1
|
Fisher DN, Bechsgaard J, Bilde T. Exploring changes in social spider DNA methylation profiles in all cytosine contexts following infection. Heredity (Edinb) 2024; 133:410-417. [PMID: 39266675 PMCID: PMC11589119 DOI: 10.1038/s41437-024-00724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Living at high density and with low genetic diversity are factors that should both increase the susceptibility of organisms to disease. Therefore, group living organisms, especially those that are inbred, should be especially vulnerable to infection and therefore have particular strategies to cope with infection. Phenotypic plasticity, underpinned by epigenetic changes, could allow group living organisms to rapidly respond to infection challenges. To explore the potential role of epigenetic modifications in the immune response to a group-living species with low genetic diversity, we compared the genome-wide DNA methylation profiles of five colonies of social spiders (Stegodyphus dumicola) in their natural habitat in Namibia at the point just before they succumbed to infection to a point at least six months previously where they were presumably healthier. We found increases in genome- and chromosome-wide methylation levels in the CpG, CHG, and CHH contexts, although the genome-wide changes were not clearly different from zero. These changes were most prominent in the CHG context, especially at a narrow region of chromosome 13, hinting at an as-of-yet unsuspected role of this DNA methylation context in phenotypic plasticity. However, there were few clear patterns of differential methylation at the base level, and genes with a known immune function in spiders had mean methylation changes close to zero. Our results suggest that DNA methylation may change with infection at large genomic scales, but that this type of epigenetic change is not necessarily integral to the immune response of social spiders.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
| | - Jesper Bechsgaard
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Chen L, Li X, Liu H, He F, Li M, Long R, Wang X, Kang J, Yang Q. Comprehensive analysis of epigenetic modifications in alfalfa under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136545. [PMID: 39577281 DOI: 10.1016/j.jhazmat.2024.136545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Epigenetics plays an important role in plant growth and development and in environmental adaptation. Alfalfa, an important forage crop, is rich in nutrients. However, little is known about the molecular regulatory mechanisms underlying the response of alfalfa to cadmium (Cd) stress. Here, we performed DNA methylation (5mC), RNA methylation (m6A) and transcriptomic sequencing analyses of alfalfa roots under Cd stress. Whole-genome methylation sequencing and transcriptomic sequencing revealed that Cd stress reduced DNA methylation levels. Moreover, a reduced 5mC methylation level was associated with decreased expression of several DNA methyltransferase genes. Compared with those under normal (CK) conditions, the m6A modification levels under Cd stress were greater and were positively correlated with gene expression in alfalfa roots. We also found a negative correlation between the 5mC level and the m6A level, especially in CG and CHG contexts. In yeast, the overexpression of MsNARMP5 (natural resistance-associated macrophage protein) and MsPCR2 (plant cadmium resistance 2), which are modified by 5mC or m6A, significantly increased Cd stress tolerance. These results provide candidate genes for future studies on the mechanism of Cd stress tolerance in alfalfa roots and valuable information for studying heavy metal stress in alfalfa breeding.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Royle JW, Hurwood D, Sadowski P, Dudley KJ. Non-CG DNA methylation marks the transition from pupa to adult in Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2024; 33:493-502. [PMID: 38668923 DOI: 10.1111/imb.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 08/20/2024]
Abstract
DNA methylation in insects is generally low in abundance, and its role is not well understood. It is often localised in protein coding regions and associated with the expression of 'housekeeping' genes. Few studies have explored DNA methylation dynamics during lifecycle stage transitions in holometabolous (metamorphosing) insects. Using targeted mass spectrometry, we have found a significant difference in global DNA methylation levels between larvae, pupae and adults of Helicoverpa armigera (Lepidoptera: Noctuidae) Hübner, a polyphagous pest of agricultural importance. Whole-genome bisulfite sequencing confirmed these observations and pointed to non-CG context being the primary explanation for the difference observed between pupa and adult. Non-CG methylation was enriched in genes specific to various signalling pathways (Hippo signalling, Hedgehog signalling and mitogen-activated protein kinase (MAPK) signalling) and ATP-dependent chromatin remodelling. Understanding the function of this epigenetic mark could be a target in future studies focusing on integrated pest management.
Collapse
Affiliation(s)
- Jack W Royle
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Hurwood
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pawel Sadowski
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
5
|
McEvoy SL, Grady PGS, Pauloski N, O'Neill RJ, Wegrzyn JL. Profiling genome-wide methylation in two maples: Fine-scale approaches to detection with nanopore technology. Evol Appl 2024; 17:e13669. [PMID: 38633133 PMCID: PMC11022628 DOI: 10.1111/eva.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Patrick G. S. Grady
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Nicole Pauloski
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Rachel J. O'Neill
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
6
|
Luo JH, Guo T, Wang M, Liu JH, Zheng LM, He Y. RNA m6A modification facilitates DNA methylation during maize kernel development. PLANT PHYSIOLOGY 2024; 194:2165-2182. [PMID: 37995374 DOI: 10.1093/plphys/kiad625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
N6-methyladenosine (m6A) in mRNA and 5-methylcytosine (5mC) in DNA have critical functions for regulating gene expression and modulating plant growth and development. However, the interplay between m6A and 5mC is an elusive territory and remains unclear mechanistically in plants. We reported an occurrence of crosstalk between m6A and 5mC in maize (Zea mays) via the interaction between mRNA adenosine methylase (ZmMTA), the core component of the m6A methyltransferase complex, and decrease in DNA methylation 1 (ZmDDM1), a key chromatin-remodeling factor that regulates DNA methylation. Genes with m6A modification were coordinated with a much higher level of DNA methylation than genes without m6A modification. Dysfunction of ZmMTA caused severe arrest during maize embryogenesis and endosperm development, leading to a significant decrease in CHH methylation in the 5' region of m6A-modified genes. Instead, loss of function of ZmDDM1 had no noteworthy effects on ZmMTA-related activity. This study establishes a direct link between m6A and 5mC during maize kernel development and provides insights into the interplay between RNA modification and DNA methylation.
Collapse
Affiliation(s)
- Jin-Hong Luo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Guo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Min Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing-Han Liu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lei-Ming Zheng
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Fresnedo-Ramírez J, Anderson ES, D'Amico-Willman K, Gradziel TM. A review of plant epigenetics through the lens of almond. THE PLANT GENOME 2023; 16:e20367. [PMID: 37434488 DOI: 10.1002/tpg2.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
While genomes were originally seen as static entities that stably held and organized genetic information, recent advances in sequencing have uncovered the dynamic nature of the genome. New conceptualizations of the genome include complex relationships between the environment and gene expression that must be maintained, regulated, and sometimes even transmitted over generations. The discovery of epigenetic mechanisms has allowed researchers to understand how traits like phenology, plasticity, and fitness can be altered without changing the underlying deoxyribonucleic acid sequence. While many discoveries were first made in animal systems, plants provide a particularly complex set of epigenetic mechanisms due to unique aspects of their biology and interactions with human selective breeding and cultivation. In the plant kingdom, annual plants have received the most attention; however, perennial plants endure and respond to their environment and human management in distinct ways. Perennials include crops such as almond, for which epigenetic effects have long been linked to phenomena and even considered relevant for breeding. Recent discoveries have elucidated epigenetic phenomena that influence traits such as dormancy and self-compatibility, as well as disorders like noninfectious bud failure, which are known to be triggered by the environment and influenced by inherent aspects of the plant. Thus, epigenetics represents fertile ground to further understand almond biology and production and optimize its breeding. Here, we provide our current understanding of epigenetic regulation in plants and use almond as an example of how advances in epigenetics research can be used to understand biological fitness and agricultural performance in crop plants.
Collapse
Affiliation(s)
| | - Elizabeth S Anderson
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | | | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
8
|
Lee J, Lee S, Park K, Shin SY, Frost JM, Hsieh PH, Shin C, Fischer RL, Hsieh TF, Choi Y. Distinct regulatory pathways contribute to dynamic CHH methylation patterns in transposable elements throughout Arabidopsis embryogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1204279. [PMID: 37360705 PMCID: PMC10285158 DOI: 10.3389/fpls.2023.1204279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
CHH methylation (mCHH) increases gradually during embryogenesis across dicotyledonous plants, indicating conserved mechanisms of targeting and conferral. Although it is suggested that methylation increase during embryogenesis enhances transposable element silencing, the detailed epigenetic pathways underlying this process remain unclear. In Arabidopsis, mCHH is regulated by both small RNA-dependent DNA methylation (RdDM) and RNA-independent Chromomethylase 2 (CMT2) pathways. Here, we conducted DNA methylome profiling at five stages of Arabidopsis embryogenesis, and classified mCHH regions into groups based on their dependency on different methylation pathways. Our analysis revealed that the gradual increase in mCHH in embryos coincided with the expansion of small RNA expression and regional mCHH spreading to nearby sites at numerous loci. We identified distinct methylation dynamics in different groups of mCHH targets, which vary according to transposon length, location, and cytosine frequency. Finally, we highlight the characteristics of transposable element loci that are targeted by different mCHH machinery, showing that short, heterochromatic TEs with lower mCHG levels are enriched in loci that switch from CMT2 regulation in leaves, to RdDM regulation during embryogenesis. Our findings highlight the interplay between the length, location, and cytosine frequency of transposons and the mCHH machinery in modulating mCHH dynamics during embryogenesis.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Yoon Shin
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jennifer M. Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Chanseok Shin
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Sereshki S, Lee N, Omirou M, Fasoula D, Lonardi S. On the prediction of non-CG DNA methylation using machine learning. NAR Genom Bioinform 2023; 5:lqad045. [PMID: 37206627 PMCID: PMC10189801 DOI: 10.1093/nargab/lqad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
DNA methylation can be detected and measured using sequencing instruments after sodium bisulfite conversion, but experiments can be expensive for large eukaryotic genomes. Sequencing nonuniformity and mapping biases can leave parts of the genome with low or no coverage, thus hampering the ability of obtaining DNA methylation levels for all cytosines. To address these limitations, several computational methods have been proposed that can predict DNA methylation from the DNA sequence around the cytosine or from the methylation level of nearby cytosines. However, most of these methods are entirely focused on CG methylation in humans and other mammals. In this work, we study, for the first time, the problem of predicting cytosine methylation for CG, CHG and CHH contexts on six plant species, either from the DNA primary sequence around the cytosine or from the methylation levels of neighboring cytosines. In this framework, we also study the cross-species prediction problem and the cross-context prediction problem (within the same species). Finally, we show that providing gene and repeat annotations allows existing classifiers to significantly improve their prediction accuracy. We introduce a new classifier called AMPS (annotation-based methylation prediction from sequence) that takes advantage of genomic annotations to achieve higher accuracy.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Nathan Lee
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Michalis Omirou
- Department of Agrobiotechnology, Agricultural Microbiology Laboratory, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Dionysia Fasoula
- Department of Plant Breeding, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Stefano Lonardi
- To whom correspondence should be addressed. Tel: +1 951 827 2203; Fax: +1 951 827 4643;
| |
Collapse
|
10
|
Kenchanmane Raju SK, Ledford M, Niederhuth CE. DNA methylation signatures of duplicate gene evolution in angiosperms. PLANT PHYSIOLOGY 2023:kiad220. [PMID: 37061825 PMCID: PMC10400039 DOI: 10.1093/plphys/kiad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomics approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole genome duplicates were typically enriched for CG-only gene-body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was characteristic of more recent single-gene duplicates. Core angiosperm gene families differentiated into those which preferentially retain paralogs and 'duplication-resistant' families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Ooi SE, Sarpan N, Taranenko E, Feshah I, Nuraziyan A, Roowi SH, Burhan MN, Jayanthi N, Rahmah ARS, Teh OK, Ong-Abdullah M, Tatarinova TV. Small RNAs and Karma methylation in Elaeis guineensis mother palms are linked to high clonal mantling. PLANT MOLECULAR BIOLOGY 2023; 111:345-363. [PMID: 36609897 DOI: 10.1007/s11103-022-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The mantled phenotype is an abnormal somaclonal variant arising from the oil palm cloning process and severe phenotypes lead to oil yield losses. Hypomethylation of the Karma retrotransposon within the B-type MADS-box EgDEF1 gene has been associated with this phenotype. While abnormal Karma-EgDEF1 hypomethylation was detected in mantled clones, we examined the methylation state of Karma in ortets that gave rise to high mantling rates in their clones. Small RNAs (sRNAs) were proposed to play a role in Karma hypomethylation as part of the RNA-directed DNA methylation process, hence differential expression analysis of sRNAs between the ortet groups was conducted. While no sRNA was differentially expressed at the Karma-EgDEF1 region, three sRNA clusters were differentially regulated in high-mantling ortets. The first two down-regulated clusters were possibly derived from long non-coding RNAs while the third up-regulated cluster was derived from the intron of a DnaJ chaperone gene. Several predicted mRNA targets for the first two sRNA clusters conversely displayed increased expression in high-mantling relative to low-mantling ortets. These predicted mRNA targets may be associated with defense or pathogenesis response. In addition, several differentially methylated regions (DMRs) were identified in Karma and its surrounding regions, mainly comprising subtle CHH hypomethylation in high-mantling ortets. Four of the 12 DMRs were located in a region corresponding to hypomethylated areas at the 3'end of Karma previously reported in mantled clones. Further investigations on these sRNAs and DMRs may indicate the predisposition of certain ortets towards mantled somaclonal variation.
Collapse
Affiliation(s)
- Siew-Eng Ooi
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Norashikin Sarpan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, CA, USA
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia, 660036
| | - Ishak Feshah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Azimi Nuraziyan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | - Nagappan Jayanthi
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Rahman Siti Rahmah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ooi-Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei, Taiwan, R.O.C
| | - Meilina Ong-Abdullah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, USA.
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia, 660036.
- Vavilov Institute for General Genetics, Moscow, Russia.
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
12
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
13
|
Pazzaglia J, Dattolo E, Ruocco M, Santillán-Sarmiento A, Marin-Guirao L, Procaccini G. DNA methylation dynamics in a coastal foundation seagrass species under abiotic stressors. Proc Biol Sci 2023; 290:20222197. [PMID: 36651048 PMCID: PMC9845983 DOI: 10.1098/rspb.2022.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Alex Santillán-Sarmiento
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Faculty of Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Lazaro Marin-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
14
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
15
|
Van Antro M, Prelovsek S, Ivanovic S, Gawehns F, Wagemaker NCAM, Mysara M, Horemans N, Vergeer P, Verhoeven KJF. DNA methylation in clonal duckweed (Lemna minor L.) lineages reflects current and historical environmental exposures. Mol Ecol 2023; 32:428-443. [PMID: 36324253 PMCID: PMC10100429 DOI: 10.1111/mec.16757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Environmentally induced DNA methylation variants may mediate gene expression responses to environmental changes. If such induced variants are transgenerationally stable, there is potential for expression responses to persist over multiple generations. Our current knowledge in plants, however, is almost exclusively based on studies conducted in sexually reproducing species where the majority of DNA methylation changes are subject to resetting in germlines, limiting the potential for transgenerational epigenetics stress memory. Asexual reproduction circumvents germlines, and may therefore be more conducive to long-term inheritance of epigenetic marks. Taking advantage of the rapid clonal reproduction of the common duckweed Lemna minor, we hypothesize that long-term, transgenerational stress memory from exposure to high temperature can be detected in DNA methylation profiles. Using a reduced representation bisulphite sequencing approach (epiGBS), we show that temperature stress induces DNA hypermethylation at many CG and CHG cytosine contexts but not CHH. Additionally, differential methylation in CHG context that was observed was still detected in a subset of cytosines, even after 3-12 generations of culturing in a common environment. This demonstrates a memory effect of stress reflected in the methylome and that persists over multiple clonal generations. Structural annotation revealed that this memory effect in CHG methylation was enriched in transposable elements. The observed epigenetic stress memory is probably caused by stable transgenerational persistence of temperature-induced DNA methylation variants across clonal generations. To the extent that such epigenetic memory has functional consequences for gene expression and phenotypes, this result suggests potential for long-term modulation of stress responses in asexual plants.
Collapse
Affiliation(s)
- Morgane Van Antro
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Stella Prelovsek
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Slavica Ivanovic
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Fleur Gawehns
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | | | - Mohamed Mysara
- Biosphere Impact StudiesBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Nele Horemans
- Biosphere Impact StudiesBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Philippine Vergeer
- Plant Ecology and PhysiologyRadboud UniversityNijmegenThe Netherlands
- Wageningen University and Research (WUR)Plant Ecology and Nature Conservation GroupWageningenThe Netherlands
| | - Koen J. F. Verhoeven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
16
|
Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X, Jiang Y, Leitch AR, Wei C. Plant genome size modulates grassland community responses to multi-nutrient additions. THE NEW PHYTOLOGIST 2022; 236:2091-2102. [PMID: 36110049 DOI: 10.1111/nph.18496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Grassland ecosystems cover c. 40% of global land area and contain c. 40% of soil organic carbon. Understanding the effects of adding nutrients to grasslands is essential because they provide much of our food, support diverse ecosystem services and harbor rich biodiversity. Using the meadow steppe (grassland) study site of Inner Mongolia, we manipulated seven key nutrients and a cocktail of micronutrients to examine their effects on grassland biomass productivity and diversity. The results, explained in structural equation models, link two previously disparate hypotheses in grassland ecology: (1) the light asymmetry competition hypothesis and (2) the genome size-nutrient interaction hypothesis. We show that aboveground net primary productivity increases predominantly from species with large genome sizes with the addition of nitrogen, and nitrogen plus phosphorus. This drives an asymmetric competition for light, causing a decline in species richness mainly in species with small genome sizes. This dynamic is likely to be caused by the nutrient demands of the nucleus and/or the scaling effects of nuclear size on cell size which impact water use efficiency. The model will help inform the best management approaches to reverse the rapid and unprecedented degradation of grasslands globally.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jianxia Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Maïté S Guignard
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Dong Cao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyuan Zhao
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Huanlong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
18
|
Gupta A, Nair S. Heritable Epigenomic Modifications Influence Stress Resilience and Rapid Adaptations in the Brown Planthopper ( Nilaparvata lugens). Int J Mol Sci 2022; 23:8728. [PMID: 35955860 PMCID: PMC9368798 DOI: 10.3390/ijms23158728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
DNA methylation in insects is integral to cellular differentiation, development, gene regulation, genome integrity, and phenotypic plasticity. However, its evolutionary potential and involvement in facilitating rapid adaptations in insects are enigmatic. Moreover, our understanding of these mechanisms is limited to a few insect species, of which none are pests of crops. Hence, we studied methylation patterns in the brown planthopper (BPH), a major rice pest, under pesticide and nutritional stress, across its life stages. Moreover, as the inheritance of epigenetic changes is fundamentally essential for acclimation, adaptability, and evolution, we determined the heritability and persistence of stress-induced methylation marks in BPH across generations. Our results revealed that DNA methylation pattern(s) in BPH varies/vary with environmental cues and is/are insect life-stage specific. Further, our findings provide novel insights into the heritability of stress-induced methylation marks in BPH. However, it was observed that, though heritable, these marks eventually fade in the absence of the stressors, thereby suggesting the existence of fitness cost(s) associated with the maintenance of the stressed epigenotype. Furthermore, we demonstrate how 5-azacytidine-mediated disruption of BPH methylome influences expression levels of stress-responsive genes and, thereby, highlight demethylation/methylation as a phenomenon underlying stress resilience of BPH.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
19
|
López ME, Roquis D, Becker C, Denoyes B, Bucher E. DNA methylation dynamics during stress response in woodland strawberry ( Fragaria vesca). HORTICULTURE RESEARCH 2022; 9:uhac174. [PMID: 36204205 PMCID: PMC9533225 DOI: 10.1093/hr/uhac174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 05/29/2023]
Abstract
Environmental stresses can result in a wide range of physiological and molecular responses in plants. These responses can also impact epigenetic information in genomes, especially at the level of DNA methylation (5-methylcytosine). DNA methylation is the hallmark heritable epigenetic modification and plays a key role in silencing transposable elements (TEs). Although DNA methylation is an essential epigenetic mechanism, fundamental aspects of its contribution to stress responses and adaptation remain obscure. We investigated epigenome dynamics of wild strawberry (Fragaria vesca) in response to variable ecologically relevant environmental conditions at the DNA methylation level. F. vesca methylome responded with great plasticity to ecologically relevant abiotic and hormonal stresses. Thermal stress resulted in substantial genome-wide loss of DNA methylation. Notably, all tested stress conditions resulted in marked hot spots of differential DNA methylation near centromeric or pericentromeric regions, particularly in the non-symmetrical DNA methylation context. Additionally, we identified differentially methylated regions (DMRs) within promoter regions of transcription factor (TF) superfamilies involved in plant stress-response and assessed the effects of these changes on gene expression. These findings improve our understanding on stress-response at the epigenome level by highlighting the correlation between DNA methylation, TEs and gene expression regulation in plants subjected to a broad range of environmental stresses.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - David Roquis
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Claude Becker
- LMU BioCenter, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
20
|
Escrich A, Cusido RM, Bonfill M, Palazon J, Sanchez-Muñoz R, Moyano E. The Epigenetic Regulation in Plant Specialized Metabolism: DNA Methylation Limits Paclitaxel in vitro Biotechnological Production. FRONTIERS IN PLANT SCIENCE 2022; 13:899444. [PMID: 35874001 PMCID: PMC9305382 DOI: 10.3389/fpls.2022.899444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Environmental conditions are key factors in the modulation of the epigenetic mechanisms regulating gene expression in plants. Specifically, the maintenance of cell cultures in optimal in vitro conditions alters methylation patterns and, consequently, their genetic transcription and metabolism. Paclitaxel production in Taxus x media cell cultures is reduced during its maintenance in in vitro conditions, compromising the biotechnological production of this valuable anticancer agent. To understand how DNA methylation influences taxane production, the promoters of three genes (GGPPS, TXS, and DBTNBT) involved in taxane biosynthesis have been studied, comparing the methylation patterns between a new line and one of ~14 years old. Our work revealed that while the central promoter of the GGPPS gene is protected from cytosine methylation accumulation, TXS and DBTNBT promoters accumulate methylation at different levels. The DBTNBT promoter of the old line is the most affected, showing a 200 bp regulatory region where all the cytosines were methylated. This evidence the existence of specific epigenetic regulatory mechanisms affecting the last steps of the pathway, such as the DBTNBT promoter. Interestingly, the GGPPS promoter, a regulatory sequence of a non-specific taxane biosynthetic gene, was not affected by this mechanism. In addition, the relationship between the detected methylation points and the predicted transcription factor binding sites (TFBS) showed that the action of TFs would be compromised in the old line, giving a further explanation for the production reduction in in vitro cell cultures. This knowledge could help in designing novel strategies to enhance the biotechnological production of taxanes over time.
Collapse
Affiliation(s)
- Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rosa M. Cusido
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
21
|
Liu S, Bao Y, Deng H, Liu G, Han Y, Wu Y, Zhang T, Chen C. The Methylation Inhibitor 5-Aza-2'-Deoxycytidine Induces Genome-Wide Hypomethylation in Rice. RICE (NEW YORK, N.Y.) 2022; 15:35. [PMID: 35779161 PMCID: PMC9250569 DOI: 10.1186/s12284-022-00580-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is a conserved epigenetic modification which is vital for regulating gene expression and maintaining genome stability in both mammals and plants. Homozygous mutation of rice methyltransferase 1 (met1) gene can cause host death in rice, making it difficult to obtain plant material needed for hypomethylation research. To circumvent this challenge, the methylation inhibitor, 5-Aza-2'-deoxycytidine (AzaD), is used as a cytosine nucleoside analogue to reduce genome wide hypomethylation and is widely used in hypomethylation research. However, how AzaD affects plant methylation profiles at the genome scale is largely unknown. Here, we treated rice seedlings with AzaD and compared the AzaD treatment with osmet1-2 mutants, illustrating that there are similar CG hypomethylation and distribution throughout the whole genome. Along with global methylation loss class I transposable elements (TEs) which are farther from genes compared with class II TEs, were more significantly activated, and the RNA-directed DNA Methylation (RdDM) pathway was activated in specific genomic regions to compensate for severe CG loss. Overall, our results suggest that AzaD is an effective DNA methylation inhibitor that can influence genome wide methylation and cause a series of epigenetic variations.
Collapse
Affiliation(s)
- Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Ohzeki J, Kugou K, Otake K, Okazaki K, Takahashi S, Shibata D, Masumoto H. Introduction of a long synthetic repetitive DNA sequence into cultured tobacco cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:101-110. [PMID: 35937535 PMCID: PMC9300429 DOI: 10.5511/plantbiotechnology.21.1210a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/10/2021] [Indexed: 05/15/2023]
Abstract
Genome information has been accumulated for many species, and these genes and regulatory sequences are expected to be applied in plants by enhancing or creating new metabolic pathways. We hypothesized that manipulating a long array of repetitive sequences using tethered chromatin modulators would be effective for robust regulation of gene expression in close proximity to the arrays. This approach is based on a human artificial chromosome made of long synthetic repetitive DNA sequences in which we manipulated the chromatin by tethering the modifiers. However, a method for introducing long repetitive DNA sequences into plants has not yet been established. Therefore, we constructed a bacterial artificial chromosome-based binary vector in Escherichia coli cells to generate a construct in which a cassette of marker genes was inserted into 60-kb synthetic human centromeric repetitive DNA. The binary vector was then transferred to Agrobacterium cells and its stable maintenance confirmed. Next, using Agrobacterium-mediated genetic transformation, this construct was successfully introduced into the genome of cultured tobacco BY-2 cells to obtain a large number of stable one-copy strains. ChIP analysis of obtained BY-2 cell lines revealed that the introduced synthetic repetitive DNA has moderate chromatin modification levels with lower heterochromatin (H3K9me2) or euchromatin (H3K4me3) modifications compared to the host centromeric repetitive DNA or an active Tub6 gene, respectively. Such a synthetic DNA sequence with moderate chromatin modification levels is expected to facilitate manipulation of the chromatin structure to either open or closed.
Collapse
Affiliation(s)
- Junichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Shibata
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
- E-mail: Tel: +81-438-52-3952 Fax: +81-438-52-3946
| |
Collapse
|
23
|
Yang Y, Zhou T, Liu Y, Tian C, Bao L, Wang W, Zhang Y, Liu S, Shi H, Tan S, Gao D, Dunham RA, Liu Z. Identification of an Epigenetically Marked Locus within the Sex Determination Region of Channel Catfish. Int J Mol Sci 2022; 23:ijms23105471. [PMID: 35628283 PMCID: PMC9171582 DOI: 10.3390/ijms23105471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Channel catfish has an XY sex determination system. However, the X and Y chromosomes harbor an identical gene content of 950 genes each. In this study, we conducted comparative analyses of methylome and transcriptome of genetic males and genetic females before gonadal differentiation to provide insights into the mechanisms of sex determination. Differentially methylated CpG sites (DMCs) were predominantly identified on the sex chromosome, most notably within the sex determination region (SDR), although the overall methylation profiles across the entire genome were similar between genetic males and females. The drastic differences in methylation were located within the SDR at nucleotide position 14.0–20.3 Mb of the sex chromosome, making this region an epigenetically marked locus within the sex determination region. Most of the differentially methylated CpG sites were hypermethylated in females and hypomethylated in males, suggesting potential involvement of methylation modification in sex determination in channel catfish. Along with the differential methylation in the SDR, a number of differentially expressed genes within the SDR were also identified between genetic males and females, making them potential candidate genes for sex determination and differentiation in channel catfish.
Collapse
Affiliation(s)
- Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY 13244, USA; (D.G.); (Z.L.)
| | - Rex A. Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY 13244, USA; (D.G.); (Z.L.)
- Correspondence:
| |
Collapse
|
24
|
Adams AN, Denton RD, Mueller RL. Gigantic genomes of salamanders indicate that body temperature, not genome size, is the driver of global methylation and 5-methylcytosine deamination in vertebrates. Evolution 2022; 76:1052-1061. [PMID: 35275604 DOI: 10.1111/evo.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Transposable elements (TEs) are sequences that replicate and move throughout genomes, and they can be silenced through methylation of cytosines at CpG dinucleotides. TE abundance contributes to genome size, but TE silencing variation across genomes of different sizes remains underexplored. Salamanders include most of the largest C-values - 9 to 120 Gb. We measured CpG methylation levels in salamanders with genomes ranging from 2N = ∼58 Gb to 4N = ∼116 Gb. We compared these levels to results from endo- and ectothermic vertebrates with more typical genomes. Salamander methylation levels are approximately 90%, higher than all endotherms. However, salamander methylation does not differ from other ectotherms, despite an approximately 100-fold difference in nuclear DNA content. Because methylation affects the nucleotide compositional landscape through 5-methylcytosine deamination to thymine, we quantified salamander CpG dinucleotide levels and compared them to other vertebrates. Salamanders and other ectotherms have comparable CpG levels, and ectotherm levels are higher than endotherms. These data show no shift in global methylation at the base of salamanders, despite a dramatic increase in TE load and genome size. This result is reconcilable with previous studies that considered endothermy and ectothermy, which may be more important drivers of methylation in vertebrates than genome size.
Collapse
Affiliation(s)
| | - Robert Daniel Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222.,Division of Science and Math, University of Minnesota Morris, Morris, MN, 56267
| | | |
Collapse
|
25
|
Zhou P, Zhang X, Ma X, Yue J, Liao Z, Ming R. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. HORTICULTURE RESEARCH 2022; 9:uhab065. [PMID: 35048102 PMCID: PMC8935930 DOI: 10.1093/hr/uhab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear. Papaya has three sex types, which is genetically determined and epigenetically regulated, and was chosen as a model to study sex differentiation. Bisulfite sequencing of genomic DNA extracted from early-stage flowers revealed sex-specific genomic methylation landscapes and seasonally methylome reprogramming processes in dioecious and gynodioecious papaya grown in spring and summer. Extensive methylation of sex-determining region (SDR) was the distinguishing epigenetic characteristics of nascent XY sex chromosomes in papaya. Seasonal methylome reprogramming of early-stage flowers in both dioecy and gynodioecy systems were detected, resulting from transcriptional expression pattern alterations of methylation-modification-related and chromatin-remodeling-related genes, particularly from those genes involved in active demethylation. Genes involved in phytohormone signal transduction pathway in male flowers have played an important role in the formation of male-specific characteristics. These findings enhanced the understanding of the genetic and epigenetic contributions to sex differentiation and the complexity of sex chromosome evolution in trioecious plants.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou 350013,Fujian, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyi Ma
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhenyang Liao
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Ezhova TA. Paradoxes of Plant Epigenetics. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Plants have a unique ability to adapt ontogenesis to changing environmental conditions and the influence of stress factors. This ability is based on the existence of two specific features of epigenetic regulation in plants, which seem to be mutually exclusive at first glance. On the one hand, plants are capable of partial epigenetic reprogramming of the genome, which can lead to adaptation of physiology and metabolism to changed environmental conditions as well as to changes in ontogenesis programs. On the other hand, plants can show amazing stability of epigenetic modifications and the ability to transmit them to vegetative and sexual generations. The combination of these inextricably linked epigenetic features not only ensures survival in the conditions of a sessile lifestyle but also underlies a surprisingly wide morphological diversity of plants, which can lead to the appearance of morphs within one population and the existence of interpopulation morphological differences. The review discusses the molecular genetic mechanisms that cause a paradoxical combination of the stability and lability properties of epigenetic modifications and underlie the polyvariance of ontogenesis. We also consider the existing approaches for studying the role of epigenetic regulation in the manifestation of polyvariance of ontogenesis and discuss their limitations and prospects.
Collapse
|
27
|
Choi J, Lyons DB, Zilberman D. Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. eLife 2021; 10:72676. [PMID: 34850679 PMCID: PMC8828055 DOI: 10.7554/elife.72676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Flowering plants utilize small RNA (sRNA) molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here, we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with sRNA biogenesis, and without H1 sRNA production quantitatively expands to non-CG-methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the sRNA-generating branch of RdDM from non-CG-methylated heterochromatin. Cells adapt to different roles by turning different groups of genes on and off. One way cells control which genes are on or off is by creating regions of active and inactive DNA, which are created and maintained by different groups of proteins. Genes in active DNA regions can be turned on, while genes in inactive regions are switched off or silenced. Silenced DNA regions also turn off ‘transposable elements’: pieces of DNA that can copy themselves and move to other regions of the genome if they become active. Transposons can be dangerous if they are activated, because they can disrupt genes or regulatory sequences when they move. There are different types of active and inactive DNA, but it is not always clear why these differences exist, or how they are maintained over time. In plants, such as the commonly-studied weed Arabidopsis thaliana, there are two types of inactive DNA, called E and H, that can silence transposons. In both types, DNA has small chemicals called methyl groups attached to it, which help inactivate the DNA. Type E DNA is methylated by a process called RNA-directed DNA methylation (RdDM), but RdDM is rarely seen in type H DNA. Choi, Lyons and Zilberman showed that RdDM is attracted to E and H regions by previously existing methylated DNA. However, in the H regions, a protein called histone H1 blocks RdDM from attaching methyl groups. This helps focus RdDM onto E regions where it is most needed, because E regions contain the types of transposons RdDM is best suited to silence. When Choi, Lyons and Zilberman examined genetically modified A. thaliana plants that do not produce histone H1, they found that RdDM happened in both E and H regions. There are many more H regions than E regions, so stretching RdDM across both made it less effective at silencing DNA. This work shows how different DNA silencing processes are focused onto specific genetic regions, helping explain why there are different types of active and inactive DNA within cells. RdDM has been studied as a way to affect crop growth and yield by altering DNA methylation. These results may help such studies by explaining how RdDM is naturally targeted.
Collapse
Affiliation(s)
- Jaemyung Choi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Klosterneuburg, Austria
| |
Collapse
|
28
|
Voorburg CM, Bai Y, Kormelink R. Small RNA Profiling of Susceptible and Resistant Ty-1 Encoding Tomato Plants Upon Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:757165. [PMID: 34868151 PMCID: PMC8637622 DOI: 10.3389/fpls.2021.757165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Ty-1 presents an atypical dominant resistance gene that codes for an RNA-dependent RNA polymerase (RDR) of the gamma class and confers resistance to tomato yellow leaf curl virus (TYLCV) and other geminiviruses. Tomato lines bearing Ty-1 not only produce relatively higher amounts of viral small interfering (vsi)RNAs, but viral DNA also exhibits a higher amount of cytosine methylation. Whether Ty-1 specifically enhances posttranscriptional gene silencing (PTGS), leading to a degradation of RNA target molecules and primarily relying on 21-22 nucleotides (nts) siRNAs, and/or transcriptional gene silencing (TGS), leading to the methylation of cytosines within DNA target sequences and relying on 24-nts siRNAs, was unknown. In this study, small RNAs were isolated from systemically TYLCV-infected leaves of Ty-1 encoding tomato plants and susceptible tomato Moneymaker (MM) and sequence analyzed. While in susceptible tomato plants vsiRNAs of the 21-nt size class were predominant, their amount was drastically reduced in tomato containing Ty-1. The latter, instead, revealed elevated levels of vsiRNAs of the 22- and 24-nt size classes. In addition, the genomic distribution profiles of the vsiRNAs were changed in Ty-1 plants compared with those from susceptible MM. In MM three clear hotspots were seen, but these were less pronounced in Ty-1 plants, likely due to enhanced transitive silencing to neighboring viral genomic sequences. The largest increase in the amount of vsiRNAs was observed in the intergenic region and the V1 viral gene. The results suggest that Ty-1 enhances an antiviral TGS response. Whether the elevated levels of 22 nts vsiRNAs contribute to an enhanced PTGS response or an additional TGS response involving a noncanonical pathway of RNA dependent DNA methylation remains to be investigated.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
29
|
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. TRENDS IN PLANT SCIENCE 2021; 26:1039-1049. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Angiosperms show a remarkable range in genome size (GS), yet most species have small genomes, despite the frequency of polyploidy and repeat amplification in the ancestries of most lineages. It has been suggested that larger genomes incur costs that have driven selection for GS reduction, although the nature of these costs and how they might impact selection remain unclear. We explore potential costs of increased GS encompassing impacts on minimum cell size with consequences for photosynthesis and water-use efficiency and effects of greater nitrogen and phosphorus demands of the nucleus leading to more severe trade-offs with photosynthesis. We suggest that nutrient-, water-, and/or CO2-stressed conditions might favour species with smaller genomes, with implications for species' ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Lubna Faizullah
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Joseph A Morton
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | - Ilia J Leitch
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.
| |
Collapse
|
30
|
Abstract
Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.
Collapse
Affiliation(s)
- James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
31
|
Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 2021; 10:e64593. [PMID: 34427186 PMCID: PMC8456740 DOI: 10.7554/elife.64593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) and methylation of histone 3 on lysine 9 (H3K9me) are two repressive epigenetic modifications that are typically localized in distinct regions of the genome. For reasons unknown, however, they co-occur in some organisms and special tissue types. In this study, we show that maternal alleles marked by H3K27me3 in the Arabidopsis endosperm were targeted by the H3K27me3 demethylase REF6 and became activated during germination. In contrast, maternal alleles marked by H3K27me3, H3K9me2, and CHG methylation (CHGm) are likely to be protected from REF6 targeting and remained silenced. Our study unveils that combinations of different repressive epigenetic modifications time a key adaptive trait by modulating access of REF6.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| |
Collapse
|
32
|
Martin GT, Seymour DK, Gaut BS. CHH Methylation Islands: A Nonconserved Feature of Grass Genomes That Is Positively Associated with Transposable Elements but Negatively Associated with Gene-Body Methylation. Genome Biol Evol 2021; 13:evab144. [PMID: 34146109 PMCID: PMC8374106 DOI: 10.1093/gbe/evab144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Methylated CHH (mCHH) islands are peaks of CHH methylation that occur primarily upstream to genes. These regions are actively targeted by the methylation machinery, occur at boundaries between heterochromatin and euchromatin, and tend to be near highly expressed genes. Here we took an evolutionary perspective by studying upstream mCHH islands across a sample of eight grass species. Using a statistical approach to define mCHH islands as regions that differ from genome-wide background CHH methylation levels, we demonstrated that mCHH islands are common and associate with 39% of genes, on average. We hypothesized that islands should be more frequent in genomes of large size, because they have more heterochromatin and hence more need for defined boundaries. We found, however, that smaller genomes tended to have a higher proportion of genes associated with 5' mCHH islands. Consistent with previous work suggesting that islands reflect the silencing of the edge of transposable elements (TEs), genes with nearby TEs were more likely to have mCHH islands. However, the presence of mCHH islands was not a function solely of TEs, both because the underlying sequences of islands were often not homologous to TEs and because genic properties also predicted the presence of 5' mCHH islands. These genic properties included length and gene-body methylation (gbM); in fact, in three of eight species, the absence of gbM was a stronger predictor of a 5' mCHH island than TE proximity. In contrast, gene expression level was a positive but weak predictor of the presence of an island. Finally, we assessed whether mCHH islands were evolutionarily conserved by focusing on a set of 2,720 orthologs across the eight species. They were generally not conserved across evolutionary time. Overall, our data establish additional genic properties that are associated with mCHH islands and suggest that they are not just a consequence of the TE silencing machinery.
Collapse
Affiliation(s)
- Galen T Martin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
33
|
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1003-1015. [PMID: 34077584 DOI: 10.1111/tpj.15363] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Collapse
Affiliation(s)
- Xiaotong Wang
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Joseph A Morton
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, Barcelona, 08038, Spain
| | | | - Andrew R Leitch
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
34
|
Yin L, Zhu Z, Huang L, Luo X, Li Y, Xiao C, Yang J, Wang J, Zou Q, Tao L, Kang Z, Tang R, Wang M, Fu S. DNA repair- and nucleotide metabolism-related genes exhibit differential CHG methylation patterns in natural and synthetic polyploids (Brassica napus L.). HORTICULTURE RESEARCH 2021; 8:142. [PMID: 34193846 PMCID: PMC8245426 DOI: 10.1038/s41438-021-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Polyploidization plays a crucial role in the evolution of angiosperm species. Almost all newly formed polyploids encounter genetic or epigenetic instabilities. However, the molecular mechanisms contributing to genomic instability in synthetic polyploids have not been clearly elucidated. Here, we performed a comprehensive transcriptomic and methylomic analysis of natural and synthetic polyploid rapeseeds (Brassica napus). Our results showed that the CHG methylation levels of synthetic rapeseed in different genomic contexts (genes, transposon regions, and repeat regions) were significantly lower than those of natural rapeseed. The total number and length of CHG-DMRs between natural and synthetic polyploids were much greater than those of CG-DMRs and CHH-DMRs, and the genes overlapping with these CHG-DMRs were significantly enriched in DNA damage repair and nucleotide metabolism pathways. These results indicated that CHG methylation may be more sensitive than CG and CHH methylation in regulating the stability of the polyploid genome of B. napus. In addition, many genes involved in DNA damage repair, nucleotide metabolism, and cell cycle control were significantly differentially expressed between natural and synthetic rapeseeds. Our results highlight that the genes related to DNA repair and nucleotide metabolism display differential CHG methylation patterns between natural and synthetic polyploids and reveal the potential connection between the genomic instability of polyploid plants with DNA methylation defects and dysregulation of the DNA repair system. In addition, it was found that the maintenance of CHG methylation in B. napus might be partially regulated by MET1. Our study provides novel insights into the establishment and evolution of polyploid plants and offers a potential idea for improving the genomic stability of newly formed Brassica polyploids.
Collapse
Affiliation(s)
- Liqin Yin
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Zhendong Zhu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Liangjun Huang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Xuan Luo
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Yun Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
| |
Collapse
|
35
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
36
|
RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet 2021; 17:e1009326. [PMID: 34125827 PMCID: PMC8224964 DOI: 10.1371/journal.pgen.1009326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/24/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
In large complex plant genomes, RNA-directed DNA methylation (RdDM) ensures that epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on Mediator of Paramutation1 (Mop1), a gene encoding a putative RNA dependent RNA polymerase. Here we show that although RdDM is essential for the maintenance of DNA methylation of a silenced MuDR transposon in maize, a loss of that methylation does not result in a restoration of activity. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of this element, heritable silencing is mediated via histone H3 lysine 9 dimethylation (H3K9me2), and histone H3 lysine 27 dimethylation (H3K27me2), even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by histone H3 lysine 27 trimethylation (H3K27me3), a mark normally associated with somatically inherited gene silencing. We find that a brief exposure of high temperature in a mop1 mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in mop1 wild-type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once has been reversed. However, given that heritable reactivation only occurs in a mop1 mutant background, these observations suggest that DNA methylation is required to buffer the effects of environmental stress on transposable elements. Most plant genomes are mostly transposable elements (TEs), most of which are held in check by modifications of both DNA and histones. The bulk of silenced TEs are associated with methylated DNA and histone H3 lysine 9 dimethylation (H3K9me2). In contrast, epigenetically silenced genes are often associated with histone lysine 27 trimethylation (H3K27me3). Although stress can affect each of these modifications, plants are generally competent to rapidly reset them following that stress. Here we demonstrate that although DNA methylation is not required to maintain silencing of the MuDR element, it is essential for preventing heat-induced, stable and heritable changes in both H3K9me2 and H3K27me3 at this element, and for concomitant changes in transcriptional activity. These finding suggest that RdDM acts to buffer the effects of heat on silenced transposable elements, and that a loss of DNA methylation under conditions of stress can have profound and long-lasting effects on epigenetic silencing in maize.
Collapse
|
37
|
Epigenetic Distribution of Recombinant Plant Chromosome Fragments in a Human- Arabidopsis Hybrid Cell Line. Int J Mol Sci 2021; 22:ijms22115426. [PMID: 34063996 PMCID: PMC8196797 DOI: 10.3390/ijms22115426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human-Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes.
Collapse
|
38
|
Epigenetic Integrity of Orthodox Seeds Stored under Conventional and Cryogenic Conditions. FORESTS 2021. [DOI: 10.3390/f12030288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The level of 5-methylcytosine (m5C) in DNA has been observed to change in plants in response to biotic and abiotic stress factors. Little information has been reported on alterations in DNA methylation in orthodox tree seeds in response to storage conditions. In the current study, epigenetic integrity was analyzed in seeds of Pyrus communis L. in response to conventional and cryogenic storage. The results indicate that conventional storage under optimal conditions resulted in a significant increase in m5C. In contrast, a decrease in m5C level after cryostorage at high water content (WC) was observed, not only in seeds but also in 3-month-old seedlings which were smaller than seedlings obtained from seeds cryostored at optimal WC. This shows that non-optimal cryostorage conditions increase epigenetic instability in seeds and seedlings. Optimal procedures for germplasm conservation are very important for germplasm banking since they have serious implications for the quality of stored collections. Maintaining epigenetic integrity during WC adjustment and optimal storage is a characteristic feature of orthodox seeds. The current results underline the importance of proper protocols and techniques for conventional storage and particularly cryopreservation as a method for conservation of true-to-type germplasm for long periods.
Collapse
|
39
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
40
|
Luján-Soto E, Dinkova TD. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020236. [PMID: 33530470 PMCID: PMC7911344 DOI: 10.3390/plants10020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Plants make decisions throughout their lifetime based on complex networks. Phase transitions during seed growth are not an exception. From embryo development through seedling growth, several molecular pathways control genome stability, environmental signal transduction and the transcriptional landscape. Particularly, epigenetic modifications and small non-coding RNAs (sRNAs) have been extensively studied as significant handlers of these processes in plants. Here, we review key epigenetic (histone modifications and methylation patterns) and sRNA-mediated regulatory networks involved in the progression from seed maturation to germination, their relationship with seed traits and crosstalk with environmental inputs.
Collapse
|