugs were coded according to the Anatomical Therapeutic and Chemical codes. Cognitive function, mood, and behavioral symptoms were recorded using the Minimum Data Set Home Care instrument. Blood inflammatory markers were measured. Results Hypertension-related parameters were significantly associated with many cognitive, mood, and behavioral parameters after adjustment for covariates. However, only the inverse association between hypertension and lesser problems with short-term memory remained significant. Participants with hypertension had lower blood concentrations of inflammatory markers in comparison to their normotensive peers. Conclusion Findings from the present study indicate that high BP values are associated with fewer complaints about memory problems in very old adults. Furthermore, a lower concentration of inflammatory markers was found in hypertensive participants. ACEI use might affect this scenario.
Collapse
Affiliation(s)
- Helio José Coelho-Junior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Andrea Russo
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
4
|
Eguchi S, Sparks MA, Sawada H, Lu HS, Daugherty A, Zhuo JL. Recent Advances in Understanding the Molecular Pathophysiology of Angiotensin II Receptors: Lessons From Cell-Selective Receptor Deletion in Mice. Can J Cardiol 2023; 39:1795-1807. [PMID: 37394059 DOI: 10.1016/j.cjca.2023.06.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
The renin-angiotensin system (RAS) is an essential hormonal system involved in water and sodium reabsorption, renal blood flow regulation, and arterial constriction. Systemic stimulation of the RAS with infusion of the main peptide angiotensin II (Ang II) in animals as well as pathological elevation of renin (ie, renovascular hypertension) to increase circulatory Ang II in humans ultimately lead to hypertension and end organ damage. In addition to hypertension, accumulating evidence supports that the Ang II type 1 receptor exerts a critical role in cardiovascular and kidney diseases independent of blood pressure elevation. In the past 2 decades, the identification of an increased number of peptides and receptors has facilitated the concept that the RAS has detrimental and beneficial effects on the cardiovascular system depending on which RAS components are activated. For example, angiotensin 1-7 and Ang II type 2 receptors act as a counter-regulatory system against the classical RAS by mediating vasodilation. Although the RAS as an endocrine system for regulation of blood pressure is well established, there remain many unanswered questions and controversial findings regarding blood pressure regulation and pathophysiological regulation of cardiovascular diseases at the tissue level. This review article includes the latest knowledge gleaned from cell type-selective gene deleted mice regarding cell type-specific roles of Ang II receptors and their significance in health and diseases are discussed. In particular, we focus on the roles of these receptors expressed in vascular, cardiac, and kidney epithelial cells.
Collapse
Affiliation(s)
- Satoru Eguchi
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Renal Section, Durham VA Medical Center, Durham, North Carolina, USA
| | - Hisashi Sawada
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jia L Zhuo
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Ye S, Huang H, Xiao Y, Han X, Shi F, Luo W, Chen J, Ye Y, Zhao X, Huang W, Wang Y, Lai D, Liang G, Fu G. Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-β1 secretion. Cell Mol Life Sci 2023; 80:184. [PMID: 37340199 DOI: 10.1007/s00018-023-04826-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
Macrophage activation has been shown to play an essential role in renal fibrosis and dysfunction in hypertensive chronic kidney disease. Dectin-1 is a pattern recognition receptor that is also involved in chronic noninfectious diseases through immune activation. However, the role of Dectin-1 in Ang II-induced renal failure is still unknown. In this study, we found that Dectin-1 expression on CD68 + macrophages was significantly elevated in the kidney after Ang II infusion. We assessed the effect of Dectin-1 on hypertensive renal injury using Dectin-1-deficient mice infused by Angiotensin II (Ang II) at 1000 ng/kg/min for 4 weeks. Ang II-induced renal dysfunction, interstitial fibrosis, and immune activation were significantly attenuated in Dectin-1-deficient mice. A Dectin-1 neutralizing antibody and Syk inhibitor (R406) were used to examine the effect and mechanism of Dectin-1/Syk signaling axle on cytokine secretion and renal fibrosis in culturing cells. Blocking Dectin-1 or inhibiting Syk significantly reduced the expression and secretion of chemokines in RAW264.7 macrophages. The in vitro data showed that the increase in TGF-β1 in macrophages enhanced the binding of P65 and its target promotor via the Ang II-induced Dectin-1/Syk pathway. Secreted TGF-β1 caused renal fibrosis in kidney cells through Smad3 activation. Thus, macrophage Dectin-1 may be involved in the activation of neutrophil migration and TGF-β1 secretion, thereby promoting kidney fibrosis and dysfunction.
Collapse
Affiliation(s)
- Shiju Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Fengjie Shi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiawen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yang Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xia Zhao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
6
|
Nwia SM, Leite APO, Li XC, Zhuo JL. Sex differences in the renin-angiotensin-aldosterone system and its roles in hypertension, cardiovascular, and kidney diseases. Front Cardiovasc Med 2023; 10:1198090. [PMID: 37404743 PMCID: PMC10315499 DOI: 10.3389/fcvm.2023.1198090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease is a pathology that exhibits well-researched biological sex differences, making it possible for physicians to tailor preventative and therapeutic approaches for various diseases. Hypertension, which is defined as blood pressure greater than 130/80 mmHg, is the primary risk factor for developing coronary artery disease, stroke, and renal failure. Approximately 48% of American men and 43% of American women suffer from hypertension. Epidemiological data suggests that during reproductive years, women have much lower rates of hypertension than men. However, this protective effect disappears after the onset of menopause. Treatment-resistant hypertension affects approximately 10.3 million US adults and is unable to be controlled even after implementing ≥3 antihypertensives with complementary mechanisms. This indicates that other mechanisms responsible for modulating blood pressure are still unclear. Understanding the differences in genetic and hormonal mechanisms that lead to hypertension would allow for sex-specific treatment and an opportunity to improve patient outcomes. Therefore, this invited review will review and discuss recent advances in studying the sex-specific physiological mechanisms that affect the renin-angiotensin system and contribute to blood pressure control. It will also discuss research on sex differences in hypertension management, treatment, and outcomes.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula O. Leite
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
7
|
Zeng C, Armando I, Yang J, Jose PA. Dopamine Receptor D 1R and D 3R and GRK4 Interaction in Hypertension. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:95-105. [PMID: 37009199 PMCID: PMC10052590 DOI: 10.59249/mkrr9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Essential hypertension is caused by the interaction of genetic, behavioral, and environmental factors. Abnormalities in the regulation of renal ion transport cause essential hypertension. The renal dopaminergic system, which inhibits sodium transport in all the nephron segments, is responsible for at least 50% of renal sodium excretion under conditions of moderate sodium excess. Dopaminergic signals are transduced by two families of receptors that belong to the G protein-coupled receptor (GPCR) superfamily. D1-like receptors (D1R and D5R) stimulate, while D2-like receptors (D2R, D3R, and D4R) inhibit adenylyl cyclases. The dopamine receptor subtypes, themselves, or by their interactions, regulate renal sodium transport and blood pressure. We review the role of the D1R and D3R and their interaction in the natriuresis associated with volume expansion. The D1R- and D3R-mediated inhibition of renal sodium transport involves PKA and PKC-dependent and -independent mechanisms. The D3R also increases the degradation of NHE3 via USP-mediated ubiquitinylation. Although deletion of Drd1 and Drd3 in mice causes hypertension, DRD1 polymorphisms are not always associated with human essential hypertension and polymorphisms in DRD3 are not associated with human essential hypertension. The impaired D1R and D3R function in hypertension is related to their hyper-phosphorylation; GRK4γ isoforms, R65L, A142V, and A486V, hyper-phosphorylate and desensitize D1R and D3R. The GRK4 locus is linked to and GRK4 variants are associated with high blood pressure in humans. Thus, GRK4, by itself, and by regulating genes related to the control of blood pressure may explain the "apparent" polygenic nature of essential hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third
Military Medical University (Army Medical University), Chongqing, P. R.
China
| | - Ines Armando
- Division of Kidney Diseases and Hypertension,
Department of Medicine, The George Washington School of Medicine and Health
Sciences, Washington, DC, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated
Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Pedro A. Jose
- Division of Kidney Diseases and Hypertension,
Department of Medicine, The George Washington School of Medicine and Health
Sciences, Washington, DC, USA
| |
Collapse
|
8
|
Li XC, Hassan R, Leite APO, Katsurada A, Dugas C, Sato R, Zhuo JL. Genetic Deletion of AT 1a Receptor or Na +/H + Exchanger 3 Selectively in the Proximal Tubules of the Kidney Attenuates Two-Kidney, One-Clip Goldblatt Hypertension in Mice. Int J Mol Sci 2022; 23:ijms232415798. [PMID: 36555438 PMCID: PMC9779213 DOI: 10.3390/ijms232415798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The roles of angiotensin II (Ang II) AT1 (AT1a) receptors and its downstream target Na+/H+ exchanger 3 (NHE3) in the proximal tubules in the development of two-kidney, 1-clip (2K1C) Goldblatt hypertension have not been investigated previously. The present study tested the hypothesis that deletion of the AT1a receptor or NHE3 selectively in the proximal tubules of the kidney attenuates the development of 2K1C hypertension using novel mouse models with proximal tubule-specific deletion of AT1a receptors or NHE3. 2K1C Goldblatt hypertension was induced by placing a silver clip (0.12 mm) on the left renal artery for 4 weeks in adult male wild-type (WT), global Agtr1a−/−, proximal tubule (PT)-specific PT-Agtr1a−/− or PT-Nhe3−/− mice, respectively. As expected, telemetry blood pressure increased in a time-dependent manner in WT mice, reaching a maximal response by Week 3 (p < 0.01). 2K1C hypertension in WT mice was associated with increases in renin expression in the clipped kidney and decreases in the nonclipped kidney (p < 0.05). Plasma and kidney Ang II were significantly increased in WT mice with 2K1C hypertension (p < 0.05). Tubulointerstitial fibrotic responses were significantly increased in the clipped kidney (p < 0.01). Whole-body deletion of AT1a receptors completely blocked the development of 2K1C hypertension in Agtr1a−/− mice (p < 0.01 vs. WT). Likewise, proximal tubule-specific deletion of Agtr1a in PT-Agtr1a−/− mice or NHE3 in PT-Nhe3−/− mice also blocked the development of 2K1C hypertension (p < 0.01 vs. WT). Taken together, the present study provides new evidence for a critical role of proximal tubule Ang II/AT1 (AT1a)/NHE3 axis in the development of 2K1C Goldblatt hypertension.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ana Paula O. Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Akemi Katsurada
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Courtney Dugas
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ryosuke Sato
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-988-4363; Fax: +1-504-988-2675
| |
Collapse
|
9
|
Goodlett BL, Balasubbramanian D, Navaneethabalakrishnan S, Love SE, Luera EM, Konatham S, Chiasson VL, Wedgeworth S, Rutkowski JM, Mitchell BM. Genetically inducing renal lymphangiogenesis attenuates hypertension in mice. Clin Sci (Lond) 2022; 136:1759-1772. [PMID: 36345993 PMCID: PMC10586591 DOI: 10.1042/cs20220547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.
Collapse
Affiliation(s)
- Bethany L Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | | | | | - Sydney E Love
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Emily M Luera
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sunitha Konatham
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Valorie L Chiasson
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sophie Wedgeworth
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
10
|
Leite APDO, Li XC, Nwia SM, Hassan R, Zhuo JL. Angiotensin II and AT 1a Receptors in the Proximal Tubules of the Kidney: New Roles in Blood Pressure Control and Hypertension. Int J Mol Sci 2022; 23:2402. [PMID: 35269547 PMCID: PMC8910592 DOI: 10.3390/ijms23052402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.
Collapse
Affiliation(s)
- Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiao C. Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia L. Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Goodlett BL, Kang CS, Yoo E, Navaneethabalakrishnan S, Balasubbramanian D, Love SE, Sims BM, Avilez DL, Tate W, Chavez DR, Baranwal G, Nabity MB, Rutkowski JM, Kim D, Mitchell BM. A Kidney-Targeted Nanoparticle to Augment Renal Lymphatic Density Decreases Blood Pressure in Hypertensive Mice. Pharmaceutics 2021; 14:pharmaceutics14010084. [PMID: 35056980 PMCID: PMC8780399 DOI: 10.3390/pharmaceutics14010084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic interstitial inflammation and renal infiltration of activated immune cells play an integral role in hypertension. Lymphatics regulate inflammation through clearance of immune cells and excess interstitial fluid. Previously, we demonstrated increasing renal lymphangiogenesis prevents hypertension in mice. We hypothesized that targeted nanoparticle delivery of vascular endothelial growth factor-C (VEGF-C) to the kidney would induce renal lymphangiogenesis, lowering blood pressure in hypertensive mice. A kidney-targeting nanoparticle was loaded with a VEGF receptor-3-specific form of VEGF-C and injected into mice with angiotensin II-induced hypertension or LNAME-induced hypertension every 3 days. Nanoparticle-treated mice exhibited increased renal lymphatic vessel density and width compared to hypertensive mice injected with VEGF-C alone. Nanoparticle-treated mice exhibited decreased systolic blood pressure, decreased pro-inflammatory renal immune cells, and increased urinary fractional excretion of sodium. Our findings demonstrate that pharmacologically expanding renal lymphatics decreases blood pressure and is associated with favorable alterations in renal immune cells and increased sodium excretion.
Collapse
Affiliation(s)
- Bethany L. Goodlett
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Chang Sun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; (C.S.K.); (E.Y.); (D.K.)
| | - Eunsoo Yoo
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; (C.S.K.); (E.Y.); (D.K.)
| | - Shobana Navaneethabalakrishnan
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Dakshnapriya Balasubbramanian
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Sydney E. Love
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Braden M. Sims
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Daniela L. Avilez
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Winter Tate
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Delilah R. Chavez
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Gaurav Baranwal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA;
| | - Joseph M. Rutkowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; (C.S.K.); (E.Y.); (D.K.)
| | - Brett M. Mitchell
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
- Correspondence: ; Tel.:+1-979-436-0751
| |
Collapse
|