1
|
Bornstein SR, Wright JF, Steenblock C. The promising potential of gene therapy for diabetes mellitus. Nat Rev Endocrinol 2024; 20:627-628. [PMID: 39209975 DOI: 10.1038/s41574-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - J Fraser Wright
- Kriya Therapeutics, Palo Alto, CA, USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Fu X, Suo H, Zhang J, Chen D. Machine-learning-guided Directed Evolution for AAV Capsid Engineering. Curr Pharm Des 2024; 30:811-824. [PMID: 38445704 DOI: 10.2174/0113816128286593240226060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Target gene delivery is crucial to gene therapy. Adeno-associated virus (AAV) has emerged as a primary gene therapy vector due to its broad host range, long-term expression, and low pathogenicity. However, AAV vectors have some limitations, such as immunogenicity and insufficient targeting. Designing or modifying capsids is a potential method of improving the efficacy of gene delivery, but hindered by weak biological basis of AAV, complexity of the capsids, and limitations of current screening methods. Artificial intelligence (AI), especially machine learning (ML), has great potential to accelerate and improve the optimization of capsid properties as well as decrease their development time and manufacturing costs. This review introduces the traditional methods of designing AAV capsids and the general steps of building a sequence-function ML model, highlights the applications of ML in the development workflow, and summarizes its advantages and challenges.
Collapse
Affiliation(s)
- Xianrong Fu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hairui Suo
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiachen Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongmei Chen
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Weeks KL, Kiriazis H, Wadley GD, Masterman EI, Sergienko NM, Raaijmakers AJA, Trewin AJ, Harmawan CA, Yildiz GS, Liu Y, Drew BG, Gregorevic P, Delbridge LMD, McMullen JR, Bernardo BC. A gene therapy targeting medium-chain acyl-CoA dehydrogenase (MCAD) did not protect against diabetes-induced cardiac pathology. J Mol Med (Berl) 2024; 102:95-111. [PMID: 37987775 DOI: 10.1007/s00109-023-02397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.
Collapse
Affiliation(s)
- Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Helen Kiriazis
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Emma I Masterman
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Nicola M Sergienko
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam J Trewin
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claudia A Harmawan
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Brian G Drew
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Muscle Research, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Julie R McMullen
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Bianca C Bernardo
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia.
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Nian W, Huang Z, Fu C. Immune cells drive new immunomodulatory therapies for myocardial infarction: From basic to clinical translation. Front Immunol 2023; 14:1097295. [PMID: 36761726 PMCID: PMC9903069 DOI: 10.3389/fimmu.2023.1097295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
The high incidence of heart failure secondary to myocardial infarction (MI) has been difficult to effectively address. MI causes strong aseptic inflammation, and infiltration of different immune cells and changes in the local inflammatory microenvironment play a key regulatory role in ventricular remodeling. Therefore, the possibility of improving the prognosis of MI through targeted immunity has been of interest and importance in MI. However, previously developed immune-targeted therapies have not achieved significant success in clinical trials. Here, we propose that the search for therapeutic targets from different immune cells may be more precise and lead to better clinical translation. Specifically, this review summarizes the role and potential therapeutic targets of various immune cells in ventricular remodeling after MI, especially monocytes/macrophages and neutrophils, as a way to demonstrate the importance and potential of immunomodulatory therapies for MI. In addition, we analyze the reasons for the failure of previous immunomodulatory therapies and the issues that need to be addressed, as well as the prospects and targeting strategies of using immune cells to drive novel immunomodulatory therapies, hoping to advance the development of immunomodulatory therapies by providing evidence and new ideas.
Collapse
Affiliation(s)
- Wenjian Nian
- Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Zijian Huang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Wang S, Tian C, Gao Z, Zhang B, Zhao L. Research status and trends of the diabetic cardiomyopathy in the past 10 years (2012–2021): A bibliometric analysis. Front Cardiovasc Med 2022; 9:1018841. [PMID: 36337893 PMCID: PMC9630656 DOI: 10.3389/fcvm.2022.1018841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background Diabetic cardiomyopathy is one of the most life-threatening diabetic complications. However, the previous studies only discuss a particular aspect or characteristic of DCM, the current state and trends were explored by limited research. We aimed to perform a systemically bibliometric study of DCM research progress status in the past decade, visualize the internal conceptual structure and potential associations, and further explore the prospective study trends. Methods Articles related to DCM published from January 2012 to December 2021 were collected in the Web of Science core collection (WoSCC) database on June 24, 2022. We exported all bibliographic records, including titles, abstracts, keywords, authorship, institutions, addresses, publishing sources, references, citation times, and year of publication. In addition, the journal Impact Factor and Hirsch index were obtained from the Journal Citation Report. We conducted the data screening, statistical analysis, and visualization via the Bibliometrix R package. VOS viewer software was employed to generate the collaboration network map among countries and institutions for better performance in visualization. Results In total, 1,887 original research articles from 2012 to 2021 were identified. The number of annual publications rapidly increased from 107 to 278, and a drastic increase in citation times was observed in 2017–2019. As for global contributions, the United States was the most influential country with the highest international collaboration, while China was the most productive country. Professor Cai Lu was the most prolific author. Shandong University published the most articles. Cardiovascular Diabetology journal released the most DCM-related articles. “Metabolic Stress-induced Activation of FoxO1 Triggers Diabetic Cardiomyopathy in Mice” Battiprolu PK et al., J Clin Invest, 2012. was the most top-cited article regarding local citations. The top three keywords in terms of frequency were apoptosis, oxidative stress, and fibrosis. The analysis of future topic trends indicated that “Forkhead box protein O1,” “Heart failure with preserved ejection fraction,” “Dapagliflozin,” “Thioredoxin,” “Mitochondria dysfunction,” “Glucose,” “Pyroptosis,” “Cardiac fibroblast” and “Long non-coding RNA” could be promising hotspots. Conclusion This study provides meaningful insights into DCM, which is expected to assist cardiologists and endocrinologists in exploring frontiers and future research directions in the domain through a refined and concise summary.
Collapse
Affiliation(s)
- Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Boxun Zhang,
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Linhua Zhao,
| |
Collapse
|
8
|
Zhang H, Zhan Q, Huang B, Wang Y, Wang X. AAV-mediated gene therapy: Advancing cardiovascular disease treatment. Front Cardiovasc Med 2022; 9:952755. [PMID: 36061546 PMCID: PMC9437345 DOI: 10.3389/fcvm.2022.952755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gene therapy has revolutionized the field of medicine, offering new hope for those with common and rare diseases. For nearly three decades, adeno-associated virus (AAV) has shown significant therapeutic benefits in multiple clinical trials, mainly due to its unique replication defects and non-pathogenicity in humans. In the field of cardiovascular disease (CVD), compared with non-viral vectors, lentiviruses, poxviruses, and adenovirus vectors, AAV possesses several advantages, including high security, low immunogenicity, sustainable and stable exogenous gene expression etc., which makes AAV one of the most promising candidates for the treatment of many genetic disorders and hereditary diseases. In this review, we evaluate the current information on the immune responses, transport pathways, and mechanisms of action associated with AAV-based CVD gene therapies and further explore potential optimization strategies to improve the efficiency of AAV transduction for the improved safety and efficiency of CVD treatment. In conclusion, AAV-mediated gene therapy has great potential for development in the cardiovascular system.
Collapse
Affiliation(s)
- Huili Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Qi Zhan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Yigang Wang
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
- *Correspondence: Xiaoyan Wang
| |
Collapse
|
9
|
Tate M, Perera N, Prakoso D, Willis AM, Deo M, Oseghale O, Qian H, Donner DG, Kiriazis H, De Blasio MJ, Gregorevic P, Ritchie RH. Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:719290. [PMID: 34690762 PMCID: PMC8532155 DOI: 10.3389/fphar.2021.719290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a major contributor to the increasing burden of heart failure prevalence globally, at least in part due to a disease process termed diabetic cardiomyopathy. Diabetic cardiomyopathy is characterised by cardiac structural changes that are caused by chronic exposure to the diabetic milieu. These structural changes are a major cause of left ventricular (LV) wall stiffness and the development of LV dysfunction. In the current study, we investigated the therapeutic potential of a cardiac-targeted bone morphogenetic protein 7 (BMP7) gene therapy, administered once diastolic dysfunction was present, mimicking the timeframe in which clinical management of the cardiomyopathy would likely be desired. Following 18 weeks of untreated diabetes, mice were administered with a single tail-vein injection of recombinant adeno-associated viral vector (AAV), containing the BMP7 gene, or null vector. Our data demonstrated, after 8 weeks of treatment, that rAAV6-BMP7 treatment exerted beneficial effects on LV functional and structural changes. Importantly, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-BMP7. This was associated with a reduction in cardiac fibrosis, cardiomyocyte hypertrophy and cardiomyocyte apoptosis. In conclusion, BMP7 gene therapy limited pathological remodelling in the diabetic heart, conferring an improvement in cardiac function. These findings provide insight for the potential development of treatment strategies urgently needed to delay or reverse LV pathological remodelling in the diabetic heart.
Collapse
Affiliation(s)
- Mitchel Tate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nimna Perera
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Osezua Oseghale
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hongwei Qian
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel G Donner
- Preclinical Microsurgery and Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Microsurgery and Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, The University of Washington, Seattle, WA, United States
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|