1
|
Ben-Jemaa S, Adam G, Boussaha M, Bardou P, Klopp C, Mandonnet N, Naves M. Whole genome sequencing reveals signals of adaptive admixture in Creole cattle. Sci Rep 2023; 13:12155. [PMID: 37500674 PMCID: PMC10374910 DOI: 10.1038/s41598-023-38774-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
The Creole cattle from Guadeloupe (GUA) are well adapted to the tropical environment. Its admixed genome likely played an important role in such adaptation. Here, we sought to detect genomic signatures of selection in the GUA genome. For this purpose, we sequenced 23 GUA individuals and combined our data with sequenced genomes of 99 animals representative of European, African and indicine groups. We detect 17,228,983 single nucleotide polymorphisms (SNPs) in the GUA genome, providing the most detailed exploration, to date, of patterns of genetic variation in this breed. We confirm the higher level of African and indicine ancestries, compared to the European ancestry and we highlight the African origin of indicine ancestry in the GUA genome. We identify five strong candidate regions showing an excess of indicine ancestry and consistently supported across the different detection methods. These regions encompass genes with adaptive roles in relation to immunity, thermotolerance and physical activity. We confirmed a previously identified horn-related gene, RXFP2, as a gene under strong selective pressure in the GUA population likely owing to human-driven (socio-cultural) pressure. Findings from this study provide insight into the genetic mechanisms associated with resilience traits in livestock.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- INRAE, ASSET, 97170, Petit-Bourg, France.
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia.
| | | | - Mekki Boussaha
- AgroParisTech, GABI, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Philippe Bardou
- GenPhySE, Ecole Nationale Vétérinaire de Toulouse (ENVT), INRA, Université de Toulouse, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
- Sigenae, INRAE, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Christophe Klopp
- Genotoul Bioinfo, BioInfoMics, MIAT UR875, Sigenae, INRAE, Castanet-Tolosan, France
| | | | | |
Collapse
|
2
|
Liu GB, Zhan T, Pan YM, Zhang DW, Zheng HZ, Xu B, Li TT, Dong CL, Cheng YX. LNX2 involves in the role of ghrelin to promote the neuronal differentiation of adipose tissue-derived mesenchymal stem cells. J Bioenerg Biomembr 2023; 55:195-205. [PMID: 37237241 DOI: 10.1007/s10863-023-09967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) have promising effects on nerve repair due to the differentiation ability to neural cells. Ghrelin has been shown to promote the neural differentiation of ADSCs. This work was designed to explore its underlying mechanism. Herein, we found high expression of LNX2 in ADSCs after neuronal differentiation. Knockdown of LNX2 might block neuronal differentiation of ADSCs, as evidenced by the decreased number of neural-like cells and dendrites per cell, and the reduced expressions of neural markers (including β-Tubulin III, Nestin, and MAP2). We also demonstrated that LNX2 silencing suppressed the nuclear translocation of β-catenin in differentiated ADSCs. Luciferase reporter assay indicated that LNX2 inhibited wnt/β-catenin pathway by reducing its transcriptional activity. In addition, results showed that LNX2 expression was increased by ghrelin, and its inhibition diminished the effects of ghrelin on neuronal differentiation. Altogether, the results suggest that LNX2 is involved in the role of ghrelin to facilitate neuronal differentiation of ADSCs.
Collapse
Affiliation(s)
- Gui-Bo Liu
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Tao Zhan
- Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang, 157011, China
| | - Yan-Ming Pan
- School of Imaging Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Da-Wei Zhang
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Hui-Zhe Zheng
- Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang, 157011, China
| | - Biao Xu
- Department of Cardiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ting-Ting Li
- Department of Pathology, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Chuan-Ling Dong
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Yong-Xia Cheng
- Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang, 157011, China.
| |
Collapse
|
3
|
Zhang Y, Deng S, Zhong H, Liu M, Ding J, Geng R, Tu Q. Exploration and Clinical Verification of the Blood Co-Expression Genes of Type 2 Diabetes Mellitus and Mild Cognitive Dysfunction in the Elderly. Biomedicines 2023; 11:biomedicines11040993. [PMID: 37189611 DOI: 10.3390/biomedicines11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
With the development of society, the incidence of dementia and type 2 diabetes (T2DM) in the elderly has been increasing. Although the correlation between T2DM and mild cognitive impairment (MCI) has been confirmed in the previous literature, the interaction mechanism remains to be clarified. To explore the co-pathogenic genes in the blood of MCI and T2DM patients, clarify the correlation between T2DM and MCI, achieve the purpose of early disease prediction, and provide new ideas for the prevention and treatment of dementia. We downloaded T2DM and MCI microarray data from GEO databases and identified the differentially expressed genes associated with MCI and T2DM. We obtained co-expressed genes by intersecting differentially expressed genes. Then, we performed GO and KEGG enrichment analysis of co-DEGs. Next, we constructed the PPI network and found the hub genes in the network. By constructing the ROC curve of hub genes, the most valuable genes for diagnosis were obtained. Finally, the correlation between MCI and T2DM was clinically verified by means of a current situation investigation, and the hub gene was verified by qRT-PCR. A total of 214 co-DEGs were selected, 28 co-DEGs were up-regulated, and 90 co-DEGs were down-regulated. Functional enrichment analysis showed that co-DEGs were mainly enriched in metabolic diseases and some signaling pathways. The construction of the PPI network identified the hub genes in MCI and T2DM co-expression genes. We identified nine hub genes of co-DEGs, namely LNX2, BIRC6, ANKRD46, IRS1, TGFB1, APOA1, PSEN1, NPY, and ALDH2. Logistic regression analysis and person correlation analysis showed that T2DM was correlated with MCI, and T2DM increased the risk of cognitive impairment. The qRT-PCR results showed that the expressions of LNX2, BIRC6, ANKRD46, TGFB1, PSEN1, and ALDH2 were consistent with the results of bioinformatic analysis. This study screened the co-expressed genes of MCI and T2DM, which may provide new therapeutic targets for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Shengfeng Deng
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hongfei Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Miao Liu
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jingwen Ding
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rulin Geng
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qiuyun Tu
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
4
|
Lee SJ, Kim J, Han G, Hong SP, Kim D, Cho C. Impaired Blastocyst Formation in Lnx2-Knockdown Mouse Embryos. Int J Mol Sci 2023; 24:ijms24021385. [PMID: 36674899 PMCID: PMC9867088 DOI: 10.3390/ijms24021385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Ligand of Numb-protein X 2 (LNX2) is an E3 ubiquitin ligase that is known to regulate Notch signaling by participating in NUMB protein degradation. Notch signaling is important for differentiation and proliferation in mammals, and plays a significant role in blastocyst formation during early embryonic development. In this study, we investigated Lnx2 in mouse preimplantation embryos. Expression analysis showed that Lnx2 is expressed in oocytes and preimplantation embryos. Lnx2-knockdown embryos normally progress to the morula stage, but the majority of them do not develop into normal blastocysts. Transcript analysis revealed that the expression levels of genes critical for cell lineage specification, including octamer-binding transcription factor 4 (Oct4), are increased in Lnx2 knockdown embryos. Furthermore, the expression levels of Notch and Hippo signaling-related genes are also increased by Lnx2 knockdown. Collectively, our results show that Lnx2 is important for blastocyst formation in mice, suggest that this may act via lineage specification of inner cell mass, and further show that Lnx2 may be involved in transcriptionally regulating various genes implicated in early embryonic development.
Collapse
Affiliation(s)
- Seung-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Pyo Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dayeon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
6
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
7
|
LNX1 Contributes to Cell Cycle Progression and Cisplatin Resistance. Cancers (Basel) 2021; 13:cancers13164066. [PMID: 34439220 PMCID: PMC8394373 DOI: 10.3390/cancers13164066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The ligand of numb-protein X1 (LNX1) is reported to be upregulated in various cancers, however the cellular function of LNX1 is not clearly characterized. The aim of the present study was to elucidate the regulation of LNX1 expression and clarify the role of LNX1 in cell-cycle progression and resistance to the cancer therapeutic agent, cisplatin. We found that LNX1 expression is decreased by DNA damage including cisplatin treatment and the levels of S and G2/M populations were correlated with LNX1 expression. We also showed that the upregulation of LNX1 contributes to cell-cycle progression and cisplatin resistance. Our data suggest that LNX1 is the important regulator of the cell cycle, and contributes to tumor progression. Abstract The ligand of numb-protein X1 (LNX1) acts as a proto-oncogene by inhibiting p53 stability; however, the regulation of LNX1 expression has not been investigated. In this study, we screened chemicals to identify factors that potentially regulate LNX1 expression. We found that LNX1 expression levels were decreased by DNA damage, including that by cisplatin. Upon treatment with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), LNX1 expression levels increased. In addition, cell-cycle progression increased upon LNX1 expression; the levels of S and G2/M populations were correlated with LNX1 expression. Moreover, in CRISPR-Cas9-mediated LNX1 knockout cells, we observed a delay in cell-cycle progression and a downregulation of genes encoding the cell-cycle markers cyclin D1 and cyclin E1. Finally, the upregulation of LNX1-activated cell-cycle progression and increased resistance to cisplatin-mediated cell death. Taken together, these results suggest that LNX1 contributes to cell-cycle progression and cisplatin resistance.
Collapse
|
8
|
McCutcheon RA, Brown K, Nour MM, Smith SM, Veronese M, Zelaya F, Osugo M, Jauhar S, Hallett W, Mehta MM, Howes OD. Dopaminergic organization of striatum is linked to cortical activity and brain expression of genes associated with psychiatric illness. SCIENCE ADVANCES 2021; 7:7/24/eabg1512. [PMID: 34108214 PMCID: PMC8189589 DOI: 10.1126/sciadv.abg1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/15/2021] [Indexed: 05/02/2023]
Abstract
Dopamine signaling is constrained to discrete tracts yet has brain-wide effects on neural activity. The nature of this relationship between local dopamine signaling and brain-wide neuronal activity is not clearly defined and has relevance for neuropsychiatric illnesses where abnormalities of cortical activity and dopamine signaling coexist. Using simultaneous PET-MRI in healthy volunteers, we find strong evidence that patterns of striatal dopamine signaling and cortical blood flow (an index of local neural activity) contain shared information. This shared information links amphetamine-induced changes in gradients of striatal dopamine receptor availability to changes in brain-wide blood flow and is informed by spatial patterns of gene expression enriched for genes implicated in schizophrenia, bipolar disorder, and autism spectrum disorder. These results advance our knowledge of the relationship between cortical function and striatal dopamine, with relevance for understanding pathophysiology and treatment of diseases in which simultaneous aberrations of these systems exist.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Kirsten Brown
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Stephen M Smith
- Oxford University Centre for Functional MRI of the Brain (FMRIB), Oxford, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - William Hallett
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, UK
| | - Mitul M Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Wang WJ, Lyu TJ, Li Z. Research Progress on PATJ and Underlying Mechanisms Associated with Functional Outcomes After Stroke. Neuropsychiatr Dis Treat 2021; 17:2811-2818. [PMID: 34471355 PMCID: PMC8405222 DOI: 10.2147/ndt.s310764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Cell polarity is an intrinsic property of epithelial cells regulated by scaffold proteins. The CRB (crumbs) complex is known to play a predominant role in the dynamic cooperative network of polarity scaffold proteins. PATJ (PALS1-associated tight junction) is the core component in the CRB complex and has been highly conserved throughout evolution. PATJ is crucial to several important events in organisms' survival, including embryonic development, cell polarity, and barrier establishment. A recent study shows that PATJ plays an important role in functional outcomes of stroke. In this article, we elaborate on the biological structure and physiological functions of PATJ and explore the underlying mechanisms of PATJ genetic polymorphism that are associated with poor functional outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Tian-Jie Lyu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People's Republic of China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, 100070, People's Republic of China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People's Republic of China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, 100070, People's Republic of China.,Chinese Institute for Brain Research, Beijing, 100070, People's Republic of China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, People's Republic of China
| |
Collapse
|
10
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
11
|
LNX1 Modulates Notch1 Signaling to Promote Expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 2020; 12:cancers12123505. [PMID: 33255632 PMCID: PMC7759984 DOI: 10.3390/cancers12123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common adult malignant brain tumor. It is an aggressive tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation. Our goal was to understand what genes are altered by temozolomide and how those genes may contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases the expression of Notch1, a gene important for glioblastoma progression. We further showed that the elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together, these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of Notch1 activity and the stem cell population, potentially resulting in increased patient survival. Abstract Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100% recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion, we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25). The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD). Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations. In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated Notch1 signaling promotes stemness and contributes to therapeutic resistance.
Collapse
|
12
|
de la Rocha-Muñoz A, Núñez E, Arribas-González E, López-Corcuera B, Aragón C, de Juan-Sanz J. E3 ubiquitin ligases LNX1 and LNX2 are major regulators of the presynaptic glycine transporter GlyT2. Sci Rep 2019; 9:14944. [PMID: 31628376 PMCID: PMC6802383 DOI: 10.1038/s41598-019-51301-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neuronal glycine transporter GlyT2 is an essential regulator of glycinergic neurotransmission that recaptures glycine in presynaptic terminals to facilitate transmitter packaging in synaptic vesicles. Alterations in GlyT2 expression or activity result in lower cytosolic glycine levels, emptying glycinergic synaptic vesicles and impairing neurotransmission. Lack of glycinergic neurotransmission caused by GlyT2 loss-of-function mutations results in Hyperekplexia, a rare neurological disease characterized by generalized stiffness and motor alterations that may cause sudden infant death. Although the importance of GlyT2 in pathology is known, how this transporter is regulated at the molecular level is poorly understood, limiting current therapeutic strategies. Guided by an unbiased screening, we discovered that E3 ubiquitin ligase Ligand of Numb proteins X1/2 (LNX1/2) modulate the ubiquitination status of GlyT2. The N-terminal RING-finger domain of LNX1/2 ubiquitinates a cytoplasmic C-terminal lysine cluster in GlyT2 (K751, K773, K787 and K791), and this process regulates the expression levels and transport activity of GlyT2. The genetic deletion of endogenous LNX2 in spinal cord primary neurons causes an increase in GlyT2 expression and we find that LNX2 is required for PKC-mediated control of GlyT2 transport. This work identifies, to our knowledge, the first E3 ubiquitin-ligases acting on GlyT2, revealing a novel molecular mechanism that controls presynaptic glycine availability. Providing a better understanding of the molecular regulation of GlyT2 may help future investigations into the molecular basis of human disease states caused by dysfunctional glycinergic neurotransmission, such as hyperekplexia and chronic pain.
Collapse
Affiliation(s)
- A de la Rocha-Muñoz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Núñez
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Arribas-González
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain
| | - B López-Corcuera
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - C Aragón
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.
| | - J de Juan-Sanz
- Sorbonne Université and Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France.
| |
Collapse
|