1
|
Poquérusse J, Brown CL, Gaillard C, Doughty C, Dalén L, Gallagher AJ, Wooller M, Zimov N, Church GM, Lamm B, Hysolli E. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Sci Rep 2024; 14:9804. [PMID: 38684726 PMCID: PMC11058768 DOI: 10.1038/s41598-024-60442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Interest continues to grow in Arctic megafaunal ecological engineering, but, since the mass extinction of megafauna ~ 12-15 ka, key physiographic variables and available forage continue to change. Here we sought to assess the extent to which contemporary Arctic ecosystems are conducive to the rewilding of megaherbivores, using a woolly mammoth (M. primigenius) proxy as a model species. We first perform a literature review on woolly mammoth dietary habits. We then leverage Oak Ridge National Laboratories Distributive Active Archive Center Global Aboveground and Belowground Biomass Carbon Density Maps to generate aboveground biomass carbon density estimates in plant functional types consumed by the woolly mammoth at 300 m resolution on Alaska's North Slope. We supplement these analyses with a NASA Arctic Boreal Vulnerability Experiment dataset to downgrade overall biomass estimates to digestible levels. We further downgrade available forage by using a conversion factor representing the relationship between total biomass and net primary productivity (NPP) for arctic vegetation types. Integrating these estimates with the forage needs of woolly mammoths, we conservatively estimate Alaska's North Slope could support densities of 0.0-0.38 woolly mammoth km-2 (mean 0.13) across a variety of habitats. These results may inform innovative rewilding strategies.
Collapse
Affiliation(s)
| | | | - Camille Gaillard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Chris Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Love Dalén
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Matthew Wooller
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Nikita Zimov
- North-East Science Station, Pacific Institute of Geography, Russian Academy of Sciences, Chersky, Russia
| | - George M Church
- Colossal Biosciences Inc, Austin, TX, 78701, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Ben Lamm
- Colossal Biosciences Inc, Austin, TX, 78701, USA.
| | | |
Collapse
|
2
|
Alpeeva EV, Sharova NP, Sharov KS, Vorotelyak EA. Russian Biodiversity Collections: A Professional Opinion Survey. Animals (Basel) 2023; 13:3777. [PMID: 38136814 PMCID: PMC10740833 DOI: 10.3390/ani13243777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Biodiversity collections are important vehicles for protecting endangered wildlife in situations of adverse anthropogenic influence. In Russia, there are currently a number of institution- and museum-based biological collections, but there are no nation-wide centres of biodiversity collections. In this paper, we report on the results of our survey of 324 bioconservation, big-data, and ecology specialists from different regions of Russia in regard to the necessity to create several large national biodiversity centres of wildlife protection. The survey revealed specific goals that have to be fulfilled during the development of these centres for the protection and restoration of endangered wildlife species. The top three problems/tasks (topics) are the following: (1) the necessity to create large national centres for different types of specimens; (2) the full sequencing and creation of different "omic" (genomic, proteomic, transcriptomic, etc.) databases; (3) full digitisation of a biodiversity collection/centre. These goals may constitute a guideline for the future of biodiversity collections in Russia that would be targeted at protecting and restoring endangered species. With the due network service level, the translation of the website into English, and permission from the regulator (Ministry of Science and Higher Education of Russian Federation), it can also become an international project.
Collapse
Affiliation(s)
| | | | - Konstantin S. Sharov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (E.V.A.); (N.P.S.)
| | | |
Collapse
|
3
|
Mármol-Sánchez E, Fromm B, Oskolkov N, Pochon Z, Kalogeropoulos P, Eriksson E, Biryukova I, Sekar V, Ersmark E, Andersson B, Dalén L, Friedländer MR. Historical RNA expression profiles from the extinct Tasmanian tiger. Genome Res 2023; 33:1299-1316. [PMID: 37463752 PMCID: PMC10552650 DOI: 10.1101/gr.277663.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 223 62 Lund, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91 Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Eli Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Inna Biryukova
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Vaishnovi Sekar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden;
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
| |
Collapse
|
4
|
Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. REPRODUCTION AND FERTILITY 2022; 3:R121-R146. [PMID: 35928671 PMCID: PMC9346332 DOI: 10.1530/raf-22-0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiversity is defined as the presence of a variety of living organisms on the Earth that is essential for human survival. However, anthropogenic activities are causing the sixth mass extinction, threatening even our own species. For many animals, dwindling numbers are becoming fragmented populations with low genetic diversity, threatening long-term species viability. With extinction rates 1000-10,000 times greater than natural, ex situ and in situ conservation programmes need additional support to save species. The indefinite storage of cryopreserved (-196°C) viable cells and tissues (cryobanking), followed by assisted or advanced assisted reproductive technology (ART: utilisation of oocytes and spermatozoa to generate offspring; aART: utilisation of somatic cell genetic material to generate offspring), may be the only hope for species' long-term survival. As such, cryobanking should be considered a necessity for all future conservation strategies. Following cryopreservation, ART/aART can be used to reinstate lost genetics back into a population, resurrecting biodiversity. However, for this to be successful, species-specific protocol optimisation and increased knowledge of basic biology for many taxa are required. Current ART/aART is primarily focused on mammalian taxa; however, this needs to be extended to all, including to some of the most endangered species: amphibians. Gamete, reproductive tissue and somatic cell cryobanking can fill the gap between losing genetic diversity today and future technological developments. This review explores species prioritisation for cryobanking and the successes and challenges of cryopreservation and multiple ARTs/aARTs. We here discuss the value of cryobanking before more species are lost and the potential of advanced reproductive technologies not only to halt but also to reverse biodiversity loss. Lay summary The world is undergoing its sixth mass extinction; however, unlike previous events, the latest is caused by human activities and is resulting in the largest loss of biodiversity (all living things on Earth) for 65 million years. With an extinction rate 1000-10,000-fold greater than natural, this catastrophic decline in biodiversity is threatening our own survival. As the number of individuals within a species declines, genetic diversity reduces, threatening their long-term existence. In this review, the authors summarise approaches to indefinitely preserve living cells and tissues at low temperatures (cryobanking) and the technologies required to resurrect biodiversity. In the future when appropriate techniques become available, these living samples can be thawed and used to reinstate genetic diversity and produce live young ones of endangered species, enabling their long-term survival. The successes and challenges of genome resource cryopreservation are discussed to enable a move towards a future of stable biodiversity.
Collapse
Affiliation(s)
- Rhiannon L Bolton
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
| | | | - Matt T Pettit
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
- IMT International Limited, Tattenhall, Chester, UK
| | - Anthony E Bolton
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
| | - Lucy Morgan
- Gemini Genetics, Chapel Field Stud, Ash Lane, Whitchurch, UK
| | | | - Ruth Appeltant
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Women’s Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Susan L Walker
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
- Chester Zoo, Upton-by-Chester, UK
| | - James D Gillis
- South-East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA
| | | |
Collapse
|
5
|
Frankenstein’s work or everyday conservation? How reintroductions are informing the de-extinction debate. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|