1
|
Sharif D, Dewasurendra VK, Sultana MN, Mahmud S, Banerjee C, Rahman M, Li P, Clemmer DE, Johnson MB, Valentine SJ. Accessing Different Protein Conformer Ensembles with Tunable Capillary Vibrating Sharp-Edge Spray Ionization. J Phys Chem B 2025. [PMID: 39878076 DOI: 10.1021/acs.jpcb.4c04842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra. For midvoltage conditions (+200 to +600 V, MV regime), higher charge states (7+ to 12+ ions) are observed. For high-voltage conditions (>+600 V, HV regime), the "nano-electrospray ionization (nESI)-type distribution" is achieved in which the 6+ and 5+ species are observed as the dominant ions. Analysis of these results suggests that different pathways to progeny nanodroplet production result in the observed ions. For the LV regime, aerodynamic breakup leads to low charge progeny droplets that are selective for the native solution conformation ensemble of ubiquitin (minus multimeric species). In the MV regime, the large droplets persist for longer periods of time, leading to droplet heating and a shift in the conformation ensemble to partially unfolded species. In the HV regime, droplets access progeny nanodroplets faster, leading to native conformation ensemble sampling as indicated by the observed nESI-type CSD. The notable observation of limited multimer formation and adduct ion formation in the LV regime is hypothesized to result from droplet aero breakup resulting in protein and charge carrier partitioning in sampled progeny droplets. The tunable droplet charging afforded by cVSSI presents opportunities to study the effects of the droplet charge, droplet size, and mass spectrometer inlet temperature on the conformer ensemble sampled by the mass spectrometer. Additionally, the approach may provide a tool for rapid comparison of protein stabilities.
Collapse
Affiliation(s)
- Daud Sharif
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Vikum K Dewasurendra
- Department of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mst Nigar Sultana
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sultan Mahmud
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Chandrima Banerjee
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mohammad Rahman
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Matthew B Johnson
- Department of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J Valentine
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
2
|
Ackloo S, Li F, Szewczyk M, Seitova A, Loppnau P, Zeng H, Xu J, Ahmad S, Arnautova YA, Baghaie AJ, Beldar S, Bolotokova A, Centrella PA, Chau I, Clark MA, Cuozzo JW, Dehghani-Tafti S, Disch JS, Dong A, Dumas A, Feng JA, Ghiabi P, Gibson E, Gilmer J, Goldman B, Green SR, Guié MA, Guilinger JP, Harms N, Herasymenko O, Houliston S, Hutchinson A, Kearnes S, Keefe AD, Kimani SW, Kramer T, Kutera M, Kwak HA, Lento C, Li Y, Liu J, Loup J, Machado RAC, Mulhern CJ, Perveen S, Righetto GL, Riley P, Shrestha S, Sigel EA, Silva M, Sintchak MD, Slakman BL, Taylor RD, Thompson J, Torng W, Underkoffler C, von Rechenberg M, Walsh RT, Watson I, Wilson DJ, Wolf E, Yadav M, Yazdi AK, Zhang J, Zhang Y, Santhakumar V, Edwards AM, Barsyte-Lovejoy D, Schapira M, Brown PJ, Halabelian L, Arrowsmith CH. A Target Class Ligandability Evaluation of WD40 Repeat-Containing Proteins. J Med Chem 2025; 68:1092-1112. [PMID: 39495097 PMCID: PMC11770632 DOI: 10.1021/acs.jmedchem.4c02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Target class-focused drug discovery has a strong track record in pharmaceutical research, yet public domain data indicate that many members of protein families remain unliganded. Here we present a systematic approach to scale up the discovery and characterization of small molecule ligands for the WD40 repeat (WDR) protein family. We developed a comprehensive suite of protocols for protein production, crystallography, and biophysical, biochemical, and cellular assays. A pilot hit-finding campaign using DNA-encoded chemical library selection followed by machine learning (DEL-ML) to predict ligands from virtual libraries yielded first-in-class, drug-like ligands for 7 of the 16 WDR domains screened, thus demonstrating the broader ligandability of WDRs. This study establishes a template for evaluation of protein family wide ligandability and provides an extensive resource of WDR protein biochemical and chemical tools, knowledge, and protocols to discover potential therapeutics for this highly disease-relevant, but underexplored target class.
Collapse
Affiliation(s)
- Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Fengling Li
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Magda Szewczyk
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Almagul Seitova
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Peter Loppnau
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Hong Zeng
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Jin Xu
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
| | - Shabbir Ahmad
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Yelena A Arnautova
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - A. J. Baghaie
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Serap Beldar
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Albina Bolotokova
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Paolo A. Centrella
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Irene Chau
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Matthew A. Clark
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - John W. Cuozzo
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Saba Dehghani-Tafti
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Jeremy S. Disch
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Aiping Dong
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Antoine Dumas
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Jianwen A. Feng
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
| | - Pegah Ghiabi
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Elisa Gibson
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Justin Gilmer
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
| | - Brian Goldman
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Stuart R Green
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Marie-Aude Guié
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - John P. Guilinger
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Nathan Harms
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Oleksandra Herasymenko
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Scott Houliston
- Princess
Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Ashley Hutchinson
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Steven Kearnes
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Anthony D. Keefe
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Serah W. Kimani
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Trevor Kramer
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Maria Kutera
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Haejin A. Kwak
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Yanjun Li
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Jenny Liu
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Joachim Loup
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Raquel A. C. Machado
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Christopher J. Mulhern
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Sumera Perveen
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Germanna L. Righetto
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Patrick Riley
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Suman Shrestha
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Eric A. Sigel
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Madhushika Silva
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Michael D. Sintchak
- Civetta
Therapeutics, 10 Wilson
Rd., Cambridge, Massachusetts 02138, United States
| | - Belinda L. Slakman
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Rhys D. Taylor
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - James Thompson
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
| | - Wen Torng
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
| | - Carl Underkoffler
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Moritz von Rechenberg
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Ryan T. Walsh
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Ian Watson
- Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, United States
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Esther Wolf
- Department
of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Manisha Yadav
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Aliakbar K. Yazdi
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Junyi Zhang
- ZebiAI Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
- Relay Therapeutics, 399 Binney St., Cambridge, Massachusetts 02139, United States
| | - Ying Zhang
- X-Chem Inc., 100 Beaver St., Waltham, Massachusetts 02435, United States
| | - Vijayaratnam Santhakumar
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Aled M. Edwards
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthieu Schapira
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter J. Brown
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
| | - Levon Halabelian
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural
Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G
1L7, Canada
- Princess
Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada
| |
Collapse
|